1
|
Oh DK, Lee TE, Lee J, Shin KC, Park JB. Biocatalytic oxyfunctionalization of unsaturated fatty acids to oxygenated chemicals via hydroxy fatty acids. Biotechnol Adv 2025; 79:108510. [PMID: 39732442 DOI: 10.1016/j.biotechadv.2024.108510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
The selective oxyfunctionalization of unsaturated fatty acids is difficult in chemical reactions, whereas regio- and stereoselective oxyfunctionalization is often performed in biocatalytic synthesis. Fatty acid oxygenases, including hydratases, lipoxygenases, dioxygenases, diol synthases, cytochrome P450 monooxygenases, peroxygenases, and 12-hydroxylases, are used to convert C16 and C18 unsaturated fatty acids to diverse regio- and stereoselective mono-, di-, and trihydroxy fatty acids via selective oxyfunctionalization. The formed hydroxy fatty acids or hydroperoxy fatty acids are metabolized to industrially important oxygenated chemicals such as lactones, green leaf volatiles, and bioplastic monomers, including ω-hydroxy fatty acids, α,ω-dicarboxylic acids, and fatty alcohols, by biocatalysts. For increased oxyfunctionalization of unsaturated fatty acids, enzyme engineering, functional and balanced expression in recombinant cells, selection of suitable catalyst types, and reaction engineering have been suggested. This review describes biocatalysts involved in the oxyfunctionalization of unsaturated fatty acids and the production of hydroxy fatty acids and oxygenated chemicals.
Collapse
Affiliation(s)
- Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul 05029, Republic of Korea.
| | - Tae-Eui Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul 05029, Republic of Korea
| | - Jin Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul 05029, Republic of Korea
| | - Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Hankuk University of Foreign, Mohyein-Eup, Cheoin-Gu, Yongin-Si, Gyeonggi-do 17035, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-Gu, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
Pseudomonas aeruginosa Secretes the Oxylipin Autoinducer Synthases OdsA and OdsB via the Xcp Type 2 Secretion System. J Bacteriol 2022; 204:e0011422. [PMID: 35658521 DOI: 10.1128/jb.00114-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oxylipin-dependent quorum-sensing system (ODS) of Pseudomonas aeruginosa relies on the production and sensing of two extracellular oxylipins, 10S-hydroxy-(8E)-octadecenoic acid (10-HOME) and 7S,10S-dihydroxy-(8E)-octadecenoic acid (7,10-DiHOME). Here, we implemented a genetic screen of P. aeruginosa strain PAO1 aimed to identify genes required for 10-HOME and 7,10-DiHOME production. Among the 14 genes identified, four encoded previously known components of the ODS and 10 encoded parts of the Xcp type II secretion system (T2SS). We subsequently created a clean xcpQ deletion mutant, which encodes the necessary outer membrane component of Xcp, and found it recapitulated the impaired functionality of the T2SS transposon mutants. Further studies showed that the ΔxcpQ mutant was unable to secrete the oxylipin synthase enzymes across the outer membrane. Specifically, immunoblotting for OdsA, which is responsible for the generation of 10-HOME from oleic acid, detected the enzyme in supernatants from wild-type PAO1 but not ΔxcpQ cultures. Likewise, chromatography of supernatants found that 10-HOME was not in supernatants collected from the ΔxcpQ mutant. Accordingly, diol synthase activity was increased in the periplasm of ΔxcpQ mutant consistent with a stoppage in its transport. Importantly, after exposure of the ΔxcpQ mutant to exogenous 10-HOME and 7,10-DiHOME, the ODS effector genes become active; thus, the sensing component of the ODS does not involve the T2SS. Finally, we observed that Xcp contributed to robust in vitro and in vivo biofilm formation in oleic acid availability- and ODS-dependent manner. Thus, T2SS-mediated transport of the oxylipin synthase enzymes to outside the bacterial cell is required for ODS functionality. IMPORTANCE We previously showed that the ODS of P. aeruginosa produces and responds to oxylipins derived from host oleic acid by enhancing biofilm formation and virulence. Here, we developed a genetic screen strategy to explore the molecular basis for oxylipins synthesis and detection. Unexpectedly, we found that the ODS autoinducer synthases cross the outer membrane using the Xcp type 2 secretion system (T2SS) of P. aeruginosa, and so the biosynthesis of oxylipins occurs extracellularly. T2SS promoted biofilm formation in the presence of oleic acid as a result of ODS activation. Our results identify two new T2SS secreted proteins in P. aeruginosa and reveal a new way by which this important opportunistic pathogen interacts with the host environment.
