1
|
Guleroglu FY, Cetin A, Coskun GP, Caliskan M, Karaduman F, Bilginer C, Misirlioglu R, Tekin S, Al MN, Caklili T, Tutar Y. The role of 1-Deoxysphingolipids and Polyamines in the pathogenesis of placental syndrome. BMC Pregnancy Childbirth 2025; 25:51. [PMID: 39844083 PMCID: PMC11753022 DOI: 10.1186/s12884-025-07175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Placental syndrome, mainly composed of preeclampsia and fetal growth restriction, has an impact on the health of mother and baby dyads. While impaired placentation is central to their pathophysiology, the underlying molecular mechanisms remain incompletely understood. This study investigates the association between placental syndrome and metabolic alterations in 1-deoxysphingolipids (1-deoxySLs) and polyamines, along with their regulatory enzymes. METHODS This prospective case-control study involved 26 healthy pregnant women and 17 with placental syndrome. Blood samples were collected from maternal, uterine venous, and umbilical cord veins. Levels of 1-deoxySL, spermine, and spermidine, as well as related enzymes of polyamine metabolism such as ornithine decarboxylase (ODC), spermidine/spermine N1-acetyltransferase (SSAT), polyamine oxidase (PAO), and spermine oxidase (SMO), were measured using the techniques of LC-MS and ELISA, respectively. RESULTS Women with placental syndrome had significantly higher levels of 1-deoxySL, spermine, and spermidine in all blood samples compared to the healthy pregnancy group. Additionally, ODC and SSAT levels were reduced significantly in the placental syndrome group, while PAO and SMO levels showed no significant differences. Strong positive correlations were found between the studied enzymes and biomolecules in healthy pregnancies, which were notably weaker in the placental syndrome group. CONCLUSION This study demonstrates significantly altered levels of 1-deoxySL and polyamines, with corresponding enzyme activity changes, in placental syndrome compared to healthy pregnancies. The disrupted correlations between these biomolecules suggest alterations in their metabolic pathways and potential utility as biomarkers. Further mechanistic studies are warranted to elucidate their role in placental syndrome pathophysiology.
Collapse
Affiliation(s)
- Filiz Yarsilikal Guleroglu
- Department of Obstetrics and Gynecology, Haseki Training and Research Hospital, Health Sciences University, Istanbul, Turkey.
| | - Ali Cetin
- Department of Obstetrics and Gynecology, Haseki Training and Research Hospital, Health Sciences University, Istanbul, Turkey
| | - Goknil Pelin Coskun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Meltem Caliskan
- Department of Obstetrics and Gynecology, Haseki Training and Research Hospital, Health Sciences University, Istanbul, Turkey
| | - Fulya Karaduman
- Department of Obstetrics and Gynecology, Haseki Training and Research Hospital, Health Sciences University, Istanbul, Turkey
| | - Can Bilginer
- Department of Obstetrics and Gynecology, Haseki Training and Research Hospital, Health Sciences University, Istanbul, Turkey
| | - Resat Misirlioglu
- Department of Obstetrics and Gynecology, Haseki Training and Research Hospital, Health Sciences University, Istanbul, Turkey
| | - Sinem Tekin
- Department of Obstetrics and Gynecology, Haseki Training and Research Hospital, Health Sciences University, Istanbul, Turkey
| | - Merve Nur Al
- Department of Basic Pharmaceutical Sciences, Division of Biochemistry, Health Sciences University, Istanbul, Turkey
| | - Tugce Caklili
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Yusuf Tutar
- Department of Basic Pharmaceutical Sciences, Division of Biochemistry, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
2
|
Merrill AH. Don't Be Surprised When These Surprise You: Some Infrequently Studied Sphingoid Bases, Metabolites, and Factors That Should Be Kept in Mind During Sphingolipidomic Studies. Int J Mol Sci 2025; 26:650. [PMID: 39859363 PMCID: PMC11765627 DOI: 10.3390/ijms26020650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Sphingolipidomic mass spectrometry has provided valuable information-and surprises-about sphingolipid structures, metabolism, and functions in normal biological processes and disease. Nonetheless, many noteworthy compounds are not routinely determined, such as the following: most of the sphingoid bases that mammals biosynthesize de novo other than sphingosine (and sometimes sphinganine) or acquire from exogenous sources; infrequently considered metabolites of sphingoid bases, such as N-(methyl)n-derivatives; "ceramides" other than the most common N-acylsphingosines; and complex sphingolipids other than sphingomyelins and simple glycosphingolipids, including glucosyl- and galactosylceramides, which are usually reported as "monohexosylceramides". These and other subspecies are discussed, as well as some of the circumstances when they are likely to be seen (or present and missed) due to experimental conditions that can influence sphingolipid metabolism, uptake from the diet or from the microbiome, or as artifacts produced during extraction and analysis. If these compounds and factors are kept in mind during the design and interpretation of lipidomic studies, investigators are likely to be surprised by how often they appear and thereby advance knowledge about them.
Collapse
Affiliation(s)
- Alfred H Merrill
- School of Biological Sciences and The Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
3
|
Oh J, Burla B, Muralidharan S, Wenk MR, Torta F. Sphingolipid Analysis in Clinical Research. Methods Mol Biol 2025; 2855:225-268. [PMID: 39354312 DOI: 10.1007/978-1-0716-4116-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Sphingolipids are the most diverse class of lipids due to the numerous variations in their structural components. This diversity is also reflected in their extremely different functions. Sphingolipids are not only constituents of cell membranes but have emerged as key signaling molecules involved in a variety of cellular functions, such as cell growth and differentiation, proliferation and apoptotic cell death. Lipidomic analyses in clinical research have identified pathways and products of sphingolipid metabolism that are altered in several human pathologies. In this article, we describe how to properly design a lipidomic experiment in clinical research, how to handle plasma and serum samples for this purpose, and how to measure sphingolipids using liquid chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Jeongah Oh
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme and Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bo Burla
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| | - Sneha Muralidharan
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme and Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Federico Torta
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore.
- Precision Medicine Translational Research Programme and Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore.
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS, Singapore, Singapore.
| |
Collapse
|
4
|
Listian SA, Mazur AC, Kol M, Ufelmann E, Eising S, Fröhlich F, Walter S, Holthuis JCM, Barisch C. Complex sphingolipid profiling and identification of an inositol-phosphorylceramide synthase in Dictyostelium discoideum. iScience 2024; 27:110609. [PMID: 39286488 PMCID: PMC11402645 DOI: 10.1016/j.isci.2024.110609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/12/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024] Open
Abstract
Dictyostelium discoideum is a professional phagocyte frequently used to study cellular processes underlying the recognition, engulfment, and infection course of microbial pathogens. Sphingolipids are abundant components of the plasma membrane that bind cholesterol, control membrane properties, participate in signal transmission, and serve as adhesion molecules in recognition processes relevant to immunity and infection. By combining lipidomics with a bioinformatics-based cloning strategy, we show here that D. discoideum produces phosphoinositol-containing sphingolipids with predominantly phytoceramide backbones. Cell-free expression of candidate inositol-phosphorylceramide (IPC) synthases from D. discoideum enabled identification of an enzyme that selectively catalyzes the transfer of phosphoinositol from phosphatidylinositol onto ceramide. The IPC synthase, DdIPCS1, shares multiple sequence motifs with yeast IPC and human sphingomyelin synthases and localizes to the Golgi apparatus as well as the contractile vacuole of D. discoideum. These findings open up important opportunities for exploring a role of sphingolipids in phagocytosis and infection across major evolutionary boundaries.
Collapse
Affiliation(s)
- Stevanus A Listian
- Division of Molecular Infection Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Anna-Carina Mazur
- Division of Molecular Infection Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Division of Host-Microbe Interactome, Research Center Borstel (FZB) - Leibniz Lung Center, Borstel, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| | - Matthijs Kol
- Division of Molecular Cell Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Edwin Ufelmann
- Division of Molecular Infection Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Sebastian Eising
- Division of Molecular Membrane Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Florian Fröhlich
- Division of Molecular Membrane Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Stefan Walter
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Joost C M Holthuis
- Division of Molecular Cell Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Caroline Barisch
- Division of Molecular Infection Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Division of Host-Microbe Interactome, Research Center Borstel (FZB) - Leibniz Lung Center, Borstel, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
5
|
Calzada C, Cheillan D, Ritsch N, Vors C, Durand A, Pesenti S, Pettazzoni M, Meugnier E, Michalski MC, Penhoat A. Intestinal absorption of sphingosine: new insights on generated ceramide species using stable isotope tracing in vitro. J Lipid Res 2024; 65:100557. [PMID: 38719152 PMCID: PMC11179623 DOI: 10.1016/j.jlr.2024.100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 06/06/2024] Open
Abstract
Dietary sphingomyelin (SM) has been reported to favorably modulate postprandial lipemia. Mechanisms underlying these beneficial effects on cardiovascular risk markers are not fully elucidated. Rodent studies showed that tritiated SM was hydrolyzed in the intestinal lumen into ceramides (Cer) and further to sphingosine (SPH) and fatty acids (FA) that were absorbed by the intestine. Our objective was to investigate the uptake and metabolism of SPH and/or tricosanoic acid (C23:0), the main FA of milk SM, as well as lipid secretion in Caco-2/TC7 cells cultured on semipermeable inserts. Mixed micelles (MM) consisting of different digested lipids and taurocholate were prepared without or with SPH, SPH and C23:0 (SPH+C23:0), or C23:0. Triglycerides (TG) were quantified in the basolateral medium, and sphingolipids were analyzed by tandem mass spectrometry. TG secretion increased 11-fold in all MM-incubated cells compared with lipid-free medium. Apical supply of SPH-enriched MM led to increased concentrations of total Cer in cells, and coaddition of C23:0 in SPH-enriched MM led to a preferential increase of C23:0 Cer and C23:0 SM. Complementary experiments using deuterated SPH demonstrated that SPH-d9 was partly converted to sphingosine-1-phosphate-d9, Cer-d9, and SM-d9 within cells incubated with SPH-enriched MM. A few Cer-d9 (2% of added SPH-d9) was recovered in the basolateral medium of (MM+SPH)-incubated cells, especially C23:0 Cer-d9 in (MM+SPH+C23:0)-enriched cells. In conclusion, present results indicate that MM enriched with (SPH+C23:0), such as found in postprandial micelles formed after milk SM ingestion, directly impacts sphingolipid endogenous metabolism in enterocytes, resulting in the secretion of TG-rich particles enriched with C23:0 Cer.
Collapse
Affiliation(s)
- Catherine Calzada
- CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Univ-Lyon, Université Claude Bernard Lyon-1, Pierre Bénite, France
| | - David Cheillan
- CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Univ-Lyon, Université Claude Bernard Lyon-1, Pierre Bénite, France; Service de Biochimie et de Biologie Moléculaire, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Nina Ritsch
- CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Univ-Lyon, Université Claude Bernard Lyon-1, Pierre Bénite, France
| | - Cécile Vors
- CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Univ-Lyon, Université Claude Bernard Lyon-1, Pierre Bénite, France
| | - Annie Durand
- CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Univ-Lyon, Université Claude Bernard Lyon-1, Pierre Bénite, France
| | - Sandra Pesenti
- CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Univ-Lyon, Université Claude Bernard Lyon-1, Pierre Bénite, France
| | - Magali Pettazzoni
- Service de Biochimie et de Biologie Moléculaire, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Emmanuelle Meugnier
- CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Univ-Lyon, Université Claude Bernard Lyon-1, Pierre Bénite, France
| | - Marie-Caroline Michalski
- CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Univ-Lyon, Université Claude Bernard Lyon-1, Pierre Bénite, France
| | - Armelle Penhoat
- CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Univ-Lyon, Université Claude Bernard Lyon-1, Pierre Bénite, France.
| |
Collapse
|
6
|
Schindler RL, Oloumi A, Tena J, Alvarez MR, Liu Y, Grijaldo S, Barboza M, Jin LW, Zivkovic AM, Lebrilla CB. Profiling Intact Glycosphingolipids with Automated Structural Annotation and Quantitation from Human Samples with Nanoflow Liquid Chromatography Mass Spectrometry. Anal Chem 2024; 96:5951-5959. [PMID: 38563595 PMCID: PMC11024888 DOI: 10.1021/acs.analchem.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Sphingolipids are an essential subset of bioactive lipids found in most eukaryotic cells that contribute to membrane biophysical properties and are involved in cellular differentiation, recognition, and mediating interactions. The described nanoHPLC-ESI-Q/ToF methodology utilizes known biosynthetic pathways, accurate mass detection, optimized collision-induced disassociation, and a robust nanoflow chromatographic separation for the analysis of intact sphingolipids found in human tissue, cells, and serum. The methodology was developed and validated with an emphasis on addressing the common issues experienced in profiling these amphipathic lipids, which are part of the glycocalyx and lipidome. The high sensitivity obtained using nanorange flow rates with robust chromatographic reproducibility over a wide range of concentrations and injection volumes results in confident identifications for profiling these low-abundant biomolecules.
