1
|
Pothlichet J, Rose T, Bugault F, Jeammet L, Meola A, Haouz A, Saul F, Geny D, Alcami J, Ruiz-Mateos E, Teyton L, Lambeau G, Thèze J. PLA2G1B is involved in CD4 anergy and CD4 lymphopenia in HIV-infected patients. J Clin Invest 2021; 130:2872-2887. [PMID: 32436864 DOI: 10.1172/jci131842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 02/11/2020] [Indexed: 12/30/2022] Open
Abstract
The precise mechanism leading to profound immunodeficiency of HIV-infected patients is still only partially understood. Here, we show that more than 80% of CD4+ T cells from HIV-infected patients have morphological abnormalities. Their membranes exhibited numerous large abnormal membrane microdomains (aMMDs), which trap and inactivate physiological receptors, such as that for IL-7. In patient plasma, we identified phospholipase A2 group IB (PLA2G1B) as the key molecule responsible for the formation of aMMDs. At physiological concentrations, PLA2G1B synergized with the HIV gp41 envelope protein, which appears to be a driver that targets PLA2G1B to the CD4+ T cell surface. The PLA2G1B/gp41 pair induced CD4+ T cell unresponsiveness (anergy). At high concentrations in vitro, PLA2G1B acted alone, independently of gp41, and inhibited the IL-2, IL-4, and IL-7 responses, as well as TCR-mediated activation and proliferation, of CD4+ T cells. PLA2G1B also decreased CD4+ T cell survival in vitro, likely playing a role in CD4 lymphopenia in conjunction with its induced IL-7 receptor defects. The effects on CD4+ T cell anergy could be blocked by a PLA2G1B-specific neutralizing mAb in vitro and in vivo. The PLA2G1B/gp41 pair constitutes what we believe is a new mechanism of immune dysfunction and a compelling target for boosting immune responses in HIV-infected patients.
Collapse
Affiliation(s)
| | - Thierry Rose
- Center for Innovation and Technological Research
| | | | | | | | - Ahmed Haouz
- Plate-forme Cristallographie, Institut Pasteur, Paris, France
| | - Frederick Saul
- Plate-forme Cristallographie, Institut Pasteur, Paris, France
| | - David Geny
- INSERM U1266, NeurImag Facility, Institute of Psychiatry and Neurosciences of Paris, Paris, France
| | - José Alcami
- Unidad de Immunopatología del SIDA, Centro Nacional de Microbiologia, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Hospital Clinic, Institut d'investigations Biomèdiques August I Sunyer (IDIBASPS), Barcelona, Spain
| | - Ezequiel Ruiz-Mateos
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas (CSIC), and University of Seville, Seville, Spain
| | - Luc Teyton
- Department of Microbiology and Immunology, Scripps Research Institute, La Jolla, California, USA
| | - Gérard Lambeau
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France
| | | |
Collapse
|
2
|
Dan P, Rosenblat G, Yedgar S. Phospholipase A2 activities in skin physiology and pathology. Eur J Pharmacol 2012; 691:1-8. [DOI: 10.1016/j.ejphar.2012.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 06/21/2012] [Accepted: 07/02/2012] [Indexed: 01/22/2023]
|
3
|
Leidy C, Ocampo J, Duelund L, Mouritsen OG, Jørgensen K, Peters GH. Membrane restructuring by phospholipase A2 is regulated by the presence of lipid domains. Biophys J 2011; 101:90-9. [PMID: 21723818 DOI: 10.1016/j.bpj.2011.02.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 02/22/2011] [Accepted: 02/24/2011] [Indexed: 12/13/2022] Open
Abstract
Secretory phospholipase A(2) (sPLA(2)) catalyzes the hydrolysis of glycerophospholipids. This enzyme is sensitive to membrane structure, and its activity has been shown to increase in the presence of liquid-crystalline/gel (L(α)/L(β)) lipid domains. In this work, we explore whether lipid domains can also direct the activity of the enzyme by inducing hydrolysis of certain lipid components due to preferential activity of the enzyme toward lipid domains susceptible to sPLA(2). Specifically, we show that the presence of L(α)/L(β) and L(α)/P(β') phase coexistence in a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/1,2 distearoyl-sn-glycero-3-phosphocholine (DSPC) system results in the preferential hydrolysis of the shorter-chained lipid component in the mixture, leading to an enrichment in the longer-chained component. The restructuring process is monitored by atomic force microscopy on supported single and double bilayers formed by vesicle fusion. We observe that during preferential hydrolysis of the DMPC-rich L(α) regions, the L(β) and P(β') regions grow and reseal, maintaining membrane integrity. This result indicates that a sharp reorganization of the membrane structure can occur during sPLA(2) hydrolysis without necessarily destroying the membrane. We confirm by high-performance liquid chromatography the preferential hydrolysis of DMPC within the phase coexistence region of the DMPC/DSPC phase diagram, showing that this preferential hydrolysis is accentuated close to the solidus phase boundary. Differential scanning calorimetry results show that this preferential hydrolysis in the presence of lipid domains leads to a membrane system with a higher-temperature melting profile due to enrichment in DSPC. Together, these results show that the presence of lipid domains can induce specificity in the hydrolytic activity of the enzyme, resulting in marked differences in the physical properties of the membrane end-product.