Collapse
|
3
|
Characterization of the enzymes involved in the diol synthase metabolic pathway in Pseudomonas aeruginosa. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Jeong JW, Singhvi M, Kim BS. Improved Extracellular Enzyme-mediated Production of 7,10-dihydroxy-8(E)-octadecenoic Acid by Pseudomonas aeruginosa. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Lee YJ, Moon JS, Kim IH, Kim HR. Production of 7,10,12-trihydroxy-8(E)-octadecenoic acid from ricinoleic acid by Pseudomonas aeruginosa KNU-2B. Biotechnol Lett 2020; 42:1547-1558. [DOI: 10.1007/s10529-020-02883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
|
6
|
Zhang W, Lee JH, Younes SHH, Tonin F, Hagedoorn PL, Pichler H, Baeg Y, Park JB, Kourist R, Hollmann F. Photobiocatalytic synthesis of chiral secondary fatty alcohols from renewable unsaturated fatty acids. Nat Commun 2020; 11:2258. [PMID: 32382158 PMCID: PMC7206127 DOI: 10.1038/s41467-020-16099-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/09/2020] [Indexed: 12/03/2022] Open
Abstract
En route to a bio-based chemical industry, the conversion of fatty acids into building blocks is of particular interest. Enzymatic routes, occurring under mild conditions and excelling by intrinsic selectivity, are particularly attractive. Here we report photoenzymatic cascade reactions to transform unsaturated fatty acids into enantiomerically pure secondary fatty alcohols. In a first step the C=C-double bond is stereoselectively hydrated using oleate hydratases from Lactobacillus reuteri or Stenotrophomonas maltophilia. Also, dihydroxylation mediated by the 5,8-diol synthase from Aspergillus nidulans is demonstrated. The second step comprises decarboxylation of the intermediate hydroxy acids by the photoactivated decarboxylase from Chlorella variabilis NC64A. A broad range of (poly)unsaturated fatty acids can be transformed into enantiomerically pure fatty alcohols in a simple one-pot approach. Natural fatty acids are important starting materials in bio-based chemical production. Here, the authors developed a two-enzyme cascade to produce enantiomerically pure secondary fatty alcohols from natural unsaturated fatty acids in one pot.
Collapse
Affiliation(s)
- Wuyuan Zhang
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.,School of Chemical Engineering and Technology, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Jeong-Hoo Lee
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sabry H H Younes
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.,Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Fabio Tonin
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Harald Pichler
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Yoonjin Baeg
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science & Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria.
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
7
|
Scala V, Reverberi M, Salustri M, Pucci N, Modesti V, Lucchesi S, Loreti S. Lipid Profile of Xylella fastidiosa Subsp. pauca Associated With the Olive Quick Decline Syndrome. Front Microbiol 2018; 9:1839. [PMID: 30154768 PMCID: PMC6102392 DOI: 10.3389/fmicb.2018.01839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Lipids, components of the plasma and intracellular membranes as well as of droplets, provide different biological functions related to energy, carbon storage, and stress responses. Bacterial species display diverse membrane composition that changes in response to the different environmental conditions. During plant-pathogen interactions, lipids might have roles in several aspects such as recognition, signal transduction, and downstream responses. Among lipid entities, free fatty acids (FFAs) and their oxidized form, the oxylipins, represent an important class of signaling molecules in host-pathogen perception, especially related to virulence and defense. In bacteria, FFAs (e.g., diffusible signaling factors) and oxylipins have a crucial role in modulating motility, biofilm formation, and virulence. In this study, we explore by LC-TOF and LC-MS/MS the lipid composition of Xylella fastidiosa subsp. pauca strain De Donno in pure culture; some specific lipids (e.g., ornithine lipids and the oxylipin 7,10-diHOME), characteristic of other pathogenic bacteria, were revealed. Nicotiana tabacum was used for testing the ability of this pathogen in producing such lipids in the host. Different lipid compounds present a clear distribution pattern within the infected plant tissues compared to the uninfected ones.
