1
|
Liang S, Duan Z, He X, Yang X, Yuan Y, Liang Q, Pan Y, Zhou G, Zhang M, Liu S, Tian Z. Natural variation in GmSW17 controls seed size in soybean. Nat Commun 2024; 15:7417. [PMID: 39198482 PMCID: PMC11358545 DOI: 10.1038/s41467-024-51798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Seed size/weight plays an important role in determining crop yield, yet only few genes controlling seed size have been characterized in soybean. Here, we perform a genome-wide association study and identify a major quantitative trait locus (QTL), named GmSW17 (Seed Width 17), on chromosome 17 that determine soybean seed width/weight in natural population. GmSW17 encodes a ubiquitin-specific protease, an ortholog to UBP22, belonging to the ubiquitin-specific protease (USPs/UBPs) family. Further functional investigations reveal that GmSW17 interacts with GmSGF11 and GmENY2 to form a deubiquitinase (DUB) module, which influences H2Bub levels and negatively regulates the expression of GmDP-E2F-1, thereby inhibiting the G1-to-S transition. Population analysis demonstrates that GmSW17 undergo artificial selection during soybean domestication but has not been fixed in modern breeding. In summary, our study identifies a predominant gene related to soybean seed weight, providing potential advantages for high-yield breeding in soybean.
Collapse
Affiliation(s)
- Shan Liang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Xuemei He
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xia Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yaqin Yuan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianjin Liang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yi Pan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guoan Zhou
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shulin Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Felício D, du Mérac TR, Amorim A, Martins S. Functional implications of paralog genes in polyglutamine spinocerebellar ataxias. Hum Genet 2023; 142:1651-1676. [PMID: 37845370 PMCID: PMC10676324 DOI: 10.1007/s00439-023-02607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023]
Abstract
Polyglutamine (polyQ) spinocerebellar ataxias (SCAs) comprise a group of autosomal dominant neurodegenerative disorders caused by (CAG/CAA)n expansions. The elongated stretches of adjacent glutamines alter the conformation of the native proteins inducing neurotoxicity, and subsequent motor and neurological symptoms. Although the etiology and neuropathology of most polyQ SCAs have been extensively studied, only a limited selection of therapies is available. Previous studies on SCA1 demonstrated that ATXN1L, a human duplicated gene of the disease-associated ATXN1, alleviated neuropathology in mice models. Other SCA-associated genes have paralogs (i.e., copies at different chromosomal locations derived from duplication of the parental gene), but their functional relevance and potential role in disease pathogenesis remain unexplored. Here, we review the protein homology, expression pattern, and molecular functions of paralogs in seven polyQ dominant ataxias-SCA1, SCA2, MJD/SCA3, SCA6, SCA7, SCA17, and DRPLA. Besides ATXN1L, we highlight ATXN2L, ATXN3L, CACNA1B, ATXN7L1, ATXN7L2, TBPL2, and RERE as promising functional candidates to play a role in the neuropathology of the respective SCA, along with the parental gene. Although most of these duplicates lack the (CAG/CAA)n region, if functionally redundant, they may compensate for a partial loss-of-function or dysfunction of the wild-type genes in SCAs. We aim to draw attention to the hypothesis that paralogs of disease-associated genes may underlie the complex neuropathology of dominant ataxias and potentiate new therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Felício
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313, Porto, Portugal
| | - Tanguy Rubat du Mérac
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Faculty of Science, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - António Amorim
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Sandra Martins
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| |
Collapse
|
3
|
Barman P, Kaja A, Chakraborty P, Guha S, Roy A, Ferdoush J, Bhaumik SR. A novel ubiquitin-proteasome system regulation of Sgf73/ataxin-7 that maintains the integrity of the coactivator SAGA in orchestrating transcription. Genetics 2023; 224:iyad071. [PMID: 37075097 PMCID: PMC10324951 DOI: 10.1093/genetics/iyad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 04/20/2023] Open
Abstract
