1
|
Xiao L, Li J, Liao J, Wu M, Lu X, Li J, Zeng Y. BCL2A1‑ and G0S2‑driven neutrophil extracellular traps: A protective mechanism linking preeclampsia to reduced breast cancer risk. Oncol Rep 2025; 53:64. [PMID: 40242964 DOI: 10.3892/or.2025.8897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Preeclampsia has been associated with a reduced risk of breast cancer (BC), but the mechanisms underlying this relationship remain unclear. It has been suggested that neutrophil extracellular traps (NETs), which are released upon neutrophil activation, play a key role in both preeclampsia and BC. To investigate this link, the single‑cell RNA sequencing dataset GSE173193 was analyzed and upregulated genes BCL2A1 and G0/G1 switch gene 2 (G0S2) were identified in neutrophils from preeclamptic placentas. These findings were validated using reverse transcription‑quantitative PCR and western blotting. Combined analyses of preeclampsia and BC tissues, from Gene Expression Omnibus (GSE24129) and The Cancer Genome Atlas databases respectively, identified 2,040 upregulated differentially expressed genes, including BCL2A1 and G0S2. Furthermore, these genes showed clinical relevance to BC, as demonstrated by Receiver Operating Characteristic curve, survival analyses and weighted gene co‑expression network analysis. Functional experiments revealed that overexpression of BCL2A1 and G0S2 increased NET release and inhibited BC cell proliferation, invasion and migration. The present study provides novel insights into the shared molecular pathways of preeclampsia and BC, emphasizing NETs as a potential protective mechanism as increased NET production in preeclampsia may contribute to a reduced BC risk by influencing tumor progression and offer avenues for further research into therapeutic interventions.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jing Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jiahao Liao
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Min Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiujing Lu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jiehua Li
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yachang Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
2
|
Zakyrjanova GF, Matigorova VA, Kuznetsova EA, Dmitrieva SA, Tyapkina OV, Tsentsevitsky AN, Andreyanova SN, Odnoshivkina JG, Shigapova RR, Mukhamedshina YO, Gogolev YV, Petrov AM. Key genes and processes affected by atorvastatin treatment in mouse diaphragm muscle. Arch Toxicol 2025:10.1007/s00204-025-04056-6. [PMID: 40234311 DOI: 10.1007/s00204-025-04056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
Statins are one of the top prescribed medications and are used for preventing or treating cardiovascular diseases. Myalgia, muscle fatigue, weakness, and inflammation are the most common side effects of these drugs collectively named statin-associated muscle symptoms (SAMS). The mechanisms underlying SAMS remain unclear. Given that statins inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme of mevalonate pathway, responsible for synthesis of cholesterol and other vital molecules, SAMS may be mediated by multiple reasons. Herein, using unbiased whole transcriptome sequencing, we identified statin-affected processes and then assessed them using fluorescent, biochemical, and histological approaches in the mouse diaphragm, the main respiratory muscle. Mice were orally treated for 1 month with atorvastatin, the most prescribed statin, at clinically relevant dose. We found that atorvastatin caused downregulation of genes encoding proteins required for oxidative phosphorylation and anabolic processes, whereas genes of proteins engaged inflammation and muscle atrophy were mainly up-regulated. Furthermore, alterations in gene expression pattern suggest oxidative stress and abnormal lipid accumulation. This transcriptome signature correlated to a decrease in mitochondrial polarization and protein synthesis capacity, as well as an increase in lipid peroxidation and reactive oxygen species production. In addition, atorvastatin treatment caused lipid raft disruption, phospholipidosis, myelin de-compactization, and appearance of greater heterogeneity of muscle fiber cross-section diameter. Thus, atorvastatin treatment can negatively affect diaphragm muscle via oxidative stress accompanied by decrease in mitochondrial activity, protein synthesis, and stability of plasma membrane. As a part of compensatory response can serve enhanced activity of superoxide dismutase and cholesterol uptake capacity.
Collapse
Affiliation(s)
- Guzel F Zakyrjanova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, 119234, Russia
| | - Valeriya A Matigorova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Eva A Kuznetsova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Svetlana A Dmitrieva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Oksana V Tyapkina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Andrei N Tsentsevitsky
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Sofya N Andreyanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Julia G Odnoshivkina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
- Department of Normal Physiology, Institute of Neuroscience, Kazan State Medical University, 49 Butlerova Street, Kazan, 420012, Russia
| | - Rezeda R Shigapova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Yana O Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Yuri V Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Alexey M Petrov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia.