Collapse
Affiliation(s)
- Ryan L. Schindler
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
| | - Armin Oloumi
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
| | - Jennyfer Tena
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
| | | | - Yiyun Liu
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
| | - Sheryl Grijaldo
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
| | - Mariana Barboza
- Innovation
Institute for Food and Health, University
of California, Davis, Davis, California 95616, United States
| | - Lee-Way Jin
- Department
of Pathology and Laboratory Medicine, University
of California Davis Medical Center, Sacramento, California 95817, United States
| | - Angela M. Zivkovic
- Department
of Nutrition, University of California,
Davis, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
| |
Collapse
|
7
|
Allwright M, Guennewig B, Hoffmann AE, Rohleder C, Jieu B, Chung LH, Jiang YC, Lemos Wimmer BF, Qi Y, Don AS, Leweke FM, Couttas TA. ReTimeML: a retention time predictor that supports the LC-MS/MS analysis of sphingolipids. Sci Rep 2024; 14:4375. [PMID: 38388524 PMCID: PMC10883992 DOI: 10.1038/s41598-024-53860-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The analysis of ceramide (Cer) and sphingomyelin (SM) lipid species using liquid chromatography-tandem mass spectrometry (LC-MS/MS) continues to present challenges as their precursor mass and fragmentation can correspond to multiple molecular arrangements. To address this constraint, we developed ReTimeML, a freeware that automates the expected retention times (RTs) for Cer and SM lipid profiles from complex chromatograms. ReTimeML works on the principle that LC-MS/MS experiments have pre-determined RTs from internal standards, calibrators or quality controls used throughout the analysis. Employed as reference RTs, ReTimeML subsequently extrapolates the RTs of unknowns using its machine-learned regression library of mass-to-charge (m/z) versus RT profiles, which does not require model retraining for adaptability on different LC-MS/MS pipelines. We validated ReTimeML RT estimations for various Cer and SM structures across different biologicals, tissues and LC-MS/MS setups, exhibiting a mean variance between 0.23 and 2.43% compared to user annotations. ReTimeML also aided the disambiguation of SM identities from isobar distributions in paired serum-cerebrospinal fluid from healthy volunteers, allowing us to identify a series of non-canonical SMs associated between the two biofluids comprised of a polyunsaturated structure that confers increased stability against catabolic clearance.
Collapse
Affiliation(s)
- Michael Allwright
- ForeFront, Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Boris Guennewig
- ForeFront, Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Anna E Hoffmann
- Translational Research Collective, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Endosane Pharmaceuticals GmbH, Berlin, Germany
| | - Cathrin Rohleder
- Translational Research Collective, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Endosane Pharmaceuticals GmbH, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Beverly Jieu
- Translational Research Collective, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Long H Chung
- Centenary Institute, The University of Sydney, Sydney, Australia
| | - Yingxin C Jiang
- Centenary Institute, The University of Sydney, Sydney, Australia
| | - Bruno F Lemos Wimmer
- Translational Research Collective, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Sydney, Australia
| | - Anthony S Don
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - F Markus Leweke
- Translational Research Collective, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Endosane Pharmaceuticals GmbH, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Timothy A Couttas
- Translational Research Collective, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
8
|
Saleem MA, Kennedy M, Badla O, Neag EJ, Bhattacharya SK. Analysis of Sphingosine and Sphinganine from the Aqueous Humor for Signaling Studies Using Ultrahigh-Performance Liquid Chromatography-Mass Spectrometry. Methods Mol Biol 2024; 2816:35-40. [PMID: 38977586 DOI: 10.1007/978-1-0716-3902-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sphingolipids, including sphingosine and sphinganine, are one of the major classes of lipids. They serve as constituents of cell membranes and lipid rafts and aid in the performance of cell-cell communication and adhesion. Abnormal levels of sphingolipids in the aqueous humor can indicate impaired sphingolipid metabolism and associated ocular pathologies. Sphingolipids can be extracted from the aqueous humor by the methyl-tert-butyl ether (MTBE) lipid extraction method and subsequently analyzed by liquid chromatography-mass spectrometry (LC-MS). This chapter describes a modified protocol for an MTBE lipid extraction from the aqueous humor, followed by analysis with ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS).
Collapse
Affiliation(s)
- Meher A Saleem
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Miami Integrative Metabolomics Research Center, Miami, FL, USA
- Georgetown University School of Medicine, Washington, DC, USA
| | - Molly Kennedy
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Miami Integrative Metabolomics Research Center, Miami, FL, USA
| | - Omar Badla
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Miami Integrative Metabolomics Research Center, Miami, FL, USA
| | - Emily J Neag
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Miami Integrative Metabolomics Research Center, Miami, FL, USA
- Michigan State University College of Osteopathic Medicine, East Lansing, MI, USA
| | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
- Miami Integrative Metabolomics Research Center, Miami, FL, USA.
| |
Collapse
|
9
|
Ghadami S, Dellinger K. The lipid composition of extracellular vesicles: applications in diagnostics and therapeutic delivery. Front Mol Biosci 2023; 10:1198044. [PMID: 37520326 PMCID: PMC10381967 DOI: 10.3389/fmolb.2023.1198044] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, with nanoscale sizes, biological origins, various functions, and unique lipid and protein compositions have been introduced as versatile tools for diagnostic and therapeutic medical applications. Numerous studies have reported the importance of the lipid composition of EVs and its influence on their mechanism of action. For example, changes in the lipidomic profile of EVs have been shown to influence the progression of various diseases, including ovarian malignancies and prostate cancer. In this review, we endeavored to examine differences in the lipid content of EV membranes derived from different cell types to characterize their capabilities as diagnostic tools and treatments for diseases like cancer and Alzheimer's disease. We additionally discuss designing functionalized vesicles, whether synthetically by hybrid methods or by changing the lipid composition of natural EVs. Lastly, we provide an overview of current and potential biomedical applications and perspectives on the future of this growing field.
Collapse
Affiliation(s)
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, United States
| |
Collapse
|
10
|
Chavdoula E, Anastas V, Ferlita AL, Aldana J, Carota G, Spampinato M, Soysal B, Cosentini I, Parashar S, Sircar A, Nigita G, Sehgal L, Freitas MA, Tsichlis PN. Transcriptional regulation of amino acid metabolism by KDM2B, in the context of ncPRC1.1 and in concert with MYC and ATF4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548031. [PMID: 37461630 PMCID: PMC10350079 DOI: 10.1101/2023.07.07.548031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Introduction KDM2B encodes a JmjC domain-containing histone lysine demethylase, which functions as an oncogene in several types of tumors, including TNBC. This study was initiated to address the cancer relevance of the results of our earlier work, which had shown that overexpression of KDM2B renders mouse embryonic fibroblasts (MEFs) resistant to oxidative stress by regulating antioxidant mechanisms. Methods We mainly employed a multi-omics strategy consisting of RNA-Seq, quantitative TMT proteomics, Mass-spectrometry-based global metabolomics, ATAC-Seq and ChIP-seq, to explore the role of KDM2B in the resistance to oxidative stress and intermediary metabolism. These data and data from existing patient datasets were analyzed using bioinformatic tools, including exon-intron-split analysis (EISA), FLUFF and clustering analyses. The main genetic strategy we employed was gene silencing with shRNAs. ROS were measured by flow cytometry, following staining with CellROX and various metabolites were measured with biochemical assays, using commercially available kits. Gene expression was monitored with qRT-PCR and immunoblotting, as indicated. Results The knockdown of KDM2B in basal-like breast cancer cell lines lowers the levels of GSH and sensitizes the cells to ROS inducers, GSH targeting molecules, and DUB inhibitors. To address the mechanism of GSH regulation, we knocked down KDM2B in MDA-MB-231 cells and we examined the effects of the knockdown, using a multi-omics strategy. The results showed that KDM2B, functioning in the context of ncPRC1.1, regulates a network of epigenetic and transcription factors, which control a host of metabolic enzymes, including those involved in the SGOC, glutamate, and GSH metabolism. They also showed that KDM2B enhances the chromatin accessibility and expression of MYC and ATF4, and that it binds in concert with MYC and ATF4, the promoters of a large number of transcriptionally active genes, including many, encoding metabolic enzymes. Additionally, MYC and ATF4 binding sites were enriched in genes whose accessibility depends on KDM2B, and analysis of a cohort of TNBCs expressing high or low levels of KDM2B, but similar levels of MYC and ATF4 identified a subset of MYC targets, whose expression correlates with the expression of KDM2B. Further analyses of basal-like TNBCs in the same cohort, revealed that tumors expressing high levels of all three regulators exhibit a distinct metabolic signature that carries a poor prognosis. Conclusions The present study links KDM2B, ATF4, and MYC in a transcriptional network that regulates the expression of multiple metabolic enzymes, including those that control the interconnected SGOC, glutamate, and GSH metabolic pathways. The co-occupancy of the promoters of many transcriptionally active genes, by all three factors, the enrichment of MYC binding sites in genes whose chromatin accessibility depends on KDM2B, and the correlation of the levels of KDM2B with the expression of a subset of MYC target genes in tumors that express similar levels of MYC, suggest that KDM2B regulates both the expression and the transcriptional activity of MYC. Importantly, the concerted expression of all three factors also defines a distinct metabolic subset of TNBCs with poor prognosis. Overall, this study identifies novel mechanisms of SGOC regulation, suggests novel KDM2B-dependent metabolic vulnerabilities in TNBC, and provides new insights into the role of KDM2B in the epigenetic regulation of transcription.
Collapse
Affiliation(s)
- Evangelia Chavdoula
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Vollter Anastas
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
- Tufts Graduate School of Biomedical Sciences, Program in Genetics, Boston, MA, United States
| | - Alessandro La Ferlita
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Julian Aldana
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Giuseppe Carota
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Mariarita Spampinato
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Burak Soysal
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Ilaria Cosentini
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Catania, Italy
| | - Sameer Parashar
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Anuvrat Sircar
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Lalit Sehgal
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Michael A. Freitas
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Philip N. Tsichlis
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
11
|
Chen H, Ahmed S, Zhao H, Elghobashi-Meinhardt N, Dai Y, Kim JH, McDonald JG, Li X, Lee CH. Structural and functional insights into Spns2-mediated transport of sphingosine-1-phosphate. Cell 2023; 186:2644-2655.e16. [PMID: 37224812 PMCID: PMC10330195 DOI: 10.1016/j.cell.2023.04.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/23/2023] [Accepted: 04/19/2023] [Indexed: 05/26/2023]
Abstract
Sphingosine-1-phosphate (S1P) is an important signaling sphingolipid that regulates the immune system, angiogenesis, auditory function, and epithelial and endothelial barrier integrity. Spinster homolog 2 (Spns2) is an S1P transporter that exports S1P to initiate lipid signaling cascades. Modulating Spns2 activity can be beneficial in treatments of cancer, inflammation, and immune diseases. However, the transport mechanism of Spns2 and its inhibition remain unclear. Here, we present six cryo-EM structures of human Spns2 in lipid nanodiscs, including two functionally relevant intermediate conformations that link the inward- and outward-facing states, to reveal the structural basis of the S1P transport cycle. Functional analyses suggest that Spns2 exports S1P via facilitated diffusion, a mechanism distinct from other MFS lipid transporters. Finally, we show that the Spns2 inhibitor 16d attenuates the transport activity by locking Spns2 in the inward-facing state. Our work sheds light on Spns2-mediated S1P transport and aids the development of advanced Spns2 inhibitors.
Collapse
Affiliation(s)
- Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shahbaz Ahmed
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hongtu Zhao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Yaxin Dai
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jae Hun Kim
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
12
|
Kovilakath A, Wohlford G, Cowart LA. Circulating sphingolipids in heart failure. Front Cardiovasc Med 2023; 10:1154447. [PMID: 37229233 PMCID: PMC10203217 DOI: 10.3389/fcvm.2023.1154447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023] Open
Abstract
Lack of significant advancements in early detection and treatment of heart failure have precipitated the need for discovery of novel biomarkers and therapeutic targets. Over the past decade, circulating sphingolipids have elicited promising results as biomarkers that premonish adverse cardiac events. Additionally, compelling evidence directly ties sphingolipids to these events in patients with incident heart failure. This review aims to summarize the current literature on circulating sphingolipids in both human cohorts and animal models of heart failure. The goal is to provide direction and focus for future mechanistic studies in heart failure, as well as pave the way for the development of new sphingolipid biomarkers.
Collapse
Affiliation(s)
- Anna Kovilakath
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - George Wohlford
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - L. Ashley Cowart
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Richmond Veteran's Affairs Medical Center, Richmond, VA, United States
| |
Collapse
|
13
|
Chen S, Li X, Liu S, Zhao L, Zhang W, Xiong Z, Luan H. Rapid, sensitive, and high-throughput quantification of broad serological ceramides by using isotope dilution liquid chromatography-negative ion electrospray tandem mass spectrometry. Anal Bioanal Chem 2023; 415:801-808. [PMID: 36482083 DOI: 10.1007/s00216-022-04473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/19/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Ceramides are important intermediates in the metabolism of sphingolipids. High-throughput liquid chromatography-mass spectrometry has been used extensively for monitoring the levels of serological ceramides, but is still limited by inadequate coverage or lack of sensitivity. Herein, a rapid, sensitive, and high-throughput isotope dilution liquid chromatography-negative ion electrospray tandem mass spectrometry (IDLC-nESI-MS/MS) method was developed and verified for accurate quantification of 41 ceramides, involving ceramides with C16-20 sphingosine, dihydro-ceramide, and dehydro-ceramide. This method was validated with excellent linearity (R2 > 0.99) and good recovery in the range of 90-110%. Intra- and inter-day imprecision were below 5.57% and 7.83% respectively. The improved high-throughput quantitative method developed in this study may aid in the accurate characterization of ceramides for understanding ceramide biology and application in disease diagnosis.
Collapse
Affiliation(s)
- Shuailong Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
- School of Medicine, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Rd., Shenzhen, China
| | - Xuan Li
- School of Medicine, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Rd., Shenzhen, China
| | - Shijia Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Wenyong Zhang
- School of Medicine, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Rd., Shenzhen, China.
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Hemi Luan
- School of Medicine, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Rd., Shenzhen, China.
