1
|
Zuliani JP, Gutiérrez JM, Teixeira C. Signaling pathways involved in zymosan phagocytosis induced by two secreted phospholipases A2 isolated from Bothrops asper snake venom in macrophages. Int J Biol Macromol 2018; 113:575-582. [DOI: 10.1016/j.ijbiomac.2018.02.158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 01/12/2023]
|
2
|
Esser J, Gehrmann U, Salvado MD, Wetterholm A, Haeggström JZ, Samuelsson B, Gabrielsson S, Scheynius A, Rådmark O. Zymosan suppresses leukotriene C₄ synthase activity in differentiating monocytes: antagonism by aspirin and protein kinase inhibitors. FASEB J 2011; 25:1417-27. [PMID: 21228223 DOI: 10.1096/fj.10-175828] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cysteinyl leukotrienes (cysLTs) are potent proinflammatory mediators with particular relevance for asthma. However, control of cysLT biosynthesis in the time period after onset of acute inflammation has not been extensively studied. As a model for later phases of inflammation, we investigated regulation of leukotriene (LT) C(4) synthase (LTC(4)S) in differentiating monocytes, exposed for several days to fungal zymosan. Incubations with LTA(4) revealed 20-fold increased LTC(4)S activity during differentiation of monocytic Mono Mac 6 (MM6) cells, which was reduced by 80% in the presence of zymosan (25 μg/ml, 96 h). Zymosan (48 h) similarly attenuated LTC(4)S activity of primary human monocyte-derived macrophages and dendritic cells. Several findings indicate phosphoregulation of LTC(4)S: increased activity during MM6 cell differentiation correlated with reduced phosphorylation of 70-kDa ribosomal protein S6 kinase (p70S6K), which could phosphorylate purified LTC(4)S; the p70S6K inhibitor rapamycin (20 nM) doubled LTC(4)S activity of undifferentiated MM6 cells, and protein kinase A and C inhibitors (H-89, CGP-53353, and staurosporine) reversed the zymosan-induced suppression of LTC(4)S activity. Finally, zymosan (48 h) up-regulated PGE(2) biosynthesis, and aspirin (10 μM) or prostaglandin E(2) (PGE(2)) receptor antagonists counteracted the zymosan effect. Our results suggest a late PGE(2)-mediated phosphoregulation of LTC(4)S during microbial exposure, which may contribute to resolution of inflammation, with implications for aspirin hypersensitivity.
Collapse
Affiliation(s)
- Julia Esser
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Hexane/ethanol extract of Glycyrrhiza uralensis licorice exerts potent anti-inflammatory effects in murine macrophages and in mouse skin. Food Chem 2010. [DOI: 10.1016/j.foodchem.2010.01.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Development of a platelet-activating factor antagonist for HIV-1 associated neurocognitive disorders. J Neuroimmunol 2009; 213:47-59. [PMID: 19541372 DOI: 10.1016/j.jneuroim.2009.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/27/2009] [Accepted: 06/01/2009] [Indexed: 02/07/2023]
Abstract
The neuroregulatory activities of PMS-601, a platelet activating factor antagonist, were investigated in laboratory and animal models of HIV-1 encephalitis (HIVE). For the former, PMS-601 reduced monocyte-derived macrophage pro-inflammatory secretions, multinucleated giant cell (MGC) formation, and neuronal loss independent of antiretroviral responses. PMS-601 treatment of HIVE severe combined immunodeficient mice showed reduced microgliosis, MGCs and neurodegeneration. These observations support the further development of PMS-601 as an adjunctive therapy for HIV-1 associated neurocognitive disorders.