- Department of Normal Physiology, Institute of Neuroscience, Kazan State Medical University, 49 Butlerova Street, Kazan, 420012, Russia.
| |
Collapse
|
3
|
Yin Y, Pu L, Yang X, Zhu Y, Chen F, Wu C, Lei H, Wu W. G0S2 modulates normal vitreous-induced proliferation in endothelial cells. Commun Biol 2025; 8:560. [PMID: 40185884 PMCID: PMC11971441 DOI: 10.1038/s42003-025-07955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
Abnormal blood vessel growth in the eye is a leading cause of vision loss globally, particularly in diseases like diabetic retinopathy where the vitreous plays a crucial but poorly understood role in disease progression. While we know the vitreous can stimulate blood vessel growth, the specific molecular mechanisms remain unclear. Here we show that a protein called G0S2 (G0/G1 switch gene 2) serves as a key regulator of blood vessel growth in response to normal vitreous. Through comprehensive gene analysis, we discovered that G0S2 levels increase significantly when blood vessel cells are exposed to normal vitreous. The importance of G0S2 is highlighted by our finding that uveal melanoma patients with higher G0S2 levels had poorer survival rates. When we removed G0S2 from blood vessel cells, they no longer responded to vitreous stimulation, confirming its critical role. Notably, we identified an existing drug that can target G0S2, potentially offering a new therapeutic approach. This discovery of G0S2's role and its potential therapeutic targeting opens new avenues for treating eye diseases characterized by abnormal blood vessel growth, while also providing a valuable biomarker for predicting disease progression in eye cancer patients.
Collapse
Affiliation(s)
- Yiwei Yin
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, China
| | - Li Pu
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Department of Ophthalmology, Guiyang Aier Eye Hospital, Guiyang, China
| | - Xi Yang
- College of Computer Science and Technology, National University of Defense Technology, Changsha, Hunan, PR China
- National Key Laboratory of Parallel and Distributed Computing, National University of Defense Technology, Changsha, Hunan, PR China
| | - Ying Zhu
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Fang Chen
- Huan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Chenkun Wu
- College of Computer Science and Technology, National University of Defense Technology, Changsha, Hunan, PR China
- State Key Laboratory of High-Performance Computing, National University of Defense Technology, Changsha, Hunan, PR China
| | - Hetian Lei
- Department of Ophthalmology The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenyi Wu
- Department of Ophthalmology, Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
4
|
Hari A, AbdulHameed MDM, Balik-Meisner MR, Mav D, Phadke DP, Scholl EH, Shah RR, Casey W, Auerbach SS, Wallqvist A, Pannala VR. Exposure to PFAS chemicals induces sex-dependent alterations in key rate-limiting steps of lipid metabolism in liver steatosis. FRONTIERS IN TOXICOLOGY 2024; 6:1390196. [PMID: 38903859 PMCID: PMC11188372 DOI: 10.3389/ftox.2024.1390196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024] Open
Abstract
Toxicants with the potential to bioaccumulate in humans and animals have long been a cause for concern, particularly due to their association with multiple diseases and organ injuries. Per- and polyfluoro alkyl substances (PFAS) and polycyclic aromatic hydrocarbons (PAH) are two such classes of chemicals that bioaccumulate and have been associated with steatosis in the liver. Although PFAS and PAH are classified as chemicals of concern, their molecular mechanisms of toxicity remain to be explored in detail. In this study, we aimed to identify potential mechanisms by which an acute exposure to PFAS and PAH chemicals can induce lipid accumulation and whether the responses depend on chemical class, dose, and sex. To this end, we analyzed mechanisms beginning with the binding of the chemical to a molecular initiating event (MIE) and the consequent transcriptomic alterations. We collated potential MIEs using predictions from our previously developed ToxProfiler tool and from published steatosis adverse outcome pathways. Most of the MIEs are transcription factors, and we collected their target genes by mining the TRRUST database. To analyze the effects of PFAS and PAH on the steatosis mechanisms, we performed a computational MIE-target gene analysis on high-throughput transcriptomic measurements of liver tissue from male and female rats exposed to either a PFAS or PAH. The results showed peroxisome proliferator-activated receptor (PPAR)-α targets to be the most dysregulated, with most of the genes being upregulated. Furthermore, PFAS exposure disrupted several lipid metabolism genes, including upregulation of fatty acid oxidation genes (Acadm, Acox1, Cpt2, Cyp4a1-3) and downregulation of lipid transport genes (Apoa1, Apoa5, Pltp). We also identified multiple genes with sex-specific behavior. Notably, the rate-limiting genes of gluconeogenesis (Pck1) and bile acid synthesis (Cyp7a1) were specifically downregulated in male rats compared to female rats, while the rate-limiting gene of lipid synthesis (Scd) showed a PFAS-specific upregulation. The results suggest that the PPAR signaling pathway plays a major role in PFAS-induced lipid accumulation in rats. Together, these results show that PFAS exposure induces a sex-specific multi-factorial mechanism involving rate-limiting genes of gluconeogenesis and bile acid synthesis that could lead to activation of an adverse outcome pathway for steatosis.