Collapse
Affiliation(s)
- Valeria Scala
- Centro di Ricerca Difesa e Certificazione, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| | - Massimo Reverberi
- Dipartimento di Biologia Ambientale, Sapienza University of Rome, Rome, Italy
| | - Manuel Salustri
- Dipartimento di Biologia Ambientale, Sapienza University of Rome, Rome, Italy
| | - Nicoletta Pucci
- Centro di Ricerca Difesa e Certificazione, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| | - Vanessa Modesti
- Centro di Ricerca Difesa e Certificazione, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| | - Simone Lucchesi
- Centro di Ricerca Difesa e Certificazione, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| | - Stefania Loreti
- Centro di Ricerca Difesa e Certificazione, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| |
Collapse
|
8
|
Martínez E, Campos-Gómez J. Oxylipins produced by Pseudomonas aeruginosa promote biofilm formation and virulence. Nat Commun 2016; 7:13823. [PMID: 27929111 PMCID: PMC5155153 DOI: 10.1038/ncomms13823] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/02/2016] [Indexed: 01/14/2023] Open
Abstract
The oxygenation of unsaturated fatty acids by dioxygenases occurs in all kingdoms of life and produces physiologically important lipids called oxylipins. The biological roles of oxylipins have been extensively studied in animals, plants, algae and fungi, but remain largely unidentified in prokaryotes. The bacterium Pseudomonas aeruginosa displays a diol synthase activity that transforms several monounsaturated fatty acids into mono- and di-hydroxylated derivatives. Here we show that oxylipins derived from this activity inhibit flagellum-driven motility and upregulate type IV pilus-dependent twitching motility of P. aeruginosa. Consequently, these oxylipins promote bacterial organization in microcolonies, increasing the ability of P. aeruginosa to form biofilms in vitro and in vivo (in Drosophila flies). We also demonstrate that oxylipins produced by P. aeruginosa promote virulence in Drosophila flies and lettuce. Our study thus uncovers a role for prokaryotic oxylipins in the physiology and pathogenicity of bacteria.
Collapse
Affiliation(s)
- Eriel Martínez
- Southern Research, Department of Infectious Diseases, Drug Discovery Division, 2000 Ninth Ave South, Birmingham, Alabama 35205, USA
| | - Javier Campos-Gómez
- Southern Research, Department of Infectious Diseases, Drug Discovery Division, 2000 Ninth Ave South, Birmingham, Alabama 35205, USA
| |
Collapse
|
9
|
Seo MJ, Kang WR, Shin KC, Oh DK. Production of 7,8-Dihydroxy Unsaturated Fatty Acids from Plant Oils by Whole Recombinant Cells Expressing 7,8-Linoleate Diol Synthase from Glomerella cingulata. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8555-8562. [PMID: 27779383 DOI: 10.1021/acs.jafc.6b03497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The reaction conditions for the production of 7S,8S-dihydroxy-9,12(Z,Z)-octadecadienoic acid from linoleic acid by recombinant Escherichia coli expressing 7,8-linoleate diol synthase from Glomerella cingulata were optimized using response surface methodology. The optimal reaction conditions were pH 7.0, 18.6 °C, 10.8% (v/v) dimethyl sulfoxide, 44.9 g/L cells, and 14.3 g/L linoleic acid, with agitation at 256 rpm. Under these conditions, recombinant cells produced 7,8-dihydroxy unsaturated fatty acids in the range of 7.0-9.8 g/L from 14.3 g/L linoleic acid, 14.3 g/L oleic acid, and plant oil hydrolysates such as waste oil and olive oil containing 14.3 g/L linoleic acid or oleic acid. To the best of the authors' knowledge, this is the first report on the biotechnological production of 7,8-dihydroxy unsaturated fatty acids.