Collapse
|
5
|
Ruipérez V, Astudillo AM, Balboa MA, Balsinde J. Coordinate regulation of TLR-mediated arachidonic acid mobilization in macrophages by group IVA and group V phospholipase A2s. THE JOURNAL OF IMMUNOLOGY 2009; 182:3877-83. [PMID: 19265167 DOI: 10.4049/jimmunol.0804003] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Macrophages can be activated through TLRs for a variety of innate immune responses. In contrast with the wealth of data existing on TLR-dependent gene expression and resultant cytokine production, very little is known on the mechanisms governing TLR-mediated arachidonic acid (AA) mobilization and subsequent eicosanoid production. We have previously reported the involvement of both cytosolic group IVA phospholipase A(2) (cPLA(2)) and secreted group V phospholipase A(2) (sPLA(2)-V) in regulating the AA mobilization response of macrophages exposed to bacterial LPS, a TLR4 agonist. In the present study, we have used multiple TLR agonists to define the role of various PLA(2)s in macrophage AA release via TLRs. Activation of P388D(1) and RAW2647.1 macrophage-like cells via TLR1/2, TLR2, TLR3, TLR4, TLR6/2, and TLR7, but not TLR5 or TLR9, resulted in AA mobilization that appears to involve the activation of both cPLA(2) and sPLA(2) but not of calcium-independent phospholipase A(2). Furthermore, inhibition of sPLA(2)-V by RNA interference or by two cell-permeable compounds, namely scalaradial and manoalide, resulted in a marked reduction of the phosphorylation of ERK1/2 and cPLA(2) via TLR1/2, TLR2, TLR3, and TLR4, leading to attenuated AA mobilization. Collectively, the results suggest a model whereby sPLA(2)-V contributes to the macrophage AA mobilization response via various TLRs by amplifying cPLA(2) activation through the ERK1/2 phosphorylation cascade.
Collapse
Affiliation(s)
- Violeta Ruipérez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Valladolid, Spain
| | | | | | | |
Collapse
|
6
|
Affiliation(s)
- Macrae F Linton
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
7
|
Cho HJ, Seon MR, Lee YM, Kim J, Kim JK, Kim SG, Park JHY. 3,3'-Diindolylmethane suppresses the inflammatory response to lipopolysaccharide in murine macrophages. J Nutr 2008; 138:17-23. [PMID: 18156398 DOI: 10.1093/jn/138.1.17] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
3,3'-Diindolylmethane (DIM), a major acid-condensation product of indole-3-carbinol, has been shown to have multiple anticancer effects in experimental models. Because recurrent or chronic inflammation has been implicated in the development of a variety of human cancers, this study examined the antiinflammatory effects of DIM and the underlying mechanisms using lipopolysaccharide (LPS)-stimulated RAW264.7 murine macrophages. DIM significantly decreased the release of nitric oxide (NO), prostaglandin (PG)E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1beta by RAW264.7 cells treated with LPS. DIM inhibited LPS-induced increases in protein levels of inducible NO synthase (iNOS), which were accompanied by decreased iNOS mRNA levels and transcriptional activity. The mRNA levels of phospholipase A2 decreased, whereas neither cyclooxygenases-2 protein nor transcript was altered by DIM. In addition, DIM suppressed LPS-induced nuclear factor-kappaB (NF-kappaB) transcriptional activity, NF-kappaB DNA-binding activity, translocation of p65 (RelA) to the nucleus, and degradation of inhibitor of kappaB alpha. Furthermore, DIM decreased LPS-induced transcriptional activity of activator protein (AP)-1, AP-1 DNA-binding activity, and phosphorylation of stress-activated protein kinase/Jun-N-terminal kinase and c-Jun. We demonstrate that DIM inhibits LPS-induced release of proinflammatory mediators in murine macrophages. Downregulation of NF-kappaB and AP-1 signaling may be one of the mechanisms by which DIM inhibits inflammatory responses.
Collapse
Affiliation(s)
- Han Jin Cho
- Center for Efficacy Assessment and Development of Functional Foods and Drugs, Hallym University, Chuncheon 200-702, South Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Samuelsson B, Morgenstern R, Jakobsson PJ. Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol Rev 2007; 59:207-24. [PMID: 17878511 DOI: 10.1124/pr.59.3.1] [Citation(s) in RCA: 402] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prostaglandin E(2) (PGE(2)) is the most abundant prostaglandin in the human body. It has a large number of biological actions that it exerts via four types of receptors, EP1-4. PGE(2) is formed from arachidonic acid by cyclooxygenase (COX-1 and COX-2)-catalyzed formation of prostaglandin H(2) (PGH(2)) and further transformation by PGE synthases. The isomerization of the endoperoxide PGH(2) to PGE(2) is catalyzed by three different PGE synthases, viz. cytosolic PGE synthase (cPGES) and two membrane-bound PGE synthases, mPGES-1 and mPGES-2. Of these isomerases, cPGES and mPGES-2 are constitutive enzymes, whereas mPGES-1 is mainly an induced isomerase. cPGES uses PGH(2) produced by COX-1 whereas mPGES-1 uses COX-2-derived endoperoxide. mPGES-2 can use both sources of PGH(2). mPGES-1 is a member of the membrane associated proteins involved in eicosanoid and glutathione metabolism (MAPEG) superfamily. It requires glutathione as an essential cofactor for its activity. mPGES-1 is up-regulated in response to various proinflammatory stimuli with a concomitant increased expression of COX-2. The coordinate increased expression of COX-2 and mPGES-1 is reversed by glucocorticoids. Differences in the kinetics of the expression of the two enzymes suggest distinct regulatory mechanisms for their expression. Studies, mainly from disruption of the mPGES-1 gene in mice, indicate key roles of mPGES-1-generated PGE(2) in female reproduction and in pathological conditions such as inflammation, pain, fever, anorexia, atherosclerosis, stroke, and tumorigenesis. These findings indicate that mPGES-1 is a potential target for the development of therapeutic agents for treatment of several diseases.