Collapse
Affiliation(s)
- Archana Hari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Mohamed Diwan M. AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | | | - Deepak Mav
- Sciome LLC, Research Triangle Park, NC, United States
| | | | | | | | - Warren Casey
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Scott S. Auerbach
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
| | - Venkat R. Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| |
Collapse
|
5
|
Kohlmayr JM, Grabner GF, Nusser A, Höll A, Manojlović V, Halwachs B, Masser S, Jany-Luig E, Engelke H, Zimmermann R, Stelzl U. Mutational scanning pinpoints distinct binding sites of key ATGL regulators in lipolysis. Nat Commun 2024; 15:2516. [PMID: 38514628 PMCID: PMC10958042 DOI: 10.1038/s41467-024-46937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
ATGL is a key enzyme in intracellular lipolysis and plays an important role in metabolic and cardiovascular diseases. ATGL is tightly regulated by a known set of protein-protein interaction partners with activating or inhibiting functions in the control of lipolysis. Here, we use deep mutational protein interaction perturbation scanning and generate comprehensive profiles of single amino acid variants that affect the interactions of ATGL with its regulatory partners: CGI-58, G0S2, PLIN1, PLIN5 and CIDEC. Twenty-three ATGL amino acid variants yield a specific interaction perturbation pattern when validated in co-immunoprecipitation experiments in mammalian cells. We identify and characterize eleven highly selective ATGL switch mutations which affect the interaction of one of the five partners without affecting the others. Switch mutations thus provide distinct interaction determinants for ATGL's key regulatory proteins at an amino acid resolution. When we test triglyceride hydrolase activity in vitro and lipolysis in cells, the activity patterns of the ATGL switch variants trace to their protein interaction profile. In the context of structural data, the integration of variant binding and activity profiles provides insights into the regulation of lipolysis and the impact of mutations in human disease.
Collapse
Affiliation(s)
- Johanna M Kohlmayr
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Gernot F Grabner
- Institute of Molecular Biosciences, Biochemistry, University of Graz, Graz, Austria
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Anna Nusser
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Anna Höll
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Verina Manojlović
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Bettina Halwachs
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Sarah Masser
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Evelyne Jany-Luig
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Hanna Engelke
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, Biochemistry, University of Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria.
- Field of Excellence BioHealth - University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
6
|
Corne A, Adolphe F, Estaquier J, Gaumer S, Corsi JM. ATF4 Signaling in HIV-1 Infection: Viral Subversion of a Stress Response Transcription Factor. BIOLOGY 2024; 13:146. [PMID: 38534416 PMCID: PMC10968437 DOI: 10.3390/biology13030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Cellular integrated stress response (ISR), the mitochondrial unfolded protein response (UPRmt), and IFN signaling are associated with viral infections. Activating transcription factor 4 (ATF4) plays a pivotal role in these pathways and controls the expression of many genes involved in redox processes, amino acid metabolism, protein misfolding, autophagy, and apoptosis. The precise role of ATF4 during viral infection is unclear and depends on cell hosts, viral agents, and models. Furthermore, ATF4 signaling can be hijacked by pathogens to favor viral infection and replication. In this review, we summarize the ATF4-mediated signaling pathways in response to viral infections, focusing on human immunodeficiency virus 1 (HIV-1). We examine the consequences of ATF4 activation for HIV-1 replication and reactivation. The role of ATF4 in autophagy and apoptosis is explored as in the context of HIV-1 infection programmed cell deaths contribute to the depletion of CD4 T cells. Furthermore, ATF4 can also participate in the establishment of innate and adaptive immunity that is essential for the host to control viral infections. We finally discuss the putative role of the ATF4 paralogue, named ATF5, in HIV-1 infection. This review underlines the role of ATF4 at the crossroads of multiple processes reflecting host-pathogen interactions.