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, PR China.
| |
Collapse
|
14
|
Baba T, Campbell JL, Le Blanc JCY, Baker PRS. Structural Identification of Eicosanoids with Ring Structures Using Differential Mobility Spectrometry-Electron Impact Excitation of Ions from Organics Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:75-81. [PMID: 36507839 DOI: 10.1021/jasms.2c00256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We developed a structural identification method for eicosanoids with various ring structures using mass spectrometry. We discovered that an electron beam with a kinetic energy of 10 eV, which is in the Electron Impact Excitation of Ions from Organics (EIEIO) regime, cleaved the fatty acids enough to distinguish constitutional and cis/trans isomers. In addition to EIEIO, a comparison to authentic standards using differential mobility spectrometry (DMS) can identify diastereomers, which was difficult by EIEIO. The combination of EIEIO and DMS can provide a high-throughput method to identify complete structures of eicosanoids in mixed samples, which is not allowed with conventional analytical methods though eicosanoids are important signaling molecules in biosystems.
Collapse
Affiliation(s)
- Takashi Baba
- Sciex, 71 Four Valley Dr., Concord, Ontario L4K 4V8, Canada
| | | | | | - Paul R S Baker
- Sciex, 1201 Radio Road, Redwood Shores, California 64065, United States
| |
Collapse
|
15
|
DeBarry JD, Nural MV, Pakala SB, Nayak V, Warrenfeltz S, Humphrey J, Lapp SA, Cabrera-Mora M, Brito CFA, Jiang J, Saney CL, Hankus A, Stealey HM, DeBarry MB, Lackman N, Legall N, Lee K, Tang Y, Gupta A, Trippe ED, Bridger RR, Weatherly DB, Peterson MS, Jiang X, Tran V, Uppal K, Fonseca LL, Joyner CJ, Karpuzoglu E, Cordy RJ, Meyer EVS, Wells LL, Ory DS, Lee FEH, Tirouvanziam R, Gutiérrez JB, Ibegbu C, Lamb TJ, Pohl J, Pruett ST, Jones DP, Styczynski MP, Voit EO, Moreno A, Galinski MR, Kissinger JC. MaHPIC malaria systems biology data from Plasmodium cynomolgi sporozoite longitudinal infections in macaques. Sci Data 2022; 9:722. [PMID: 36433985 PMCID: PMC9700667 DOI: 10.1038/s41597-022-01755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
Plasmodium cynomolgi causes zoonotic malarial infections in Southeast Asia and this parasite species is important as a model for Plasmodium vivax and Plasmodium ovale. Each of these species produces hypnozoites in the liver, which can cause relapsing infections in the blood. Here we present methods and data generated from iterative longitudinal systems biology infection experiments designed and performed by the Malaria Host-Pathogen Interaction Center (MaHPIC) to delve deeper into the biology, pathogenesis, and immune responses of P. cynomolgi in the Macaca mulatta host. Infections were initiated by sporozoite inoculation. Blood and bone marrow samples were collected at defined timepoints for biological and computational experiments and integrative analyses revolving around primary illness, relapse illness, and subsequent disease and immune response patterns. Parasitological, clinical, haematological, immune response, and -omic datasets (transcriptomics, proteomics, metabolomics, and lipidomics) including metadata and computational results have been deposited in public repositories. The scope and depth of these datasets are unprecedented in studies of malaria, and they are projected to be a F.A.I.R., reliable data resource for decades.
Collapse
Affiliation(s)
- Jeremy D DeBarry
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Mustafa V Nural
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Suman B Pakala
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Vishal Nayak
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Cancer Data Science Initiatives, Frederick National Laboratory for Cancer Research, Post Office Box B, Frederick, MD, 21702, USA
| | - Susanne Warrenfeltz
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Jay Humphrey
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Stacey A Lapp
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Monica Cabrera-Mora
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Cristiana F A Brito
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Laboratório de Malária, Instituto René Rachou/Fiocruz Minas, Av. Augusto de Lima 1715, Belo Horizonte, MG, 30190 009, Brazil
| | - Jianlin Jiang
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Celia L Saney
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, 30605, USA
| | - Allison Hankus
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Senior Public Health Informaticist, MITRE Corp, Atlanta, GA, 30345, USA
| | - Hannah M Stealey
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Megan B DeBarry
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Nicolas Lackman
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Noah Legall
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Interdisciplinary Disease Ecology Across Scales Research Traineeship Program, Institute of Bioinformatics, Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Kevin Lee
- Center for Integrative Genomics, School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yan Tang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Anuj Gupta
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Valted Seq, 704 Quince Orchard Rd, Gaithersburg, MD, 20878, USA
| | - Elizabeth D Trippe
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Federal Drug Administration, Silver Spring, MD, 20993, USA
| | - Robert R Bridger
- Complex Carbohydrate Research Center, Department of Biochemistry, University of Georgia, Athens, GA, 30602, USA
| | - Daniel Brent Weatherly
- Complex Carbohydrate Research Center, Department of Biochemistry, University of Georgia, Athens, GA, 30602, USA
| | - Mariko S Peterson
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Xuntian Jiang
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - ViLinh Tran
- Division of Pulmonary, Allergy, Critical Care, & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Karan Uppal
- Division of Pulmonary, Allergy, Critical Care, & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Luis L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, 32603, USA
| | - Chester J Joyner
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Center for Tropical and Emerging Global Disease, University of Georgia, Athens, GA, 30602, USA
- Center for Vaccines and Immunology, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Ebru Karpuzoglu
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Regina J Cordy
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Biology, Wake Forest University, Winston Salem, NC, 27103, USA
| | - Esmeralda V S Meyer
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Institutional Animal Care and Use Committee, Research Compliance and Research Integrity Office, Emory University, Atlanta, GA, 30322, USA
| | - Lance L Wells
- Complex Carbohydrate Research Center, Department of Biochemistry, University of Georgia, Athens, GA, 30602, USA
| | - Daniel S Ory
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Casma Therapeutics, Cambridge, MA, 02139, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Juan B Gutiérrez
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Mathematics, Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Chris Ibegbu
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Tracey J Lamb
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jan Pohl
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Sarah T Pruett
- Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- University of Tennessee, Knoxville, TN, 37996, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care, & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Eberhard O Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Alberto Moreno
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Mary R Galinski
- Emory Vaccine Center, Yerkes/Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jessica C Kissinger
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
16
|
Knittel CH, Devaraj NK. Bioconjugation Strategies for Revealing the Roles of Lipids in Living Cells. Acc Chem Res 2022; 55:3099-3109. [PMID: 36215688 DOI: 10.1021/acs.accounts.2c00511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The structural boundaries of living cells are composed of numerous membrane-forming lipids. Lipids not only are crucial for the cellular compartmentalization but also are involved in cell signaling as well as energy storage. Abnormal lipid levels have been linked to severe human diseases such as cancer, multiple sclerosis, neurodegenerative diseases, as well as lysosomal storage disorders. Given their biological significance, there is immense interest in studying lipids and their effect on cells. However, limiting factors include the low solubility of lipids, their structural complexity, and the challenge of using genetic techniques to directly manipulate lipid structure. Current methods to study lipids rely mostly on lipidomics, which analyzes the composition of lipid extracts using mass spectrometry. Although, these efforts have successfully catalogued and profiled a great number of lipids in cells, many aspects about their exact functional role and subcellular distribution remain enigmatic.In this Account, we outline how our laboratory developed and applied different bioconjugation strategies to study the role of lipids and lipid modifications in cells. Inspired by our ongoing work on developing lipid bioconjugation strategies to generate artificial cell membranes, we developed a ceramide synthesis method in live cells using a salicylaldehyde ester that readily reacts with sphingosine in form of a traceless ceramide ligation. Our study not only confirmed existing knowledge about the association of ceramides with cell death, but also gave interesting new findings about the structure-function relationship of ceramides in apoptosis. Our initial efforts led us to investigate probes that detect endogenous sphingolipids using live cell imaging. We describe the development of a fluorogenic probe that reacts chemoselectively with sphingosine in living cells, enabling the detection of elevated endogenous levels of this biomarker in human disease. Building on our interest in the fluorescence labeling of lipids, we have also explored the use of bioorthogonal reactions to label chemically synthesized lipid probes. We discuss the development of photocaged dihydrotetrazine lipids, where the initiation of the bioorthogonal reaction can be triggered by visible light, allowing for live cell modification of membranes with spatiotemporal control.Finally, proteins are often post-translationally modified by lipids, which have important effects on protein subcellular localization and function. Controlling lipid modifications with small molecule probes could help reveal the function of lipid post-translational modifications and could potentially inspire novel therapeutic strategies. We describe how our previous studies on synthetic membrane formation inspired us to develop an amphiphilic cysteine derivative that depalmitoylates membrane-bound S-acylated proteins in live cells. Ultimately, we applied this amphiphile mediated depalmitoylation (AMD) in studies investigating the palmitoylation of cancer relevant palmitoylated proteins in healthy and diseased cells.
Collapse
Affiliation(s)
- Caroline H Knittel
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
17
|
Xu Y, Chen X, Han Y, Chen W, Wang T, Gong J, Fan Y, Zhang H, Zhang L, Li H, Wang Q, Yao Y, Xue T, Wang J, Qiu X, Que C, Zheng M, Zhu T. Ceramide metabolism mediates the impaired glucose homeostasis following short-term black carbon exposure: A targeted lipidomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154657. [PMID: 35314239 DOI: 10.1016/j.scitotenv.2022.154657] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ambient particulate matter (PM), especially its carbonaceous composition black carbon (BC) increases cardiometabolic risks, yet the underlying mechanisms are incompletely understood. Ceramides (Cer; a class of sphingolipids) are biological intermediates in glucose metabolism. OBJECTIVES To explore whether Cer metabolism mediates impaired glucose homeostasis following short-term PM exposure. METHODS In a panel study in Beijing, China, 112 participants were followed-up between 2016 and 2017. Targeted lipidomic analyses quantified 26 sphingolipids in 387 plasma samples. Ambient BC and PM with aerodynamic diameter ≤ 2.5 μm (PM2.5) were continuously monitored in a station. We examined the associations of sphingolipid levels with average BC and PM2.5 concentrations 1-14 days before clinical visits using linear mixed-effects models, and explored the mediation effects of sphingolipids on PM-associated fasting blood glucose (FBG) difference using mediation analyses. RESULTS Increased levels of FBG and multiple sphingolipids in Cer metabolic pathways were associated with BC exposure in 1-14-day time window, but not with PM2.5 exposure. For each 10 μg/m3 increase in the average BC concentration 1-14 days before the clinical visits, species in the Cer C24:1 pathway (Cer, dihydroceramide, hexosylceramide, lactosylceramide, and sphingomyelin C24:1) increased in levels ranging from 11.8% (95% confidence interval [CI]: -6.2-33.2) to 48.7% (95% CI: 8.8-103.4), as did the Cer C16:0, C18:0, and C20:0 metabolic pathway species, ranging from 3.2% (95% CI: -5.6-12.9) to 32.4% (95% CI: 7.0-63.8), respectively. The Cer C24:1 metabolic pathway species mediated 6.5-25.5% of the FBG increase associated with BC exposure in 9-day time window. The Cer C16:0, C18:0, and C20:0 metabolic pathway species mediated 5.4-26.2% of the BC-associated FBG difference. CONCLUSIONS In conclusion, Cer metabolism may mediate impaired glucose homeostasis following short-term BC exposure. The current findings are preliminary, which need to be corroborated by further studies.
Collapse
Affiliation(s)
- Yifan Xu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Hebei Technology Innovation Center of Human Settlement in Green Building, Shenzhen Institute of Building Research Co., Ltd., Xiongan, China
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yunfei Fan
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Hanxiyue Zhang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Lina Zhang
- Shi Cha Hai Community Health Service Center, Beijing, China
| | - Haonan Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Qi Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yuan Yao
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Tao Xue
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; School of Public Health, Peking University, Beijing, China
| | - Junxia Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Chengli Que
- Peking University First Hospital, Peking University, Beijing, China
| | - Mei Zheng
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China.
| |
Collapse
|
18
|
Xu Y, Han Y, Wang Y, Gong J, Li H, Wang T, Chen X, Chen W, Fan Y, Qiu X, Wang J, Xue T, Li W, Zhu T. Ambient Air Pollution and Atherosclerosis: A Potential Mediating Role of Sphingolipids. Arterioscler Thromb Vasc Biol 2022; 42:906-918. [PMID: 35652334 DOI: 10.1161/atvbaha.122.317753] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The pathophysiological mechanisms of air pollution-induced atherosclerosis are incompletely understood. Sphingolipids serve as biological intermediates during atherosclerosis development by facilitating production of proatherogenic apoB (apolipoprotein B)-containing lipoproteins. We explored whether sphingolipids mediate the proatherogenic effects of air pollution. METHODS This was a prospective panel study of 110 participants (mean age 56.5 years) followed from 2013 to 2015 in Beijing, China. Targeted lipidomic analyses were used to quantify 24 sphingolipids in 579 plasma samples. The mass concentrations of ambient particulate matter ≤2.5 μm in diameter (PM2.5) were continuously monitored by a fixed station. We evaluated the associations between sphingolipid levels and average PM2.5 concentrations 1-30 days before clinic visits using linear mixed-effects models and explored whether sphingolipids mediate PM2.5-associated changes in the levels of proatherogenic apoB-containing lipoproteins (LDL-C [low-density lipoprotein cholesterol] and non-HDL-C [nonhigh-density lipoprotein cholesterol]) using mediation analyses. RESULTS We observed significant increases in the levels of non-HDL-C and fourteen sphingolipids associated with PM2.5 exposure, from short- (14 days) to medium-term (30 days) exposure time windows. The associations exhibited near-monotonic increases and peaked in 30-day time window. Increased levels of the sphingolipids, namely, sphinganine, ceramide C24:0, sphingomyelins C16:0/C18:0/C18:1/C20:0/C22:0/C24:0, and hexosylceramides C16:0/C18:0/C20:0/C22:0/C24:0/C24:1 significantly mediated 32%, 58%, 35% to 93%, and 23% to 86%, respectively, of the positive association between 14-day PM2.5 average and the non-HDL-C level, but not the LDL-C level. Similar mediation effects (19%-91%) of the sphingolipids were also observed in 30-day time window. CONCLUSIONS Our results suggest that sphingolipids may mediate the proatherogenic effects of short- and medium-term PM2.5 exposure.