Collapse
Affiliation(s)
- Bengt Samuelsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | | | | |
Collapse
|
9
|
Buczynski MW, Stephens DL, Bowers-Gentry RC, Grkovich A, Deems RA, Dennis EA. TLR-4 and sustained calcium agonists synergistically produce eicosanoids independent of protein synthesis in RAW264.7 cells. J Biol Chem 2007; 282:22834-47. [PMID: 17535806 DOI: 10.1074/jbc.m701831200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Arachidonic acid is released by phospholipase A(2) and converted into hundreds of distinct bioactive mediators by a variety of cyclooxygenases (COX), lipoxygenases (LO), and cytochrome P450s. Because of the size and diversity of the eicosanoid class of signaling molecules produced, a thorough and systematic investigation of these biological processes requires the simultaneous quantitation of a large number of eicosanoids in a single analysis. We have developed a robust liquid chromatography/tandem mass spectrometry method that can identify and quantitate over 60 different eicosanoids in a single analysis, and we applied it to agonist-stimulated RAW264.7 murine macrophages. Fifteen different eicosanoids produced through COX and 5-LO were detected either intracellularly or in the media following stimulation with 16 different agonists of Toll-like receptors (TLR), G protein-coupled receptors, and purinergic receptors. No significant differences in the COX metabolite profiles were detected using the different agonists; however, we determined that only agonists creating a sustained Ca(2+) influx were capable of activating the 5-LO pathway in these cells. Synergy between Ca(2+) and TLR pathways was detected and discovered to be independent of NF-kappaB-induced protein synthesis. This demonstrates that TLR induction of protein synthesis and priming for enhanced phospholipase A(2)-mediated eicosanoid production work through two distinct pathways.
Collapse
Affiliation(s)
- Matthew W Buczynski
- Department of Chemistry and Biochemistry, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
10
|
Wootton PTE, Flavell DM, Montgomery HE, World M, Humphries SE, Talmud PJ. Lipoprotein-associated phospholipase A2 A379V variant is associated with body composition changes in response to exercise training. Nutr Metab Cardiovasc Dis 2007; 17:24-31. [PMID: 17174223 DOI: 10.1016/j.numecd.2005.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 11/18/2005] [Accepted: 11/22/2005] [Indexed: 12/26/2022]
Abstract
Lipoprotein-associated PLA2 (Lp-PLA2) hydrolyses the sn-2 position of glycerophospholipids, in particular platelet activating factor (PAF), generating significant amounts of Lyso-PAF which in turn, via a remodelling pathway, can generate arachidonic acid (AA) from alkyl-acyl-glycerophosphorylcholine. AA is a precursor for prostaglandin synthesis, which regulates adipogenesis through the peroxisome proliferator-activated receptor subfamily. AA may also modulate skeletal muscle growth. We investigated the association of the PLA2G7 A379V variant with changes in body composition in a longitudinal study of 123 male Caucasian army recruits over 10 weeks of intensive physical training. There was no effect of genotype on baseline measures. However, after exercise training, homozygosity for the 379V allele was associated with a decrease in percentage adipose tissue mass (-3.61+/-1.14%), compared to AV (-1.67+/-0.38%) and AA (-1.09+/-0.24%) genotypes (p=0.01), and a significant mean increase (3.51+/-1.17%) in percentage lean mass, compared to AV (1.64+/-0.38%) and AA (1.10+/-0.24%) recruits (p=0.02). The association of this genotype with changes in body composition after training suggests a novel role for Lp-PLA2.