Collapse
Affiliation(s)
- Adrien Corne
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Florine Adolphe
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jérôme Estaquier
- CHU de Québec Research Center, Laval University, Quebec City, QC G1V 4G2, Canada
- INSERM U1124, Université Paris Cité, 75006 Paris, France
| | - Sébastien Gaumer
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| | - Jean-Marc Corsi
- Laboratoire de Génétique et Biologie Cellulaire, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, 78000 Versailles, France; (A.C.); (F.A.); (S.G.)
| |
Collapse
|
7
|
Wang Y, Guo D, Winkler R, Lei X, Wang X, Messina J, Luo J, Lu H. Development of novel liver-targeting glucocorticoid prodrugs. MEDICINE IN DRUG DISCOVERY 2024; 21:100172. [PMID: 38390434 PMCID: PMC10883687 DOI: 10.1016/j.medidd.2023.100172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Background Glucocorticoids (GCs) are widely used in the treatment of inflammatory liver diseases and sepsis, but GC's various side effects on extrahepatic tissues limit their clinical benefits. Liver-targeting GC therapy may have multiple advantages over systemic GC therapy. The purpose of this study was to develop novel liver-targeting GC prodrugs as improved treatment for inflammatory liver diseases and sepsis. Methods A hydrophilic linker or an ultra-hydrophilic zwitterionic linker carboxylic betaine (CB) was used to bridge cholic acid (CA) and dexamethasone (DEX) to generate transporter-dependent liver-targeting GC prodrugs CA-DEX and the highly hydrophilic CA-CB-DEX. The efficacy of liver-targeting DEX prodrugs and DEX were determined in primary human hepatocytes (PHH), macrophages, human whole blood, and/or mice with sepsis induced by cecal ligation and puncture. Results CA-DEX was moderately water soluble, whereas CA-CB-DEX was highly water soluble. CA-CB-DEX and CA-DEX displayed highly transporter-dependent activities in reporter assays. Data mining found marked dysregulation of many GR-target genes important for lipid catabolism, cytoprotection, and inflammation in patients with severe alcoholic hepatitis. These key GR-target genes were similarly and rapidly (within 6 h) induced or down-regulated by CA-CB-DEX and DEX in PHH. CA-CB-DEX had much weaker inhibitory effects than DEX on endotoxin-induced cytokines in mouse macrophages and human whole blood. In contrast, CA-CB-DEX exerted more potent anti-inflammatory effects than DEX in livers of septic mice. Conclusions CA-CB-DEX demonstrated good hepatocyte-selectivity in vitro and better anti-inflammatory effects in vivo. Further test of CA-CB-DEX as a novel liver-targeting GC prodrug for inflammatory liver diseases and sepsis is warranted.