Collapse
Affiliation(s)
- Yifan Xu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Yanwen Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China.,Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, United Kingdom (Y.H.)
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Haonan Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Yunfei Fan
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Junxia Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Tao Xue
- School of Public Health (T.X.), Peking University, Beijing, China
| | - Weiju Li
- Peking University Hospital (W.L.), Peking University, Beijing, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| |
Collapse
|
19
|
Subasinghe SAAS, Pautler RG, Samee MAH, Yustein JT, Allen MJ. Dual-Mode Tumor Imaging Using Probes That Are Responsive to Hypoxia-Induced Pathological Conditions. BIOSENSORS 2022; 12:478. [PMID: 35884281 PMCID: PMC9313010 DOI: 10.3390/bios12070478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 05/02/2023]
Abstract
Hypoxia in solid tumors is associated with poor prognosis, increased aggressiveness, and strong resistance to therapeutics, making accurate monitoring of hypoxia important. Several imaging modalities have been used to study hypoxia, but each modality has inherent limitations. The use of a second modality can compensate for the limitations and validate the results of any single imaging modality. In this review, we describe dual-mode imaging systems for the detection of hypoxia that have been reported since the start of the 21st century. First, we provide a brief overview of the hallmarks of hypoxia used for imaging and the imaging modalities used to detect hypoxia, including optical imaging, ultrasound imaging, photoacoustic imaging, single-photon emission tomography, X-ray computed tomography, positron emission tomography, Cerenkov radiation energy transfer imaging, magnetic resonance imaging, electron paramagnetic resonance imaging, magnetic particle imaging, and surface-enhanced Raman spectroscopy, and mass spectrometric imaging. These overviews are followed by examples of hypoxia-relevant imaging using a mixture of probes for complementary single-mode imaging techniques. Then, we describe dual-mode molecular switches that are responsive in multiple imaging modalities to at least one hypoxia-induced pathological change. Finally, we offer future perspectives toward dual-mode imaging of hypoxia and hypoxia-induced pathophysiological changes in tumor microenvironments.
Collapse
Affiliation(s)
| | - Robia G. Pautler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Md. Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Jason T. Yustein
- Integrative Molecular and Biomedical Sciences and the Department of Pediatrics in the Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Matthew J. Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA;
| |
Collapse
|
20
|
Poss AM, Krick B, Maschek JA, Haaland B, Cox JE, Karra P, Ibele AR, Hunt SC, Adams TD, Holland WL, Playdon MC, Summers SA. Following Roux-en-Y gastric bypass surgery, serum ceramides demarcate patients that will fail to achieve normoglycemia and diabetes remission. MED 2022; 3:452-467.e4. [PMID: 35709767 PMCID: PMC9271635 DOI: 10.1016/j.medj.2022.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/04/2022] [Accepted: 05/20/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Obesity is a prevalent health threat and risk factor for type 2 diabetes. In this study, we evaluate the relationship between ceramides, which inhibit insulin secretion and sensitivity, and markers of glucose homeostasis and diabetes remission or recursion in patients who have undergone a Roux-en-Y gastric bypass (RYGB). METHODS The Utah Obesity Study is a prospective cohort study, with targeted ceramide and dihydroceramide measurements performed on banked serum samples. The Utah Obesity Study consists of 1,156 participants in three groups: a RYGB surgery group, a non-surgery group denied insurance coverage, and severely obese population controls. Clinical examinations and ceramide assessments were performed at baseline and 2 and 12 years after RYGB surgery. FINDINGS Surgery patients (84% female, 42.2 ± 10.6 years of age at baseline) displayed lower levels of several serum dihydroceramides and ceramides at 2 and 12 years after RYGB. By contrast, neither the control group (77% female, 48.7± 6.4 years of age at baseline) nor the non-surgery group (95% female, 43.0± 11.4 years of age at baseline) experienced significant decreases in any species. Using a linear mixed effect model, we found that multiple dihydroceramides and ceramides positively associated with the glycemic control measures HOMA-IR and HbA1c. In surgery group participants with prevalent diabetes, ceramides inversely predict diabetes remission, independent of changes in weight. CONCLUSIONS Ceramide decreases may explain the insulin sensitization and diabetes resolution observed in most RYGB surgery patients. FUNDING Funded by the National Institutes of health (NIH), The Juvenile Diabetes Research Foundation, and the American Heart Association.
Collapse
Affiliation(s)
- Annelise M Poss
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT 84112, USA; Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| | - Benjamin Krick
- Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - J Alan Maschek
- Department of Biochemistry, University of Utah College of Medicine, Salt Lake City, UT, USA; Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA; Proteomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
| | - Benjamin Haaland
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA; Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - James E Cox
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA; Department of Biochemistry, University of Utah College of Medicine, Salt Lake City, UT, USA; Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
| | - Prasoona Karra
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT 84112, USA; Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA; Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Anna R Ibele
- Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | - Steven C Hunt
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA; Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Ted D Adams
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA; Intermountain Live Well Center Salt Lake, Intermountain Healthcare, Salt Lake City, UT, USA
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT 84112, USA; Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| | - Mary C Playdon
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT 84112, USA; Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA; Cancer Control and Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT 84112, USA; Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
21
|
Qi YY, Heng X, Yao ZY, Qu SY, Ge PY, Zhao X, Ni SJ, Guo R, Yang NY, Zhang QC, Zhu HX. Involvement of Huanglian Jiedu Decoction on Microglia with Abnormal Sphingolipid Metabolism in Alzheimer's Disease. Drug Des Devel Ther 2022; 16:931-950. [PMID: 35391788 PMCID: PMC8979960 DOI: 10.2147/dddt.s357061] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/13/2022] [Indexed: 12/19/2022] Open
Abstract
Background Abnormal sphingolipid metabolism is closely related to the occurrence and development of Alzheimer’s disease (AD). With heat-clearing and detoxifying effects, Huanglian Jiedu decoction (HLJDD) has been used to treat dementia and improve learning and memory impairments. Purpose To study the therapeutic effect of HLJDD on AD as it relates to sphingolipid metabolism. Methods The level of sphingolipids in the brains of APP/PS1 mice and in the supernatant of β-amyloid (Aβ)25–35-induced BV2 microglia was detected by HPLC-QTOF-MS and HPLC-QTRAP-MS techniques, respectively. The co-expression of ionized calcium-binding adapter molecule 1 (Iba1) and Aβ as well as four enzymes related to sphingolipid metabolism, including serine palmitoyltransferase 2 (SPTLC2), cer synthase 2 (CERS2), sphingomyelin phosphodiesterase 1 (SMPD1), and sphingomyelin synthase 1 (SGMS1), in the brains of APP/PS1 mice were evaluated by immunofluorescence double labelling. In addition, real-time quantitative reverse transcription-polymerase chain reaction was conducted to determine the mRNA expression of SPTLC2, CERS2, SMPD1, SGMS1, galactosylceramidase (GALC), and sphingosine kinase 2 (SPHK2) in Aβ25-35-stimulated BV2 microglia. Results Abnormal sphingolipid metabolism was observed both in APP/PS1 mouse brain tissues and Aβ25-35-stimulated BV2 cells. The levels of sphingosine, sphinganine, sphingosine-1-phosphate, sphinganine-1-phosphate and sphingomyelin were significantly reduced, while the levels of ceramide-1-phosphate, ceramide, lactosylceramide and hexosylceramide significantly increased in Aβ25-35-stimulated BV2 cells. In AD mice, more microglia were clustered in the Aβ-positive region. The decreased level of SGMS1 and increased levels of CERS2, SPTLC and SMPD1 were also found. In addition, the expressions of SPTLC2, CERS2, and SMPD1 in Aβ25-35-stimulated BV2 cells were increased significantly, while the expressions of GALC, SPHK2, and SGMS1 were decreased. These changes all showed a significant correction after HLJDD treatment. Conclusion HLJDD is a good candidate for treating AD. This study provides a novel perspective on the potential roles of the sphingolipid metabolism in AD.
Collapse
Affiliation(s)
- Yi-Yu Qi
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Xia Heng
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Zeng-Ying Yao
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Shu-Yue Qu
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Ping-Yuan Ge
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Xin Zhao
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Sai-Jia Ni
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Rui Guo
- Department of Physiological, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Nian-Yun Yang
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Qi-Chun Zhang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Hua-Xu Zhu
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
22
|
Knodel A, Marggraf U, Hoffmann-Posorske E, Burhenn S, Brandt S, Ahlmann N, Foest D, Lorenz K, Franzke J. Pulsed Blue Laser Diode Thermal Desorption Microplasma Imaging Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:45-53. [PMID: 34856796 DOI: 10.1021/jasms.1c00221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An ambient air laser desorption, plasma ionization imaging method is developed and presented using a microsecond pulsed laser diode for desorption and a flexible microtube plasma for ionization of the neutral desorbate. Inherent parameters such as the laser repetition rate and pulse width are optimized to the imaging application. For the desorption substrate, copper spots on a copper-glass sandwich structure are used. This novel design enables imaging without ablating the metal into the mass spectrometer. On this substrate, fixed calibration markers are used to decrease the positioning error in the imaging process, featuring a 3D offset correction within the experiment. The image is both screened spot-by-spot and per line scanning at a constant speed, which allows direct comparison. In spot-by-spot scanning, a novel algorithm is presented to unfold and to reconstruct the imaging data. This approach significantly decreases the time required for the imaging process, which allows imaging even at decreased sampling rates and thus higher mass resolution. After the experiment, the raw data is automatically converted and interpreted by a second algorithm, which allows direct visualization of the image from the data, even on low-intensity signals. Mouse liver microtome cuts have been screened for dehydrated cholesterol, proving good agreement of the unfolded data with the morphology of the tissue. The method optically resolves 30 μm, with 30 μm diameter copper spots and a 10 μm gap. No conventional chemical matrices or vacuum conditions are required.
Collapse
Affiliation(s)
- Alexander Knodel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Ulrich Marggraf
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Edeltraut Hoffmann-Posorske
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Sebastian Burhenn
- Experimental Physics II, Faculty of Physics and Astronomy, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Sebastian Brandt
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Norman Ahlmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Daniel Foest
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Kristina Lorenz
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Joachim Franzke
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| |
Collapse
|
23
|
Zelnik ID, Kim JL, Futerman AH. The Complex Tail of Circulating Sphingolipids in Atherosclerosis and Cardiovascular Disease. J Lipid Atheroscler 2021; 10:268-281. [PMID: 34621698 PMCID: PMC8473959 DOI: 10.12997/jla.2021.10.3.268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Sphingolipids (SLs) are critical players in a number of cellular processes and have recently been implicated in a large number of human diseases, including atherosclerosis and cardiovascular disease (CVD). SLs are generated intracellularly in a stepwise manner, starting with the generation of the sphingoid long chain base (LCB), followed by N-acylation of the LCB to form ceramide, which can be subsequently metabolized to sphingomyelin and glycosphingolipids. Fatty acids, which are taken up by cells prior to their activation to fatty acyl-CoAs, are used in 2 of these enzymatic steps, including by ceramide synthases, which use fatty acyl-CoAs of different chain lengths to generate ceramides with different N-acyl chain lengths. Recently, alterations in plasma ceramides with specific N-acyl chain lengths and degrees of saturation have emerged as novel biomarkers for the prediction of atherosclerosis and overall cardiovascular risk in the general population. We briefly review the sources of plasma SLs in atherosclerosis, the roles of SLs in CVD, and the possible use of the "ceramide score" as a prognostic marker for CVD.
Collapse
Affiliation(s)
- Iris D Zelnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jiyoon L Kim
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
24
|
Chen Q, Wang W, Xia MF, Lu YL, Bian H, Yu C, Li XY, Vadas MA, Gao X, Lin HD, Xia P. Identification of circulating sphingosine kinase-related metabolites for prediction of type 2 diabetes. J Transl Med 2021; 19:393. [PMID: 34530846 PMCID: PMC8447705 DOI: 10.1186/s12967-021-03066-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/02/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Sphingosine Kinase (SphK) that catalyzes sphingosine (Sph) to sphingosine 1-phosphate (S1P), plays a key role in both sphingolipid metabolism and cellular signaling. While SphK has been implicated in type 2 diabetes mellitus (T2DM), it is unexplored in humans. Herein, we investigated whether circulating SphK-related metabolites are associated with T2DM incidence in an established prospective cohort. METHODS Levels of SphK-related sphingolipid metabolites, including Sph, S1P, dihydrosphingosine (dhSph) and dihydro-S1P (dhS1P) in serum were measured by targeted-lipidomic analyses. By accessing to an established prospective cohort that involves a total of 2486 non-diabetic adults at baseline, 100 subjects who developed T2DM after a mean follow-up of 4.2-years, along with 100 control subjects matched strictly with age, sex, BMI and fasting glucose, were randomly enrolled for the present study. RESULTS Comparison with the control group, medians of serum dhS1P and dhS1P/dhSph ratio at baseline were elevated significantly prior to the onset of T2DM. Each SD increment of dhS1P and dhS1P/dhSph ratio was associated with 53.5% and 54.1% increased risk of incident diabetes, respectively. The predictive effect of circulating dhS1P and dhS1P/dhSph ratio on T2DM incidence was independent of conventional risk factors in multivariate regression models. Furthermore, combination of serum dhS1P and dhS1P/dhSph ratio with conventional clinical indices significantly improved the accuracy of T2DM prediction (AUROC, 0.726), especially for normoglycemic subjects (AUROC, 0.859). CONCLUSION Circulating levels of dhS1P and dhS1P/dhSph ratio are strongly associated with increased risk of T2DM, and could serve as a useful biomarker for prediction of incident T2DM in normoglycemic populations.