Collapse
Affiliation(s)
- Peter T E Wootton
- Centre for Cardiovascular Genetics, Department of Medicine, British Heart Foundation Laboratories, Rayne Building, Royal Free and University College London Medical School, 5 University Street, London WC1E 6JF, UK.
| | | | | | | | | | | |
Collapse
|
11
|
Peeraully MR, Sievert H, Bulló M, Wang B, Trayhurn P. Prostaglandin D2 and J2-series (PGJ2, Delta12-PGJ2) prostaglandins stimulate IL-6 and MCP-1, but inhibit leptin, expression and secretion by 3T3-L1 adipocytes. Pflugers Arch 2006; 453:177-87. [PMID: 16924534 DOI: 10.1007/s00424-006-0118-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 06/01/2006] [Accepted: 06/09/2006] [Indexed: 12/22/2022]
Abstract
Prostaglandin D(2) and its derivatives PGJ(2) and Delta(12)-PGJ(2) strongly stimulate the synthesis and secretion by white adipocytes of the neurotrophin NGF. Here we have explored whether PGD(2) and the J(2)-series prostaglandins have pervasive effects on adipokine production. The influence of these prostaglandins on the production of the adipocyte hormones leptin and adiponectin, and the inflammatory factors IL-6 and monocyte chemoattractant protein 1 (MCP-1), were examined in 3T3-L1 adipocytes. PGD(2) induced a reduction in adiponectin and leptin mRNA, and the secretion of these adipokines was also inhibited, the effect being greater with leptin (up to 10-fold) than with adiponectin (twofold). In contrast, PGD(2) induced a marked stimulation of IL-6 and MCP-1 expression; with IL-6, this was rapid, the mRNA level increasing by >50-fold by 1 h. The rise in mRNA was accompanied by an increase in IL-6 and MCP-1 release (up to 100- and 6.5-fold, respectively). The effects of PGD(2) were generally mirrored by PGJ(2) and Delta(12)-PGJ(2); Delta(12)-PGJ(2) was a particularly strong stimulator of IL-6 production. These results indicate that PGD(2) and the J(2)-series prostaglandins PGJ(2) and Delta(12)-PGJ(2) can have major effects on the synthesis and release of key adipokines. Such effects could be important in the inflammatory response in adipose tissue.
Collapse
Affiliation(s)
- Muhammad R Peeraully
- Obesity Biology Unit, Liverpool Centre for Nutritional Genomics and Liverpool Obesity Research Network, Division of Metabolic and Cellular Medicine, University of Liverpool, Duncan Building, Liverpool, UK
| | | | | | | | | |
Collapse
|
12
|
Kessen UA, Schaloske RH, Stephens DL, Killermann Lucas K, Dennis EA. PGE2 release is independent of upregulation of Group V phospholipase A2 during long-term stimulation of P388D1 cells with LPS. J Lipid Res 2005; 46:2488-96. [PMID: 16150819 DOI: 10.1194/jlr.m500325-jlr200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
P388D1 cells release arachidonic acid (AA) and produce prostaglandin E2 (PGE2) upon long-term stimulation with lipopolysaccharide (LPS). The cytosolic Group IVA (GIVA) phospholipase A2 (PLA2) has been implicated in this pathway. LPS stimulation also results in increased expression and secretion of a secretory PLA2, specifically GV PLA2. To test whether GV PLA2 contributes to PGE2 production and whether GIVA PLA2 activation increases the expression of GV PLA2, we utilized the specific GIVA PLA2 inhibitor pyrrophenone and second generation antisense oligonucleotides (AS-ONs) designed to specifically inhibit expression and activity of GV PLA2. Treatment of P388D1 cells with antisense caused a marked decrease in basal GV PLA2 mRNA and prevented the LPS-induced increase in GV PLA2 mRNA. LPS-stimulated cells release active GV PLA2 into the medium, which is inhibited to background levels by antisense treatment. However, LPS-induced PGE2 release by antisense-treated cells and by control cells are not significantly different. Collectively, the results suggest that the upregulation of GV PLA2 during long-term LPS stimulation is not required for PGE2 production by P388D1 cells. Experiments employing pyrrophenone suggested that GIVA PLA2 is the dominant player involved in AA release, but it appears not to be involved in the regulation of LPS-induced expression of GV PLA2 or cyclooxygenase-2.
Collapse
Affiliation(s)
- Ursula A Kessen
- Department of Chemistry, University of California-San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|