Collapse
Affiliation(s)
- Yazheng Wang
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Dandan Guo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Rebecca Winkler
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiaohong Lei
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiaojing Wang
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Jennifer Messina
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| |
Collapse
|
8
|
Cremer J, Brohée L, Dupont L, Lefevre C, Peiffer R, Saarinen AM, Peulen O, Bindels L, Liu J, Colige A, Deroanne CF. Acidosis-induced regulation of adipocyte G0S2 promotes crosstalk between adipocytes and breast cancer cells as well as tumor progression. Cancer Lett 2023:216306. [PMID: 37442366 DOI: 10.1016/j.canlet.2023.216306] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Bidirectional interactions between cancer cells and their microenvironment govern tumor progression. Among the stromal cells in this microenvironment, adipocytes have been reported to upregulate cancer cell migration and invasion by producing fatty acids. Conversely, cancer cells alter adipocyte phenotype notably via increased lipolysis. We aimed to identify the mechanisms through which cancer cells trigger adipocyte lipolysis and evaluate the functional consequences on cancer progression. Here, we show that cancer cell-induced acidification of the extracellular medium strongly promotes preadipocyte lipolysis through a mechanism that does not involve lipophagy but requires adipose triglyceride lipase (ATGL) activity. This increased lipolysis is triggered mainly by attenuation of the G0/G1 switch gene 2 (G0S2)-induced inhibition of ATGL. G0S2-mediated regulation in preadipocytes affects their communication with breast cancer cells, modifying the phenotype of the cancer cells and increasing their resistance to chemotherapeutic agents in vitro. Furthermore, we demonstrate that the adipocyte-specific overexpression of G0S2 impairs mammary tumor growth and lung metastasis formation in vivo. Our results highlight the importance of acidosis in cancer cell-adipocyte crosstalk and identify G0S2 as the main regulator of cancer-induced lipolysis, regulating tumor establishment and spreading.
Collapse
Affiliation(s)
- Julie Cremer
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Avenue Hippocrate 13, 4000, Liège, Belgium
| | - Laura Brohée
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Avenue Hippocrate 13, 4000, Liège, Belgium
| | - Laura Dupont
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Avenue Hippocrate 13, 4000, Liège, Belgium
| | - Camille Lefevre
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 73, B1.73.11, 1200, Brussels, Belgium
| | - Raphaël Peiffer
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Avenue Hippocrate 13, 4000, Liège, Belgium
| | - Alicia M Saarinen
- Department of Biochemistry and Molecular Biology, Mayo Clinic in Arizona Scottsdale, AZ, USA
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Avenue Hippocrate 13, 4000, Liège, Belgium
| | - Laure Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Avenue Mounier 73, B1.73.11, 1200, Brussels, Belgium
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Avenue Hippocrate 13, 4000, Liège, Belgium
| | - Christophe F Deroanne
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Avenue Hippocrate 13, 4000, Liège, Belgium.
| |
Collapse
|
9
|
Falkevall A, Mehlem A, Folestad E, Ning FC, Osorio-Conles Ó, Radmann R, de Hollanda A, Wright SD, Scotney P, Nash A, Eriksson U. Inhibition of VEGF-B signaling prevents non-alcoholic fatty liver disease development by targeting lipolysis in the white adipose tissue. J Hepatol 2023; 78:901-913. [PMID: 36717026 DOI: 10.1016/j.jhep.2023.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND & AIMS Hepatic steatosis is a hallmark of non-alcoholic fatty liver disease (NAFLD), a common comorbidity in type 2 diabetes mellitus (T2DM). The pathogenesis of NAFLD is complex and involves the crosstalk between the liver and the white adipose tissue (WAT). Vascular endothelial growth factor B (VEGF-B) has been shown to control tissue lipid accumulation by regulating the transport properties of the vasculature. The role of VEGF-B signaling and the contribution to hepatic steatosis and NAFLD in T2DM is currently not understood. METHODS C57BL/6 J mice treated with a neutralizing antibody against VEGF-B, or mice with adipocyte-specific overexpression or under-expression of VEGF-B (AdipoqCre+/VEGF-BTG/+ mice and AdipoqCre+/Vegfbfl/+mice) were subjected to a 6-month high-fat diet (HFD), or chow-diet, whereafter NAFLD development was assessed. VEGF-B expression was analysed in WAT biopsies from patients with obesity and NAFLD in a pre-existing clinical cohort (n = 24 patients with NAFLD and n = 24 without NAFLD) and correlated to clinicopathological features. RESULTS Pharmacological inhibition of VEGF-B signaling in diabetic mice reduced hepatic steatosis and NAFLD by blocking WAT lipolysis. Mechanistically we show, by using HFD-fed AdipoqCre+/VEGF-BTG/+ mice and HFD-fed AdipoqCre+/Vegfbfl/+mice, that inhibition of VEGF-B signaling targets lipolysis in adipocytes. Reducing VEGF-B signaling ameliorated NAFLD by decreasing WAT inflammation, resolving WAT insulin resistance, and lowering the activity of the hormone sensitive lipase. Analyses of human WAT biopsies from individuals with NAFLD provided evidence supporting the contribution of VEGF-B signaling to NAFLD development. VEGF-B expression levels in adipocytes from two WAT depots correlated with development of dysfunctional WAT and NAFLD in humans. CONCLUSIONS Taken together, our data from mouse models and humans suggest that VEGF-B antagonism may represent an approach to combat NAFLD by targeting hepatic steatosis through suppression of lipolysis. IMPACT AND IMPLICATIONS Non-alcoholic fatty liver disease (NAFLD) is a common comorbidity in type 2 diabetes mellitus (T2DM) and has a global prevalence of between 25-29%. There are currently no approved drugs for NAFLD, and given the scale of the ongoing diabetes epidemics, there is an urgent need to identify new treatment options. Our work suggests that VEGF-B antagonism may represent an approach to combat NAFLD by targeting hepatic steatosis through suppression of lipolysis. The neutralizing anti-VEGF-B antibody, which was used in this study, has already entered clinical trials for patients with diabetes. Therefore, we believe that our results are of great general interest to a broad audience, including patients and patient organizations, the medical community, academia, the life science industry and the public.