Collapse
Affiliation(s)
- Qi Chen
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Wei Wang
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Ming-Feng Xia
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - You-Li Lu
- Central Laboratory, Xuhui Central Hospital, Shanghai, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Chen Yu
- Central Laboratory, Xuhui Central Hospital, Shanghai, China
| | - Xiao-Ying Li
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Mathew A Vadas
- Centenary Institute, The University of Sydney, Sydney, Australia
| | - Xin Gao
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Huan-Dong Lin
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Pu Xia
- Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
25
|
The Role of Sphingomyelin Metabolism in the Protection of Rat Brain Microvascular Endothelial Cells by Mild Hypothermia. Neurocrit Care 2021; 36:546-559. [PMID: 34508278 DOI: 10.1007/s12028-021-01338-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 08/18/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Sphingomyelin, composed of ceramide (CER), sphingosine (Sph), and sphingosine-1-phosphate (S1P), is an essential structural component of cellular membranes and plays an important role in the signal transduction regulating cell proliferation, differentiation, and apoptosis. CER is mainly metabolized to Sph, and under the action of sphingosine kinases (SphKs), Sph produces S1P, which can be converted back to Sph by S1P phosphatase. It is suggested that the fate of cells is controlled partly by the interconversion of CER and intracellular S1P. SphK2 is considered the main kinase of S1P synthesis in the central nervous system. The objective of this study was to explore the hypothesis that SphK2 and sphingomyelin metabolism participated in the process of cell apoptosis and the protection of mild hypothermia. METHODS Rat brain microvascular endothelial cells were divided into groups for intervention of SphK2 inhibitor, SphK2 small interfering RNA (SiRNA) transfection, ischemia-reperfusion, and mild hypothermia. After interventions, cell apoptosis was detected by 4,6-diamino-2-phenyl indole (DAPI) and flow cytometry, the expression of apoptosis-related protein was detected by Western Blot, and SphK2 enzyme activity and the content of sphingomyelin were determined. RESULTS ABC294640 and transfection of SphK2 SiRNA could increase apoptosis, accompanied by the increase of the expression of proapoptotic genes Caspase3 and Bax and the decrease of the expression of BCL-2. This effect could be partially reversed with mild hypothermia. Ischemia-reperfusion injury, transfection of SphK2 SiRNA, and the addition of ABC294640 could significantly inhibit the activity of SphK2, accompanied by the increase of CERs and the decrease of S1P. Mild hypothermia could reverse the changes of sphingolipids but have no significant effect on the activity of sphk2. CONCLUSIONS Mild hypothermia can inhibit the occurrence of apoptosis and reverse the changes of apoptosis-related genes and sphingomyelin content induced by ischemia-reperfusion injury, but the effect on sphk2 enzyme activity was not significant.
Collapse
|
26
|
Synthetic probes and chemical tools in sphingolipid research. Curr Opin Chem Biol 2021; 65:126-135. [PMID: 34509716 DOI: 10.1016/j.cbpa.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
Sphingolipids (SLs) are a unique class of nitrogen-linked lipids that are involved in membrane structure, cell signaling, and other important cellular processes. Abnormal sphingolipid metabolism is observed in several diseases including cancer, diabetes, metabolic disorders, and neurodegenerative diseases, such as Alzheimer's. However, the direct study of SLs has been hampered by their ubiquitous presence in cells and their complex metabolism. In the past few decades, efforts have been focused on creating synthetic probes and chemical tools to study SLs and decipher their roles in cellular biology. In this brief perspective, we seek to provide a concise snapshot of recently developed state-of-the-art chemical tools in SL research and the challenges that can be addressed through further development of SL probes.
Collapse
|
27
|
Ohta K, Hiraki S, Miyanabe M, Ueki T, Aida K, Manabe Y, Sugawara T. Appearance of Intact Molecules of Dietary Ceramides Prepared from Soy Sauce Lees and Rice Glucosylceramides in Mouse Plasma. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9188-9198. [PMID: 33507082 DOI: 10.1021/acs.jafc.0c07259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although the beneficial effects of dietary sphingolipids have recently been reported, the mechanism of their intestinal absorption has yet to be fully elucidated. In this study, the absorption and metabolism of dietary ceramides and glucosylceramides were evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis in the plasma of mice after a single oral administration. Ceramide molecules prepared from soy sauce lees (mainly composed of phytosphingosine and its derivatives) were undetectable or minor compounds in the plasma of control mice but appeared 1-6 h after administration. Rice glucosylceramide (mainly composed of sphingadienine) was endogenously detected in mouse plasma and showed a tendency to increase 1-6 h after administration by LC-MS/MS analysis. In addition, the ceramide molecules, which are hydrolysates of dietary glucosylceramide, were significantly increased in the plasma after administration. These findings strongly suggest that dietary ceramides and glucosylceramides are partly absorbed as intact molecules or hydrolysates.
Collapse
Affiliation(s)
- Kazushi Ohta
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan
| | - Shinobu Hiraki
- Genuine R&D Company, Limited, 729-1 Matono, Shingu-machi, Kasuya-gun, Fukuoka 811-0104, Japan
| | - Masakatsu Miyanabe
- Genuine R&D Company, Limited, 729-1 Matono, Shingu-machi, Kasuya-gun, Fukuoka 811-0104, Japan
| | - Tatsuro Ueki
- Fukukoka Soy Sauce Brewing Cooperation, Nagaoka, Chikushino, Fukuoka 818-0066, Japan
| | - Kazuhiko Aida
- Innovation Center, Nippon Flour Mills Company, Limited, 5-1-3 Midorigaoka, Atsugi, Kanagawa 243-0041, Japan
| | - Yuki Manabe
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan
| | - Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan
| |
Collapse
|
28
|
Millner A, Atilla-Gokcumen GE. Solving the enigma: Mass spectrometry and small molecule probes to study sphingolipid function. Curr Opin Chem Biol 2021; 65:49-56. [PMID: 34175552 DOI: 10.1016/j.cbpa.2021.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022]
Abstract
Sphingolipids are highly bioactive lipids. Sphingolipid metabolism produces key membrane components (e.g. sphingomyelin) and a variety of signaling lipids with different biological functions (e.g. ceramide, sphingosine-1-phosphate). The coordinated activity of tens of different enzymes maintains proper levels and localization of these lipids with key roles in cellular processes. In this review, we highlight the signaling roles of sphingolipids in cell death and survival. We discuss recent findings on the role of specific sphingolipids during these processes, enabled by the use of lipidomics to study compositional and spatial regulation of these lipids and synthetic sphingolipid probes to study subcellular localization and interaction partners of sphingolipids to understand the function of these lipids.
Collapse
Affiliation(s)
- Alec Millner
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA.
| |
Collapse
|
29
|
Muralidharan S, Shimobayashi M, Ji S, Burla B, Hall MN, Wenk MR, Torta F. A reference map of sphingolipids in murine tissues. Cell Rep 2021; 35:109250. [PMID: 34133933 DOI: 10.1016/j.celrep.2021.109250] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Sphingolipids (SPs) have both a structural role in the cell membranes and a signaling function that regulates many cellular processes. The enormous structural diversity and low abundance of many SPs pose a challenge for their identification and quantification. Recent advances in lipidomics, in particular liquid chromatography (LC) coupled with mass spectrometry (MS), provide methods to detect and quantify many low-abundant SP species reliably. Here we use LC-MS to compile a "murine sphingolipid atlas," containing the qualitative and quantitative distribution of 114 SPs in 21 tissues of a widely utilized wild-type laboratory mouse strain (C57BL/6). We report tissue-specific SP fingerprints, as well as sex-specific differences in the same tissue. This is a comprehensive, quantitative sphingolipidomic map of mammalian tissues collected in a systematic fashion. It will complement other tissue compendia for interrogation into the role of SP in mammalian health and disease.
Collapse
Affiliation(s)
- Sneha Muralidharan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore; Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Mitsugu Shimobayashi
- Biozentrum - Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Shanshan Ji
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Bo Burla
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Michael N Hall
- Biozentrum - Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
30
|
Analytical considerations for reducing the matrix effect for the sphingolipidome quantification in whole blood. Bioanalysis 2021; 13:1037-1049. [PMID: 34110924 PMCID: PMC8240607 DOI: 10.4155/bio-2021-0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aim: Plasma and serum are widely used blood-derived biofluids for metabolomics and lipidomics assays, but analytes that are present in high concentrations in blood cells cannot be evaluated in those samples and isolating serum or plasma could introduce additional variability in the data. Materials & methods: In this study, we provide a comprehensive method for quantification of the whole blood (WB) sphingolipidome, combining a single-phase extraction method with LC-high-resolution mass spectrometry. Results: We were able to quantify more than 150 sphingolipids, and when compared with paired plasma, WB contained higher concentration of most sphingolipids and individual variations were lower. These findings suggest that WB could be a better alternative to plasma, and potentially guide the evaluation of the sphingolipidome for biomarker discovery.
Collapse
|
31
|
Le Barz M, Vors C, Combe E, Joumard-Cubizolles L, Lecomte M, Joffre F, Trauchessec M, Pesenti S, Loizon E, Breyton AE, Meugnier E, Bertrand K, Drai J, Robert C, Durand A, Cuerq C, Gaborit P, Leconte N, Bernalier-Donadille A, Cotte E, Laville M, Lambert-Porcheron S, Ouchchane L, Vidal H, Malpuech-Brugère C, Cheillan D, Michalski MC. Milk polar lipids favorably alter circulating and intestinal ceramide and sphingomyelin species in postmenopausal women. JCI Insight 2021; 6:146161. [PMID: 33857018 PMCID: PMC8262315 DOI: 10.1172/jci.insight.146161] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/09/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND High circulating levels of ceramides (Cer) and sphingomyelins (SM) are associated with cardiometabolic diseases. The consumption of whole fat dairy products, naturally containing such polar lipids (PL), is associated with health benefits, but the impact on sphingolipidome remains unknown. METHODS In a 4-week randomized controlled trial, 58 postmenopausal women daily consumed milk PL-enriched cream cheese (0, 3, or 5 g of milk PL). Postprandial metabolic explorations were performed before and after supplementation. Analyses included SM and Cer species in serum, chylomicrons, and feces. The ileal contents of 4 ileostomy patients were also explored after acute milk PL intake. RESULTS Milk PL decreased serum atherogenic C24:1 Cer, C16:1 SM, and C18:1 SM species (Pgroup < 0.05). Changes in serum C16+18 SM species were positively correlated with the reduction of cholesterol (r = 0.706), LDL-C (r = 0.666), and ApoB (r = 0.705) (P < 0.001). Milk PL decreased chylomicron content in total SM and C24:1 Cer (Pgroup < 0.001), parallel to a marked increase in total Cer in feces (Pgroup < 0.001). Milk PL modulated some specific SM and Cer species in both ileal efflux and feces, suggesting differential absorption and metabolization processes in the gut. CONCLUSION Milk PL supplementation decreased atherogenic SM and Cer species associated with the improvement of cardiovascular risk markers. Our findings bring insights on sphingolipid metabolism in the gut, especially Cer, as signaling molecules potentially participating in the beneficial effects of milk PL. TRIAL REGISTRATION ClinicalTrials.gov, NCT02099032, NCT02146339. FUNDING ANR-11-ALID-007-01; PHRCI-2014: VALOBAB, no. 14-007; CNIEL; GLN 2018-11-07; HCL (sponsor).