Ataxin-7 maintains the integrity of Spt-Ada-Gcn5-Acetyltransferase (SAGA), an evolutionarily conserved coactivator in stimulating preinitiation complex (PIC) formation for transcription initiation, and thus, its upregulation or downregulation is associated with various diseases. However, it remains unknown how ataxin-7 is regulated that could provide new insights into disease pathogenesis and therapeutic interventions. Here, we show that ataxin-7's yeast homologue, Sgf73, undergoes ubiquitylation and proteasomal degradation. Impairment of such regulation increases Sgf73's abundance, which enhances recruitment of TATA box-binding protein (TBP) (that nucleates PIC formation) to the promoter but impairs transcription elongation. Further, decreased Sgf73 level reduces PIC formation and transcription. Thus, Sgf73 is fine-tuned by ubiquitin-proteasome system (UPS) in orchestrating transcription. Likewise, ataxin-7 undergoes ubiquitylation and proteasomal degradation, alteration of which changes ataxin-7's abundance that is associated with altered transcription and cellular pathologies/diseases. Collectively, our results unveil a novel UPS regulation of Sgf73/ataxin-7 for normal cellular health and implicate alteration of such regulation in diseases.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Amala Kaja
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX-77030, USA
| | - Pritam Chakraborty
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Arpan Roy
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Jannatul Ferdoush
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| |
Collapse
|
4
|
Abstract
General control nonderepressible 5 protein (Gcn5) and its homologs, including p300/CBP-associated factor (PCAF), are lysine acetyltransferases that modify both histone and non-histone proteins using acetyl coenzyme A as a donor substrate. While decades of studies have uncovered a vast network of cellular processes impacted by these acetyltransferases, including gene transcription and metabolism, far less is known about how these enzymes are themselves regulated. In this review, we summarize the type and functions of posttranslational modifications proposed to control Gcn5 in both yeast and human cells. We further outline common themes, open questions, and strategies to guide future work.
Collapse
|
5
|
Goswami R, Bello AI, Bean J, Costanzo KM, Omer B, Cornelio-Parra D, Odah R, Ahluwalia A, Allan SK, Nguyen N, Shores T, Aziz NA, Mohan RD. The Molecular Basis of Spinocerebellar Ataxia Type 7. Front Neurosci 2022; 16:818757. [PMID: 35401096 PMCID: PMC8987156 DOI: 10.3389/fnins.2022.818757] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
Spinocerebellar ataxia (SCA) type 7 (SCA7) is caused by a CAG trinucleotide repeat expansion in the ataxin 7 (ATXN7) gene, which results in polyglutamine expansion at the amino terminus of the ATXN7 protein. Although ATXN7 is expressed widely, the best characterized symptoms of SCA7 are remarkably tissue specific, including blindness and degeneration of the brain and spinal cord. While it is well established that ATXN7 functions as a subunit of the Spt Ada Gcn5 acetyltransferase (SAGA) chromatin modifying complex, the mechanisms underlying SCA7 remain elusive. Here, we review the symptoms of SCA7 and examine functions of ATXN7 that may provide further insights into its pathogenesis. We also examine phenotypes associated with polyglutamine expanded ATXN7 that are not considered symptoms of SCA7.
Collapse
Affiliation(s)
- Rituparna Goswami
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Abudu I. Bello
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Joe Bean
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Kara M. Costanzo
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Bwaar Omer
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Dayanne Cornelio-Parra
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Revan Odah
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Amit Ahluwalia
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Shefaa K. Allan
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Nghi Nguyen
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Taylor Shores
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - N. Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ryan D. Mohan
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
- *Correspondence: Ryan D. Mohan,
| |
Collapse
|
6
|
Stanek TJ, Gennaro VJ, Tracewell MA, Di Marcantonio D, Pauley KL, Butt S, McNair C, Wang F, Kossenkov AV, Knudsen KE, Butt T, Sykes SM, McMahon SB. The SAGA complex regulates early steps in transcription via its deubiquitylase module subunit USP22. EMBO J 2021; 40:e102509. [PMID: 34155658 PMCID: PMC8365265 DOI: 10.15252/embj.2019102509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 04/10/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
The SAGA coactivator complex is essential for eukaryotic transcription and comprises four distinct modules, one of which contains the ubiquitin hydrolase USP22. In yeast, the USP22 ortholog deubiquitylates H2B, resulting in Pol II Ser2 phosphorylation and subsequent transcriptional elongation. In contrast to this H2B-associated role in transcription, we report here that human USP22 contributes to the early stages of stimulus-responsive transcription, where USP22 is required for pre-initiation complex (PIC) stability. Specifically, USP22 maintains long-range enhancer-promoter contacts and controls loading of Mediator tail and general transcription factors (GTFs) onto promoters, with Mediator core recruitment being USP22-independent. In addition, we identify Mediator tail subunits MED16 and MED24 and the Pol II subunit RBP1 as potential non-histone substrates of USP22. Overall, these findings define a role for human SAGA within the earliest steps of transcription.