Collapse
Affiliation(s)
- Annelie Falkevall
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Annika Mehlem
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Erika Folestad
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Frank Chenfei Ning
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Óscar Osorio-Conles
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Rosa Radmann
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ana de Hollanda
- Obesity Unit. Clinical Hospital of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | | | | | - Andrew Nash
- CSL Innovation Pty Ltd, Parkville, Victoria, Australia
| | - Ulf Eriksson
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
10
|
Corbet AK, Bikorimana E, Boyd RI, Shokry D, Kries K, Gupta A, Paton A, Sun Z, Fazal Z, Freemantle SJ, Nelson ER, Spinella MJ, Singh R. G0S2 promotes antiestrogenic and pro-migratory responses in ER+ and ER- breast cancer cells. Transl Oncol 2023; 33:101676. [PMID: 37086619 DOI: 10.1016/j.tranon.2023.101676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023] Open
Abstract
G0/G1 switch gene 2 (G0S2) is known to inhibit lipolysis by inhibiting adipose triglyceride lipase (ATGL). In this report, we dissect the role of G0S2 in ER+ versus ER- breast cancer. Overexpression of G0S2 in ER- cells increased cell proliferation, while G0S2 overexpression in ER+ cells decreased cell proliferation. Transcriptome analysis revealed that G0S2 mediated distinct but overlapping transcriptional responses in ER- and ER+ cells. G0S2 reduced genes associated with an epithelial phenotype, especially in ER- cells, including CDH1, ELF3, STEAP4 and TACSTD2, suggesting promotion of the epithelial-mesenchymal transition (EMT). G0S2 also repressed estrogen signaling and estrogen receptor target gene signatures, especially in ER+ cells, including TFF1 and TFF3. In addition, G0S2 overexpression increased cell migration in ER- cells and increased estrogen deprivation sensitivity in ER+ cells. Interestingly, two genes downstream of ATGL in fat utilization and very important in steroid hormone biosynthesis, HMGCS1 and HMGCS2, were downregulated in G0S2 overexpressing ER+ cells. In addition, HSD17B11, a gene that converts estradiol to its less estrogenic derivative, estrone, was highly upregulated in G0S2 overexpressing ER+ cells, suggesting G0S2 overexpression has a negative effect on estradiol production and maintenance. High expression of G0S2 and HSD17B11 was associated with improved relapse-free survival in breast cancer patients while high expression of HMGSC1 was associated with poor survival. Finally, we deleted G0S2 in breast cancer-prone MMTV-PyMT mice. Our data indicates a complex role for G0S2 in breast cancer, dependent on ER status, that may be partially mediated by suppression of the estrogen signaling pathway.