Collapse
Affiliation(s)
- Mélanie Le Barz
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Cécile Vors
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France
| | - Emmanuel Combe
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Laurie Joumard-Cubizolles
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Manon Lecomte
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France
| | - Florent Joffre
- ITERG, ZA Pessac-Canéjan, 11 Rue Gaspard Monge, 33610, Canéjan, France
| | - Michèle Trauchessec
- Hospices Civils de Lyon, 69000, Lyon, France.,Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69677, Bron, France
| | - Sandra Pesenti
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Emmanuelle Loizon
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Anne-Esther Breyton
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France
| | - Emmanuelle Meugnier
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Karène Bertrand
- ITERG, ZA Pessac-Canéjan, 11 Rue Gaspard Monge, 33610, Canéjan, France
| | - Jocelyne Drai
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,Hospices Civils de Lyon, 69000, Lyon, France.,Unité de Nutrition Endocrinologie Métabolisme, Service de Biochimie, Centre de Biologie et de Pathologie Sud, Hospices Civils de Lyon, 69495, Pierre-Bénite, France
| | - Chloé Robert
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France
| | - Annie Durand
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Charlotte Cuerq
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,Hospices Civils de Lyon, 69000, Lyon, France.,Unité de Nutrition Endocrinologie Métabolisme, Service de Biochimie, Centre de Biologie et de Pathologie Sud, Hospices Civils de Lyon, 69495, Pierre-Bénite, France
| | - Patrice Gaborit
- ACTALIA Dairy Products and Technologies, Avenue François Mitterrand, BP49, 17700, Surgères, France.,ENILIA ENSMIC, Avenue François Mitterrand, 17700, Surgères, France
| | - Nadine Leconte
- INRAE, Institut Agro, STLO (Science et Technologie du Lait et de l'Œuf), 35042, Rennes, France
| | | | - Eddy Cotte
- Hospices Civils de Lyon, 69000, Lyon, France.,Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Service de chirurgie digestive, 69310, Pierre-Bénite, France.,Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Sud-Charles Mérieux, EMR 3738, 69600, Oullins, France
| | - Martine Laville
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France.,Hospices Civils de Lyon, 69000, Lyon, France.,Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Sud-Charles Mérieux, EMR 3738, 69600, Oullins, France
| | - Stéphanie Lambert-Porcheron
- TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France.,Hospices Civils de Lyon, 69000, Lyon, France
| | - Lemlih Ouchchane
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, 63000, Clermont-Ferrand, France.,CHU Clermont-Ferrand, Unité de Biostatistique-Informatique Médicale, 63000, Clermont-Ferrand, France
| | - Hubert Vidal
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Corinne Malpuech-Brugère
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - David Cheillan
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,Hospices Civils de Lyon, 69000, Lyon, France.,Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69677, Bron, France
| | - Marie-Caroline Michalski
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France
| |
Collapse
|
32
|
Le Faouder P, Soullier J, Tremblay-Franco M, Tournadre A, Martin JF, Guitton Y, Carlé C, Caspar-Bauguil S, Denechaud PD, Bertrand-Michel J. Untargeted Lipidomic Profiling of Dry Blood Spots Using SFC-HRMS. Metabolites 2021; 11:metabo11050305. [PMID: 34064856 PMCID: PMC8151068 DOI: 10.3390/metabo11050305] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/18/2022] Open
Abstract
Lipids are essential cellular constituents that have many critical roles in physiological functions. They are notably involved in energy storage and cell signaling as second messengers, and they are major constituents of cell membranes, including lipid rafts. As a consequence, they are implicated in a large number of heterogeneous diseases, such as cancer, diabetes, neurological disorders, and inherited metabolic diseases. Due to the high structural diversity and complexity of lipid species, the presence of isomeric and isobaric lipid species, and their occurrence at a large concentration scale, a complete lipidomic profiling of biological matrices remains challenging, especially in clinical contexts. Using supercritical fluid chromatography coupled with high-resolution mass spectrometry, we have developed and validated an untargeted lipidomic approach to the profiling of plasma and blood. Moreover, we have tested the technique using the Dry Blood Spot (DBS) method and found that it allows for the easy collection of blood for analysis. To develop the method, we performed the optimization of the separation and detection of lipid species on pure standards, reference human plasma (SRM1950), whole blood, and DBS. These analyses allowed an in-house lipid data bank to be built. Using the MS-Dial software, we developed an automatic process for the relative quantification of around 500 lipids species belonging to the 6 main classes of lipids (including phospholipids, sphingolipids, free fatty acids, sterols, and fatty acyl-carnitines). Then, we compared the method using the published data for SRM 1950 and a mouse blood sample, along with another sample of the same blood collected using the DBS method. In this study, we provided a method for blood lipidomic profiling that can be used for the easy sampling of dry blood spots.
Collapse
Affiliation(s)
- Pauline Le Faouder
- MetaboHUB-MetaToul-Lipidomique, MetaboHUB-ANR-11-INBS-0010, Inserm U1297/Université Paul Sabatier Toulouse III, 31432 Toulouse, France; (P.L.F.); (J.S.); (A.T.)
| | - Julia Soullier
- MetaboHUB-MetaToul-Lipidomique, MetaboHUB-ANR-11-INBS-0010, Inserm U1297/Université Paul Sabatier Toulouse III, 31432 Toulouse, France; (P.L.F.); (J.S.); (A.T.)
| | - Marie Tremblay-Franco
- MetaboHUB-MetaToul-Axiom, MetaboHUB-ANR-11-INBS-0010, INRAE Toxalim, Université Paul Sabtier, 31027 Toulouse, France; (M.T.-F.); (J.-F.M.)
| | - Anthony Tournadre
- MetaboHUB-MetaToul-Lipidomique, MetaboHUB-ANR-11-INBS-0010, Inserm U1297/Université Paul Sabatier Toulouse III, 31432 Toulouse, France; (P.L.F.); (J.S.); (A.T.)
| | - Jean-François Martin
- MetaboHUB-MetaToul-Axiom, MetaboHUB-ANR-11-INBS-0010, INRAE Toxalim, Université Paul Sabtier, 31027 Toulouse, France; (M.T.-F.); (J.-F.M.)
| | - Yann Guitton
- MELISA Core Facility, Laboratoire d’Etude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris, INRΑE, 44307 Nantes, France;
| | - Caroline Carlé
- Laboratoire de Biochimie, Hôpital Purpan, CHU Toulouse, 31059 Toulouse, France;
| | - Sylvie Caspar-Bauguil
- INSERM, UMR1297, Institute of Metabolic and Cardiovascular Diseases, University Paul Sabatier, 31432 Toulouse, France; (S.C.-B.); (P.-D.D.)
| | - Pierre-Damien Denechaud
- INSERM, UMR1297, Institute of Metabolic and Cardiovascular Diseases, University Paul Sabatier, 31432 Toulouse, France; (S.C.-B.); (P.-D.D.)
| | - Justine Bertrand-Michel
- MetaboHUB-MetaToul-Lipidomique, MetaboHUB-ANR-11-INBS-0010, Inserm U1297/Université Paul Sabatier Toulouse III, 31432 Toulouse, France; (P.L.F.); (J.S.); (A.T.)
- Correspondence: ; Tel.: +33-671681650
| |
Collapse
|
33
|
Chao HC, McLuckey SA. In-Depth Structural Characterization and Quantification of Cerebrosides and Glycosphingosines with Gas-Phase Ion Chemistry. Anal Chem 2021; 93:7332-7340. [PMID: 33957046 DOI: 10.1021/acs.analchem.1c01021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cerebrosides (n-HexCer) and glycosphingosines (n-HexSph) constitute two sphingolipid subclasses. Both are comprised of a monosaccharide headgroup (glucose or galactose in mammalian cells) linked via either an α- or β-glycosidic linkage to the sphingoid backbone (n = α or β, depending upon the nature of the linkage to the anomeric carbon of the sugar). Cerebrosides have an additional amide-bonded fatty acyl chain linked to the sphingoid backbone. While differentiating the multiple isomers (i.e. glucose vs galactose, α- vs β-linkage) is difficult, it is crucial for understanding their specific biological roles in health and disease states. Shotgun tandem mass spectrometry has been a powerful tool in both lipidomics and glycomics analysis but is often limited in its ability to distinguish isomeric species. This work describes a new strategy combining shotgun tandem mass spectrometry with gas-phase ion chemistry to achieve both differentiation and quantification of isomeric cerebrosides and glycosphingosines. Briefly, deprotonated cerebrosides, [n-HexCer-H]-, or glycosphingosines, [n-HexSph-H]-, are reacted with terpyridine (Terpy) magnesium complex dications, [Mg(Terpy)2]2+, in the gas phase to produce a charge-inverted complex cation, [n-HexCer-H+MgTerpy]+ or [n-HexSph-H+MgTerpy]+. The collision-induced dissociation (CID) of the charge-inverted complex cations leads to significant spectral differences between the two groups of isomers, α-GalCer, β-GlcCer, and β-GalCer for cerebrosides and α-GlcSph, α-GalSph, β-GlcSph, and β-GalSph for glycosphingosines, which allows for isomer distinction. Moreover, we describe a quantification strategy with the normalized percent area extracted from selected diagnostic ions that quantify either three isomeric cerebroside or four isomeric glycosphingosine mixtures. The analytical performance was also evaluated in terms of accuracy, repeatability, and interday precision. Furthermore, CID of the product ions resulting from 443 Da loss from the charge-inverted complex cations ([n-HexCer-H+MgTerpy]+) has been performed and demonstrated for localization of the double-bond position on the amide-bonded monounsaturated fatty acyl chain in the cerebroside structure. The proposed strategy was successfully applied to the analysis of total cerebroside extracts from the porcine brain, providing in-depth structural information on cerebrosides from a biological mixture.
Collapse
Affiliation(s)
- Hsi-Chun Chao
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette, Indiana 47907, United States
| | - Scott A McLuckey
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette, Indiana 47907, United States
| |
Collapse
|
34
|
Cardioprotective Effects of Taurisolo® in Cardiomyoblast H9c2 Cells under High-Glucose and Trimethylamine N-Oxide Treatment via De Novo Sphingolipid Synthesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2961406. [PMID: 33273998 PMCID: PMC7683148 DOI: 10.1155/2020/2961406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/21/2020] [Accepted: 10/24/2020] [Indexed: 12/27/2022]
Abstract
In addition to high plasma glucose, increased levels of trimethylamine N-oxide (TMAO) have been found in obese subjects, where are considered as a novel risk factor for cardiovascular diseases. The present study aimed to investigate the effect of a novel nutraceutical formulation based on grape polyphenols (registered as Taurisolo®) in counteracting TMAO- and high glucose (HG)-induced cytotoxicity in cardiomyoblast H9c2 cells. Cell damage was induced with HG (HG-H9c2) and HG+TMAO (THG-H9c2); both experimental cell models were, thus, incubated for 72 h in the presence or absence of Taurisolo®. It was observed that Taurisolo® significantly increased the cell viability and reduced lactate dehydrogenase and aspartate transaminase release in both HG- and THG-H9c2 cells. Additionally, through its antioxidant activity, Taurisolo® modulated cell proliferation via ERK activation in THG-H9c2. Furthermore, Taurisolo® was able to induce autophagic process via increasing the expression of LC3II, a protein marker involved in formation of autophagosome and ex novo synthesis of sphingomyelin, ceramides, and their metabolites both in HG- and THG-H9c2 cells. Finally, Taurisolo® reduced hypertrophy and induced differentiation of HG-H9C2 cells into cardiomyocyte-like cells. These data suggest that Taurisolo® counteracts the toxicity induced by TMAO and HG concentrations increasing autophagic process and activating de novo sphingolipid synthesis, resulting in a morphological cell remodeling. In conclusion, our results allow speculating that Taurisolo®, combined with energy restriction, may represent a useful nutraceutical approach for prevention of cardiomyopathy in obese subjects.
Collapse
|
35
|
Rudd AK, Mittal N, Lim EW, Metallo CM, Devaraj NK. A Small Molecule Fluorogenic Probe for the Detection of Sphingosine in Living Cells. J Am Chem Soc 2020; 142:17887-17891. [DOI: 10.1021/jacs.0c06652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Andrew K. Rudd
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Neel Mittal
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Esther W. Lim
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Christian M. Metallo
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Neal K. Devaraj
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
36
|
Hartler J, Armando AM, Trötzmüller M, Dennis EA, Köfeler HC, Quehenberger O. Automated Annotation of Sphingolipids Including Accurate Identification of Hydroxylation Sites Using MS n Data. Anal Chem 2020; 92:14054-14062. [PMID: 33003696 PMCID: PMC7581017 DOI: 10.1021/acs.analchem.0c03016] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sphingolipids constitute a heterogeneous lipid category that is involved in many key cellular functions. For high-throughput analyses of sphingolipids, tandem mass spectrometry (MS/MS) is the method of choice, offering sufficient sensitivity, structural information, and quantitative precision for detecting hundreds to thousands of species simultaneously. While glycerolipids and phospholipids are predominantly non-hydroxylated, sphingolipids are typically dihydroxylated. However, species containing one or three hydroxylation sites can be detected frequently. This variability in the number of hydroxylation sites on the sphingolipid long-chain base and the fatty acyl moiety produces many more isobaric species and fragments than for other lipid categories. Due to this complexity, the automated annotation of sphingolipid species is challenging, and incorrect annotations are common. In this study, we present an extension of the Lipid Data Analyzer (LDA) "decision rule set" concept that considers the structural characteristics that are specific for this lipid category. To address the challenges inherent to automated annotation of sphingolipid structures from MS/MS data, we first developed decision rule sets using spectra from authentic standards and then tested the applicability on biological samples including murine brain and human plasma. A benchmark test based on the murine brain samples revealed a highly improved annotation quality as measured by sensitivity and reliability. The results of this benchmark test combined with the easy extensibility of the software to other (sphingo)lipid classes and the capability to detect and correctly annotate novel sphingolipid species make LDA broadly applicable to automated sphingolipid analysis, especially in high-throughput settings.