Collapse
Affiliation(s)
- Timothy J Stanek
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Victoria J Gennaro
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Mason A Tracewell
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | | | - Kristen L Pauley
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Sabrina Butt
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Christopher McNair
- Department of Cancer BiologySidney Kimmel Medical College and Sidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPAUSA
| | | | | | - Karen E Knudsen
- Department of Cancer BiologySidney Kimmel Medical College and Sidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaPAUSA
| | | | - Stephen M Sykes
- Blood Cell Development and Function ProgramFox Chase Cancer CenterPhiladelphiaPAUSA
| | - Steven B McMahon
- Department of Biochemistry and Molecular BiologySidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| |
Collapse
|
7
|
Nuño-Cabanes C, García-Molinero V, Martín-Expósito M, Gas ME, Oliete-Calvo P, García-Oliver E, de la Iglesia-Vayá M, Rodríguez-Navarro S. SAGA-CORE subunit Spt7 is required for correct Ubp8 localization, chromatin association and deubiquitinase activity. Epigenetics Chromatin 2020; 13:46. [PMID: 33115507 PMCID: PMC7594455 DOI: 10.1186/s13072-020-00367-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background Histone H2B deubiquitination is performed by numerous deubiquitinases in eukaryotic cells including Ubp8, the catalytic subunit of the tetrameric deubiquitination module (DUBm: Ubp8; Sus1; Sgf11; Sgf73) of the Spt-Ada-Gcn5 acetyltransferase (SAGA). Ubp8 is linked to the rest of SAGA through Sgf73 and is activated by the adaptors Sus1 and Sgf11. It is unknown if DUBm/Ubp8 might also work in a SAGA-independent manner. Results Here we report that a tetrameric DUBm is assembled independently of the SAGA–CORE components SPT7, ADA1 and SPT20. In the absence of SPT7, i.e., independent of the SAGA complex, Ubp8 and Sus1 are poorly recruited to SAGA-dependent genes and to chromatin. Notably, cells lacking Spt7 or Ada1, but not Spt20, show lower levels of nuclear Ubp8 than wild-type cells, suggesting a possible role for SAGA–CORE subunits in Ubp8 localization. Last, deletion of SPT7 leads to defects in Ubp8 deubiquitinase activity in in vivo and in vitro assays. Conclusions Collectively, our studies show that the DUBm tetrameric structure can form without a complete intact SAGA–CORE complex and that it includes full-length Sgf73. However, subunits of this SAGA–CORE influence DUBm association with chromatin, its localization and its activity.
Collapse
Affiliation(s)
- Carme Nuño-Cabanes
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), C/Jaume Roig 11, 46010, Valencia, Spain.,Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain
| | - Varinia García-Molinero
- Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain
| | - Manuel Martín-Expósito
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), C/Jaume Roig 11, 46010, Valencia, Spain.,Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain
| | - María-Eugenia Gas
- Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain
| | - Paula Oliete-Calvo
- Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain
| | - Encar García-Oliver
- Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain
| | - María de la Iglesia-Vayá
- Brain Connectivity Lab. Joint Unit FISABIO & Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain
| | - Susana Rodríguez-Navarro
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), C/Jaume Roig 11, 46010, Valencia, Spain. .,Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), C/E. Primo Yúfera 3, 46012, Valencia, Spain.
| |
Collapse
|