Collapse
Affiliation(s)
- Min-Ju Seo
- Department of Bioscience and Biotechnology, Konkuk University , Seoul 05029, Republic of Korea
| | - Woo-Ri Kang
- Department of Bioscience and Biotechnology, Konkuk University , Seoul 05029, Republic of Korea
| | - Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Konkuk University , Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University , Seoul 05029, Republic of Korea
| |
Collapse
|
10
|
Seo MJ, Shin KC, An JU, Kang WR, Ko YJ, Oh DK. Characterization of a recombinant 7,8-linoleate diol synthase from Glomerella cingulate. Appl Microbiol Biotechnol 2015; 100:3087-99. [DOI: 10.1007/s00253-015-7132-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/25/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
|
11
|
Estupiñán M, Álvarez-García D, Barril X, Diaz P, Manresa A. In Silico/In Vivo Insights into the Functional and Evolutionary Pathway of Pseudomonas aeruginosa Oleate-Diol Synthase. Discovery of a New Bacterial Di-Heme Cytochrome C Peroxidase Subfamily. PLoS One 2015; 10:e0131462. [PMID: 26154497 PMCID: PMC4496055 DOI: 10.1371/journal.pone.0131462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/02/2015] [Indexed: 12/14/2022] Open
Abstract
As previously reported, P. aeruginosa genes PA2077 and PA2078 code for 10S-DOX (10S-Dioxygenase) and 7,10-DS (7,10-Diol Synthase) enzymes involved in long-chain fatty acid oxygenation through the recently described oleate-diol synthase pathway. Analysis of the amino acid sequence of both enzymes revealed the presence of two heme-binding motifs (CXXCH) on each protein. Phylogenetic analysis showed the relation of both proteins to bacterial di-heme cytochrome c peroxidases (Ccps), similar to Xanthomonas sp. 35Y rubber oxidase RoxA. Structural homology modelling of PA2077 and PA2078 was achieved using RoxA (pdb 4b2n) as a template. From the 3D model obtained, presence of significant amino acid variations in the predicted heme-environment was found. Moreover, the presence of palindromic repeats located in enzyme-coding regions, acting as protein evolution elements, is reported here for the first time in P. aeruginosa genome. These observations and the constructed phylogenetic tree of the two proteins, allow the proposal of an evolutionary pathway for P. aeruginosa oleate-diol synthase operon. Taking together the in silico and in vivo results obtained we conclude that enzymes PA2077 and PA2078 are the first described members of a new subfamily of bacterial peroxidases, designated as Fatty acid-di-heme Cytochrome cperoxidases (FadCcp).
Collapse
Affiliation(s)
- Mónica Estupiñán
- Unitat de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, University of Barcelona, Barcelona, Spain
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Daniel Álvarez-García
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), PCB-Edifici Hèlix Baldiri Reixac, Barcelona, Spain
| | - Xavier Barril
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), PCB-Edifici Hèlix Baldiri Reixac, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys, Barcelona, Spain
| | - Pilar Diaz
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- * E-mail:
| | - Angeles Manresa
- Unitat de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, University of Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
5,8-Dihydroxy-9,12,15(Z,Z,Z)-Octadecatrienoic Acid Production by Recombinant Cells Expressing Aspergillus nidulans Diol Synthase. J AM OIL CHEM SOC 2014. [DOI: 10.1007/s11746-014-2581-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|