Collapse
Affiliation(s)
- Jürgen Hartler
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093 California, United States.,Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1/I, 8010 Graz, Austria
| | - Aaron M Armando
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093 California, United States
| | - Martin Trötzmüller
- Core Facility for Mass Spectrometry, Medical University of Graz, Stiftingtalstraße 24, 8010 Graz, Austria
| | - Edward A Dennis
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093 California, United States
| | - Harald C Köfeler
- Core Facility for Mass Spectrometry, Medical University of Graz, Stiftingtalstraße 24, 8010 Graz, Austria
| | - Oswald Quehenberger
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093 California, United States
| |
Collapse
|
37
|
Changes in circulating miRNA19a-3p precede insulin resistance programmed by intra-uterine growth retardation in mice. Mol Metab 2020; 42:101083. [PMID: 32956848 PMCID: PMC7559280 DOI: 10.1016/j.molmet.2020.101083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Objective Individuals born with intrauterine growth retardation (IUGR) are more prone to cardio-metabolic diseases as adults, and environmental changes during the perinatal period have been identified as potentially crucial factors. We have studied in a preclinical model early-onset molecular alterations present before the development of a clinical phenotype. Methods We used a preclinical mouse model of induced IUGR, in which we modulated the nutrition of the pups during the suckling period, to modify their susceptibility to cardio-metabolic diseases in adulthood. Results Mice born with IUGR that were overfed (IUGR-O) during lactation rapidly developed obesity, hepatic steatosis and insulin resistance, by three months of age, whereas those subjected to nutrition restriction during lactation (IUGR-R) remained permanently thin and highly sensitive to insulin. Mice born with IUGR and fed normally during lactation (IUGR-N) presented an intermediate phenotype and developed insulin resistance by 12 months of age. Molecular alterations to the insulin signaling pathway with an early onset were observed in the livers of adult IUGR-N mice, nine months before the appearance of insulin resistance. The implication of epigenetic changes was revealed by ChIP sequencing, with both posttranslational H3K4me3 histone modifications and microRNAs involved. Conclusions These two changes lead to the coherent regulation of insulin signaling, with a decrease in Akt gene transcription associated with an increase in the translation of its inhibitor, Pten. Moreover, we found that the levels of the implicated miRNA19a-3p also decreased in the blood of young adult IUGR mice nine months before the appearance of insulin resistance, suggesting a possible role for this miRNA as an early circulating biomarker of metabolic fate of potential use for precision medicine. Male mice are highly sensitive to changes in nutrition during the perinatal period. Post-natal nutrition modulates metabolic diseases induced by IUGR in male mice. Metabolic programming by perinatal nutrition involves epigenetic mechanisms. Pre-symptomatic IUGR mice present molecular alterations of the insulin pathway. Plasma miRNA19a-3p levels are associated with the development of insulin resistance.
Collapse
|
38
|
Advances in lipidomics. Clin Chim Acta 2020; 510:123-141. [PMID: 32622966 DOI: 10.1016/j.cca.2020.06.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/24/2023]
Abstract
The present article examines recently published literature on lipids, mainly focusing on research involving glycero-, glycerophospho- and sphingo-lipids. The primary aim is identification of distinct profiles in biologic lipidomic systems by ultra-high-performance liquid chromatography (UHPLC) coupled with mass spectrometry (MS, tandem MS) with multivariate data analysis. This review specifically targets lipid biomarkers and disease pathway mechanisms in humans and artificial targets. Different specimen matrices such as primary blood derivatives (plasma, serum, erythrocytes, and blood platelets), faecal matter, urine, as well as biologic tissues (liver, lung and kidney) are highlighted.
Collapse
|
39
|
Jaddoa E, Masania J, Masiero E, Sgamma T, Arroo R, Sillence D, Zetterström T. Effect of antidepressant drugs on the brain sphingolipid system. J Psychopharmacol 2020; 34:716-725. [PMID: 32403969 DOI: 10.1177/0269881120915412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Major depression is a common mood disorder and the central sphingolipid system has been identified as a possible drug target of this condition. Here we investigated the action of antidepressant drugs on sphingolipid levels in rat brain regions, plasma and in cultured mouse macrophages. METHODS Two antidepressant drugs were tested: the serotonin reuptake inhibitor paroxetine and the noradrenaline reuptake inhibitor desipramine, either following acute or chronic treatments. Content of sphingosine and ceramide were analysed using LC-MS or HPLC-UV, respectively. This was from samples of brain, plasma and cultured mouse macrophages. Antidepressant-induced effects on mRNA expression for two key genes of the sphingolipid pathway, SMPD1 and ASAH1, were also measured by using quantitative real-time PCR. RESULTS Chronic but not acute administration of paroxetine or desipramine reduced sphingosine levels in the prefrontal cortex and hippocampus (only paroxetine) but not in the striatum. Ceramide levels were also measured in the hippocampus following chronic paroxetine and likewise to sphingosine this treatment reduced its levels. The corresponding collected plasma samples from chronically treated animals did not show any decrease of sphingosine compared to the corresponding controls. Both drugs failed to reduce sphingosine levels from cultured mouse macrophages. The drug-induced decrease of sphingolipids coincided with reduced mRNA expression of two enzymes of the central sphingolipid pathway, i.e. acid sphingomyelinase (SMPD1) and acid ceramidase (ASAH1). CONCLUSIONS This study supports the involvement of brain sphingolipids in the mechanism of action by antidepressant drugs and for the first time highlights their differential effects on brain versus plasma levels.
Collapse
Affiliation(s)
- Estabraq Jaddoa
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Jinit Masania
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Eva Masiero
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Tiziana Sgamma
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Randolph Arroo
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Daniel Sillence
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Tyra Zetterström
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| |
Collapse
|
40
|
Aldana J, Romero-Otero A, Cala MP. Exploring the Lipidome: Current Lipid Extraction Techniques for Mass Spectrometry Analysis. Metabolites 2020; 10:metabo10060231. [PMID: 32503331 PMCID: PMC7345237 DOI: 10.3390/metabo10060231] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, high-throughput lipid profiling has contributed to understand the biological, physiological and pathological roles of lipids in living organisms. Across all kingdoms of life, important cell and systemic processes are mediated by lipids including compartmentalization, signaling and energy homeostasis. Despite important advances in liquid chromatography and mass spectrometry, sample extraction procedures remain a bottleneck in lipidomic studies, since the wide structural diversity of lipids imposes a constrain in the type and amount of lipids extracted. Differences in extraction yield across lipid classes can induce a bias on down-stream analysis and outcomes. This review aims to summarize current lipid extraction techniques used for untargeted and targeted studies based on mass spectrometry. Considerations, applications, and limitations of these techniques are discussed when used to extract lipids in complex biological matrices, such as tissues, biofluids, foods, and microorganisms.
Collapse
|
41
|
Rohrbach TD, Boyd AE, Grizzard PJ, Spiegel S, Allegood J, Lima S. A simple method for sphingolipid analysis of tissues embedded in optimal cutting temperature compound. J Lipid Res 2020; 61:953-967. [PMID: 32341007 PMCID: PMC7269760 DOI: 10.1194/jlr.d120000809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
MS-assisted lipidomic tissue analysis is a valuable tool to assess sphingolipid metabolism dysfunction in disease. These analyses can reveal potential pharmacological targets or direct mechanistic studies to better understand the molecular underpinnings and influence of sphingolipid metabolism alterations on disease etiology. But procuring sufficient human tissues for adequately powered studies can be challenging. Therefore, biorepositories, which hold large collections of cryopreserved human tissues, are an ideal retrospective source of specimens. However, this resource has been vastly underutilized by lipid biologists, as the components of OCT compound used in cryopreservation are incompatible with MS analyses. Here, we report results indicating that OCT compound also interferes with protein quantification assays, and that the presence of OCT compound impacts the quantification of extracted sphingolipids by LC-ESI-MS/MS. We developed and validated a simple and inexpensive method that removes OCT compound from OCT compound-embedded tissues. Our results indicate that removal of OCT compound from cryopreserved tissues does not significantly affect the accuracy of sphingolipid measurements with LC-ESI-MS/MS. We used the validated method to analyze sphingolipid alterations in tumors compared with normal adjacent uninvolved lung tissues from individuals with lung cancer and to determine the long-term stability of sphingolipids in OCT compound-cryopreserved normal lung tissues. We show that lung cancer tumors have significantly altered sphingolipid profiles and that sphingolipids are stable for up to 16 years in OCT compound-cryopreserved normal lung tissues. This validated sphingolipidomic OCT compound-removal protocol should be a valuable addition to the lipid biologist's toolbox.
Collapse
Affiliation(s)
- Timothy D Rohrbach
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298
| | - April E Boyd
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | | | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298; Virginia Commonwealth University Lipidomics/Metabolomics Shared Resource, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Santiago Lima
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284; Virginia Commonwealth University Massey Cancer Center, Richmond, VA 23298. mailto:
| |
Collapse
|
42
|
Poss AM, Maschek JA, Cox JE, Hauner BJ, Hopkins PN, Hunt SC, Holland WL, Summers SA, Playdon MC. Machine learning reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease. J Clin Invest 2020; 130:1363-1376. [PMID: 31743112 PMCID: PMC7269567 DOI: 10.1172/jci131838] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUNDCeramides are sphingolipids that play causative roles in diabetes and heart disease, with their serum levels measured clinically as biomarkers of cardiovascular disease (CVD).METHODSWe performed targeted lipidomics on serum samples from individuals with familial coronary artery disease (CAD) (n = 462) and population-based controls (n = 212) to explore the relationship between serum sphingolipids and CAD, using unbiased machine learning to identify sphingolipid species positively associated with CAD.RESULTSNearly every sphingolipid measured (n = 30 of 32) was significantly elevated in subjects with CAD compared with measurements in population controls. We generated a novel sphingolipid-inclusive CAD risk score, termed SIC, that demarcates patients with CAD independently and more effectively than conventional clinical CVD biomarkers including serum LDL cholesterol and triglycerides. This new metric comprises several minor lipids that likely serve as measures of flux through the ceramide biosynthesis pathway rather than the abundant deleterious ceramide species that are included in other ceramide-based scores.CONCLUSIONThis study validates serum ceramides as candidate biomarkers of CVD and suggests that comprehensive sphingolipid panels should be considered as measures of CVD.FUNDINGThe NIH (DK112826, DK108833, DK115824, DK116888, and DK116450); the Juvenile Diabetes Research Foundation (JDRF 3-SRA-2019-768-A-B); the American Diabetes Association; the American Heart Association; the Margolis Foundation; the National Cancer Institute, NIH (5R00CA218694-03); and the Huntsman Cancer Institute Cancer Center Support Grant (P30CA040214).
Collapse
Affiliation(s)
- Annelise M. Poss
- Department of Nutrition and Integrative Physiology and
- Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - J. Alan Maschek
- Department of Biochemistry
- Metabolomics Core Research Facility
- Proteomics Core Research Facility, and
| | - James E. Cox
- Department of Biochemistry
- Metabolomics Core Research Facility
- Proteomics Core Research Facility, and
| | - Benedikt J. Hauner
- Division of Cancer Population Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Paul N. Hopkins
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Steven C. Hunt
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - William L. Holland
- Department of Nutrition and Integrative Physiology and
- Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology and
- Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Mary C. Playdon
- Department of Nutrition and Integrative Physiology and
- Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Division of Cancer Population Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| |
Collapse
|
43
|
Alsanafi M, Kelly SL, McNaughton M, Merrill AH, Pyne NJ, Pyne S. The regulation of p53, p38 MAPK, JNK and XBP-1s by sphingosine kinases in human embryonic kidney cells. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158631. [PMID: 31954175 DOI: 10.1016/j.bbalip.2020.158631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 11/29/2022]
Abstract
Since inhibitors of sphingosine kinases (SK1, SK2) have been shown to induce p53-mediated cell death, we have further investigated their role in regulating p53, stress activated protein kinases and XBP-1s in HEK293T cells. Treatment of these cells with the sphingosine kinase inhibitor, SKi, which fails to induce apoptosis, promoted the conversion of p53 into two proteins with molecular masses of 63 and 90 kDa, and which was enhanced by over-expression of ubiquitin. The SKi induced conversion of p53 to p63/p90 was also enhanced by siRNA knockdown of SK1, but not SK2 or dihydroceramide desaturase (Degs1), suggesting that SK1 is a negative regulator of this process. In contrast, another sphingosine kinase inhibitor, ABC294640 only very weakly stimulated formation of p63/p90 and induced apoptosis of HEK293T cells. We have previously shown that SKi promotes the polyubiquitination of Degs1, and these forms positively regulate p38 MAPK/JNK pathways to promote HEK293T cell survival/growth. siRNA knockdown of SK1 enhanced the activation of p38 MAPK/JNK pathways in response to SKi, suggesting that SK1 functions to oppose these pro-survival pathways in HEK293T cells. SKi also enhanced the stimulatory effect of the proteasome inhibitor, MG132 on the expression of the pro-survival protein XBP-1s and this was reduced by siRNA knockdown of SK2 and increased by knockdown of p53. These findings suggest that SK1 and SK2 have opposing roles in regulating p53-dependent function in HEK293T cells.
Collapse
Affiliation(s)
- Mariam Alsanafi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Samuel L Kelly
- School of Biological Sciences and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Melissa McNaughton
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Alfred H Merrill
- School of Biological Sciences and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK.
| |
Collapse
|
44
|
Wan J, Li J, Bandyopadhyay S, Kelly SL, Xiang Y, Zhang J, Merrill AH, Duan J. Analysis of 1-Deoxysphingoid Bases and Their N-Acyl Metabolites and Exploration of Their Occurrence in Some Food Materials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12953-12961. [PMID: 31638789 DOI: 10.1021/acs.jafc.9b05708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Most common sphingolipids are comprised of "typical" sphingoid bases (sphinganine, sphingosine, and structurally related compounds) and are produced via the condensation of l-serine with a fatty acyl-CoA by serine palmitoyltransferase. Some organisms, including mammals, also produce "atypical" sphingoid bases that lack a 1-hydroxyl group as a result of the utilization of l-alanine or glycine instead of l-serine, resulting in the formation of 1-deoxy- or 1-desoxymethylsphingoid bases, respectively. Elevated production of "atypical" sphingolipids has been associated with human disease, but 1-deoxysphingoid bases have also been found to have potential as anticancer compounds, hence, the importance of knowing more about the occurrence of these compounds in food. Most of the "typical" and "atypical" sphingoid bases are found as the N-acyl metabolites (e.g., ceramides and 1-deoxyceramides) in mammals, but this has not been uniformly assessed in previous studies nor determined in consumed food. Therefore, we developed a method for the quantitative analysis of "typical" and "atypical" sphingoid bases and their N-acyl derivatives by reverse-phase liquid chromatography coupled to electrospray ionization tandem mass spectrometry. On the basis of these analyses, there was considerable variability in the amounts and molecular subspecies of atypical sphingoid bases and their N-acyl metabolites found in different edible sources. These findings demonstrate that a broader assessment of the types of sphingolipids in foods is needed because some diets might contain sufficient amounts of atypical as well as typical sphingolipids that could have beneficial or possibly deleterious effects on human health.