Collapse
Affiliation(s)
- Chad Leidy
- Department of Physics, Universidad de los Andes, Bogotá, Colombia.
| | | | | | | | | | | |
Collapse
|
4
|
Lambeau G, Gelb MH. Biochemistry and physiology of mammalian secreted phospholipases A2. Annu Rev Biochem 2008; 77:495-520. [PMID: 18405237 DOI: 10.1146/annurev.biochem.76.062405.154007] [Citation(s) in RCA: 421] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phospholipases A(2) (PLA2s) are esterases that hydrolyze the sn-2 ester of glycerophospholipids and constitute one of the largest families of lipid hydrolyzing enzymes. The mammalian genome contains 10 enzymatically active secreted PLA2s (sPLA2s) and two sPLA2-related proteins devoid of lipolytic enzymatic activity. In addition to the well-established functions of one of these enzymes in digestion of dietary phospholipids and another in host defense against bacterial infections, accumulating evidence shows that some of these sPLA2s are involved in arachidonic acid release from cellular phospholipids for the biosynthesis of eicosanoids, especially during inflammation. More speculative results suggest the involvement of one or more sPLA2s in promoting atherosclerosis and cancer. In addition, the mammalian genome encodes several types of sPLA2-binding proteins, and mounting evidence shows that sPLA2s may have functions related to binding to cellular target proteins in a manner independent of their lipolytic enzymatic activity.
Collapse
Affiliation(s)
- Gérard Lambeau
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université de Nice-Sophia-Antipolis, 06560 Valbonne, France.
| | | |
Collapse
|
5
|
Effects of cholesterol on physical properties of human erythrocyte membranes: impact on susceptibility to hydrolysis by secretory phospholipase A2. Biophys J 2008; 94:3084-93. [PMID: 18192373 DOI: 10.1529/biophysj.107.118356] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of secretory phospholipase A(2) (sPLA(2)) to hydrolyze cell membranes is highly dependent on the physical properties of the membrane. The effects of cholesterol on these properties have been characterized in artificial bilayers and found to alter sPLA(2) activity significantly. It is hypothesized that the natural difference in cholesterol content between erythrocytes and leukocytes is in part responsible for their differing susceptibility to hydrolysis by sPLA(2). To test this hypothesis, defined amounts of cholesterol were removed from erythrocyte membranes using methyl-beta-cyclodextrin. Treatment of cells with methyl-beta-cyclodextrin increased the hydrolysis rate and total substrate hydrolyzed by sPLA(2). In general, this effect of cholesterol removal was more pronounced at higher temperatures. Comparison of the level of membrane order (assessed with the fluorescent probe laurdan) with hydrolysis rate revealed that sPLA(2) activity was greatly enhanced upon significant reductions in lipid order. Additional treatment of the cells with calcium ionophore further enhanced the hydrolysis rate and altered the relationship with membrane order. These data demonstrated that interactions with sPLA(2) observed in artificial bilayers apply to biological membranes. It is also proposed that the high level of cholesterol in erythrocyte membranes is a protective mechanism to guard against hydrolytic enzymes.
Collapse
|
6
|
Mannello F, Qin W, Zhu W, Fabbri L, Tonti GA, Sauter ER. Nipple aspirate fluids from women with breast cancer contain increased levels of group IIa secretory phospholipase A2. Breast Cancer Res Treat 2007; 111:209-18. [DOI: 10.1007/s10549-007-9779-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 09/27/2007] [Indexed: 02/06/2023]
|