Collapse
Affiliation(s)
| | - Jian Li
- College of Pharmaceutical Sciences , Ganan Medical University , Ganzhou , Jiangxi 341000 , People's Republic of China
| | - Sibali Bandyopadhyay
- Schools of Biological Sciences and the Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Samuel L Kelly
- Schools of Biological Sciences and the Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | | | | | - Alfred H Merrill
- Schools of Biological Sciences and the Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Jingjing Duan
- Schools of Biological Sciences and the Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
45
|
Wigger D, Gulbins E, Kleuser B, Schumacher F. Monitoring the Sphingolipid de novo Synthesis by Stable-Isotope Labeling and Liquid Chromatography-Mass Spectrometry. Front Cell Dev Biol 2019; 7:210. [PMID: 31632963 PMCID: PMC6779703 DOI: 10.3389/fcell.2019.00210] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Sphingolipids are a class of lipids that share a sphingoid base backbone. They exert various effects in eukaryotes, ranging from structural roles in plasma membranes to cellular signaling. De novo sphingolipid synthesis takes place in the endoplasmic reticulum (ER), where the condensation of the activated C16 fatty acid palmitoyl-CoA and the amino acid L-serine is catalyzed by serine palmitoyltransferase (SPT). The product, 3-ketosphinganine, is then converted into more complex sphingolipids by additional ER-bound enzymes, resulting in the formation of ceramides. Since sphingolipid homeostasis is crucial to numerous cellular functions, improved assessment of sphingolipid metabolism will be key to better understanding several human diseases. To date, no assay exists capable of monitoring de novo synthesis sphingolipid in its entirety. Here, we have established a cell-free assay utilizing rat liver microsomes containing all the enzymes necessary for bottom-up synthesis of ceramides. Following lipid extraction, we were able to track the different intermediates of the sphingolipid metabolism pathway, namely 3-ketosphinganine, sphinganine, dihydroceramide, and ceramide. This was achieved by chromatographic separation of sphingolipid metabolites followed by detection of their accurate mass and characteristic fragmentations through high-resolution mass spectrometry and tandem-mass spectrometry. We were able to distinguish, unequivocally, between de novo synthesized sphingolipids and intrinsic species, inevitably present in the microsome preparations, through the addition of stable isotope-labeled palmitate-d3 and L-serine-d3. To the best of our knowledge, this is the first demonstration of a method monitoring the entirety of ER-associated sphingolipid biosynthesis. Proof-of-concept data was provided by modulating the levels of supplied cofactors (e.g., NADPH) or the addition of specific enzyme inhibitors (e.g., fumonisin B1). The presented microsomal assay may serve as a useful tool for monitoring alterations in sphingolipid de novo synthesis in cells or tissues. Additionally, our methodology may be used for metabolism studies of atypical substrates - naturally occurring or chemically tailored - as well as novel inhibitors of enzymes involved in sphingolipid de novo synthesis.
Collapse
Affiliation(s)
- Dominik Wigger
- Department of Toxicology, University of Potsdam, Nuthetal, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany.,Department of Surgery, University of Cincinnati, Cincinnati, OH, United States
| | - Burkhard Kleuser
- Department of Toxicology, University of Potsdam, Nuthetal, Germany
| | - Fabian Schumacher
- Department of Toxicology, University of Potsdam, Nuthetal, Germany.,Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
46
|
Yager EJ, Konan KV. Sphingolipids as Potential Therapeutic Targets against Enveloped Human RNA Viruses. Viruses 2019; 11:v11100912. [PMID: 31581580 PMCID: PMC6832137 DOI: 10.3390/v11100912] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 12/28/2022] Open
Abstract
Several notable human diseases are caused by enveloped RNA viruses: influenza, AIDS, hepatitis C, dengue hemorrhagic fever, microcephaly, and Guillain-Barré Syndrome. Being enveloped, the life cycle of this group of viruses is critically dependent on host lipid biosynthesis. Viral binding and entry involve interactions between viral envelope glycoproteins and cellular receptors localized to lipid-rich regions of the plasma membrane. Subsequent infection by these viruses leads to reorganization of cellular membranes and lipid metabolism to support the production of new viral particles. Recent work has focused on defining the involvement of specific lipid classes in the entry, genome replication assembly, and viral particle formation of these viruses in hopes of identifying potential therapeutic targets for the treatment or prevention of disease. In this review, we will highlight the role of host sphingolipids in the lifecycle of several medically important enveloped RNA viruses.
Collapse
Affiliation(s)
- Eric J Yager
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA.
| | - Kouacou V Konan
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208-3479, USA.
| |
Collapse
|
47
|
Schmidt O, Weyer Y, Baumann V, Widerin MA, Eising S, Angelova M, Schleiffer A, Kremser L, Lindner H, Peter M, Fröhlich F, Teis D. Endosome and Golgi-associated degradation (EGAD) of membrane proteins regulates sphingolipid metabolism. EMBO J 2019; 38:e101433. [PMID: 31368600 PMCID: PMC6669922 DOI: 10.15252/embj.2018101433] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
Cellular homeostasis requires the ubiquitin-dependent degradation of membrane proteins. This was assumed to be mediated exclusively either by endoplasmic reticulum-associated degradation (ERAD) or by endosomal sorting complexes required for transport (ESCRT)-dependent lysosomal degradation. We identified in Saccharomyces cerevisiae an additional pathway that selectively extracts membrane proteins at Golgi and endosomes for degradation by cytosolic proteasomes. One endogenous substrate of this endosome and Golgi-associated degradation pathway (EGAD) is the ER-resident membrane protein Orm2, a negative regulator of sphingolipid biosynthesis. Orm2 degradation is initiated by phosphorylation, which triggers its ER export. Once on Golgi and endosomes, Orm2 is poly-ubiquitinated by the membrane-embedded "Defective in SREBP cleavage" (Dsc) ubiquitin ligase complex. Cdc48/VCP then extracts ubiquitinated Orm2 from membranes, which is tightly coupled to the proteasomal degradation of Orm2. Thereby, EGAD prevents the accumulation of Orm2 at the ER and in post-ER compartments and promotes the controlled de-repression of sphingolipid biosynthesis. Thus, the selective degradation of membrane proteins by EGAD contributes to proteostasis and lipid homeostasis in eukaryotic cells.
Collapse
Affiliation(s)
- Oliver Schmidt
- Division of Cell BiologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Yannick Weyer
- Division of Cell BiologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Verena Baumann
- Division of Cell BiologyBiocenterMedical University of InnsbruckInnsbruckAustria
- Present address:
MFPLUniversity of ViennaViennaAustria
| | - Michael A Widerin
- Division of Cell BiologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Sebastian Eising
- Department of Biology/ChemistryUniversity of OsnabrückOsnabrückGermany
| | - Mihaela Angelova
- INSERMLaboratory of Integrative Cancer ImmunologySorbonne UniversitéSorbonne Paris CitéUniversité Paris DescartesCentre de Recherche des CordeliersUniversité Paris DiderotParisFrance
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
| | - Leopold Kremser
- Division of Clinical Biochemistry, Protein Micro‐Analysis FacilityBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Protein Micro‐Analysis FacilityBiocenterMedical University of InnsbruckInnsbruckAustria
| | | | - Florian Fröhlich
- Department of Biology/ChemistryUniversity of OsnabrückOsnabrückGermany
| | - David Teis
- Division of Cell BiologyBiocenterMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
48
|
Barrientos RC, Zhang Q. Differential Isotope Labeling by Permethylation and Reversed-Phase Liquid Chromatography-Mass Spectrometry for Relative Quantification of Intact Neutral Glycolipids in Mammalian Cells. Anal Chem 2019; 91:9673-9681. [PMID: 31322861 DOI: 10.1021/acs.analchem.9b01206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Probing the role of glycolipids in health and disease warrants development of practical strategies to determine these molecules at the intact structural level, namely to simultaneously characterize and quantify the glycan and lipid moieties without breaking the linkage between them. Herein we present such an approach utilizing differential isotope labeling and reversed phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) for structural characterization and relative quantification of intact neutral glycolipids. In this approach, each individual sample and a pooled aliquot of each sample were permethylated using 12CH3I and 13CH3I, respectively, with the latter one serving as internal reference standard. The individual 12C-permethylated samples were spiked with equal amounts of the 13C-permethylated pooled sample and analyzed by RPLC-MS/MS. Permethylation not only increased the ionization efficiency of glycolipids but also facilitated structural characterization of both moieties. The ratio of the peak areas between the 12C- and 13C-labeled glycolipids served as surrogate measure of their relative concentrations. The coefficient of variation of the method was <6% measured across four representative glycolipids in five different ratios and triplicate experiments, after correction of natural isotopic distribution. When analyzing the low abundant glycolipids in total lipid extract, permethylation can dramatically reduce the analytical background by depleting most of the highly abundant ester-linked lipids. Application to conduritol B epoxide-, a β-glucocerebrosidase inhibitor, treated RAW 264.7 cells demonstrated the practical utility of this method in profiling the temporal accumulation of different glycolipids. Overall, this methodology offers a practical LC-MS based identification and quantification strategy to advance intact glycolipids analysis in mammalian cells.
Collapse
Affiliation(s)
- Rodell C Barrientos
- Department of Chemistry and Biochemistry , The University of North Carolina , Greensboro , North Carolina 27412 , United States.,UNCG Center for Translational Biomedical Research , NC Research Campus , Kannapolis , North Carolina 28081 , United States
| | - Qibin Zhang
- Department of Chemistry and Biochemistry , The University of North Carolina , Greensboro , North Carolina 27412 , United States.,UNCG Center for Translational Biomedical Research , NC Research Campus , Kannapolis , North Carolina 28081 , United States
| |
Collapse
|
49
|
Zunke F, Mazzulli JR. Modeling neuronopathic storage diseases with patient-derived culture systems. Neurobiol Dis 2019; 127:147-162. [PMID: 30790616 PMCID: PMC6588474 DOI: 10.1016/j.nbd.2019.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 02/08/2023] Open
Abstract
Lysosomes are organelles involved in the degradation and recycling of macromolecules, and play a critical role in sensing metabolic information in the cell. A class of rare metabolic diseases called lysosomal storage disorders (LSD) are characterized by lysosomal dysfunction and the accumulation of macromolecular substrates. The central nervous system appears to be particularly vulnerable to lysosomal dysfunction, since many LSDs are characterized by severe, widespread neurodegeneration with pediatric onset. Furthermore, variants in lysosomal genes are strongly associated with some common neurodegenerative disorders such as Parkinson's disease (PD). To better understand disease pathology and develop novel treatment strategies, it is critical to study the fundamental molecular disease mechanisms in the affected cell types that harbor endogenously expressed mutations. The discovery of methods for reprogramming of patient-derived somatic cells into induced pluripotent stem cells (iPSCs), and their differentiation into distinct neuronal and glial cell types, have provided novel opportunities to study mechanisms of lysosomal dysfunction within the relevant, vulnerable cell types. These models also expand our ability to develop and test novel therapeutic targets. We discuss recently developed methods for iPSC differentiation into distinct neuronal and glial cell types, while addressing the need for meticulous experimental techniques and parameters that are essential to accurately identify inherent cellular pathologies. iPSC models for neuronopathic LSDs and their relationship to sporadic age-related neurodegeneration are also discussed. These models should facilitate the discovery and development of personalized therapies in the future.
Collapse
Affiliation(s)
- Friederike Zunke
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel 24118, Germany.
| | - Joseph R Mazzulli
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
50
|
Calvano CD, Ventura G, Sardanelli AM, Losito I, Palmisano F, Cataldi TRI. Identification of neutral and acidic glycosphingolipids in the human dermal fibroblasts. Anal Biochem 2019; 581:113348. [PMID: 31251925 DOI: 10.1016/j.ab.2019.113348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 11/25/2022]
Abstract
Skin fibroblasts are recognized as a valuable model of primary human cells able of mirroring the chronological and biological aging. Here, a lipidomic study of glycosphingolipids (GSL) occurring in the easily accessible human dermal fibroblasts (HDF) is presented. Reversed-phase liquid chromatography with negative electrospray ionization (RPLC-ESI) coupled to either orbitrap or linear ion-trap multiple-stage mass spectrometry was applied to characterize GSL in commercially adult and neonatal primary human fibroblast cells and in skin samples taken from an adult volunteer. Collision-induced dissociation in negative ion mode allowed us to get information on the monosaccharide number and ceramide composition, whereas tandem mass spectra on the ceramide anion was useful to identify the sphingoid base. Nearly sixty endogenous GSL species were successfully recognized, namely 33 hexosyl-ceramides (i.e., HexCer, Hex2Cer and Hex3Cer) and 24 gangliosides as monosialic acid GM1, GM2 and GM3, along with 5 globosides Gb4. An average content of GSLs was attained and the most representative GSL in skin fibroblasts were Hex3Cer, also known as Gb3Cer, followed by Gb4, HexCer and Hex2Cer , while gangliosides were barely quantifiable. The most abundant GSLs in the examined cell lines share the same ceramide base (i.e. d18:1) and the relative content was d18:1/24:1 > d18:1/24:0 > d18:1/16:0 > d18:1/22:0.
Collapse
Affiliation(s)
- Cosima Damiana Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy.
| | - Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Anna Maria Sardanelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Italy; Department of Medicine, Campus Bio-Medico University of Rome, Italy
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Francesco Palmisano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy.
| |
Collapse
|