Collapse
Affiliation(s)
- Andrea K Corbet
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Emmanuel Bikorimana
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Raya I Boyd
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Doha Shokry
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kelly Kries
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ayush Gupta
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Anneliese Paton
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhengyang Sun
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sarah J Freemantle
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana IL 61801, USA
| | - Michael J Spinella
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Carle Illinois College of Medicine University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana IL 61801, USA.
| | - Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
11
|
Wu D, Zhang Z, Sun W, Yan Y, Jing M, Ma S. The effect of G0S2 on insulin sensitivity: A proteomic analysis in a G0S2-overexpressed high-fat diet mouse model. Front Endocrinol (Lausanne) 2023; 14:1130350. [PMID: 37033250 PMCID: PMC10076770 DOI: 10.3389/fendo.2023.1130350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Previous research has shown a tight relationship between the G0/G1 switch gene 2 (G0S2) and metabolic diseases such as non-alcoholic fatty liver disease (NAFLD) and obesity and diabetes, and insulin resistance has been shown as the major risk factor for both NAFLD and T2DM. However, the mechanisms underlying the relationship between G0S2 and insulin resistance remain incompletely understood. Our study aimed to confirm the effect of G0S2 on insulin resistance, and determine whether the insulin resistance in mice fed a high-fat diet (HFD) results from G0S2 elevation. METHODS In this study, we extracted livers from mice that consumed HFD and received tail vein injections of AD-G0S2/Ad-LacZ, and performed a proteomics analysis. RESULTS Proteomic analysis revealed that there was a total of 125 differentially expressed proteins (DEPs) (56 increased and 69 decreased proteins) among the identified 3583 proteins. Functional enrichment analysis revealed that four insulin signaling pathway-associated proteins were significantly upregulated and five insulin signaling pathway -associated proteins were significantly downregulated. CONCLUSION These findings show that the DEPs, which were associated with insulin resistance, are generally consistent with enhanced insulin resistance in G0S2 overexpression mice. Collectively, this study demonstrates that G0S2 may be a potential target gene for the treatment of obesity, NAFLD, and diabetes.
Collapse
Affiliation(s)
- Dongming Wu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenyuan Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Wenxiu Sun
- Department of Nursing, Taishan Vocational College of Nursing, Taian, China
| | - Yong Yan
- Department of Transfusion Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mengzhe Jing
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Shizhan Ma
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| |
Collapse
|
12
|
Chen RB, Wang QY, Wang YY, Wang YD, Liu JH, Liao ZZ, Xiao XH. Feeding-induced hepatokines and crosstalk with multi-organ: A novel therapeutic target for Type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1094458. [PMID: 36936164 PMCID: PMC10020511 DOI: 10.3389/fendo.2023.1094458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Hyperglycemia, which can be caused by either an insulin deficit and/or insulin resistance, is the main symptom of Type 2 diabetes, a significant endocrine metabolic illness. Conventional medications, including insulin and oral antidiabetic medicines, can alleviate the signs of diabetes but cannot restore insulin release in a physiologically normal amount. The liver detects and reacts to shifts in the nutritional condition that occur under a wide variety of metabolic situations, making it an essential organ for maintaining energy homeostasis. It also performs a crucial function in glucolipid metabolism through the secretion of hepatokines. Emerging research shows that feeding induces hepatokines release, which regulates glucose and lipid metabolism. Notably, these feeding-induced hepatokines act on multiple organs to regulate glucolipotoxicity and thus influence the development of T2DM. In this review, we focus on describing how feeding-induced cross-talk between hepatokines, including Adropin, Manf, Leap2 and Pcsk9, and metabolic organs (e.g.brain, heart, pancreas, and adipose tissue) affects metabolic disorders, thus revealing a novel approach for both controlling and managing of Type 2 diabetes as a promising medication.
Collapse
Affiliation(s)
- Rong-Bin Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qi-Yu Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuan-Yuan Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ya-Di Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhe-Zhen Liao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin-Hua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
13
|
Kersten S. The impact of fasting on adipose tissue metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159262. [PMID: 36521736 DOI: 10.1016/j.bbalip.2022.159262] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/20/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Fasting and starvation were common occurrences during human evolution and accordingly have been an important environmental factor shaping human energy metabolism. Humans can tolerate fasting reasonably well through adaptative and well-orchestrated time-dependent changes in energy metabolism. Key features of the adaptive response to fasting are the breakdown of liver glycogen and muscle protein to produce glucose for the brain, as well as the gradual depletion of the fat stores, resulting in the release of glycerol and fatty acids into the bloodstream and the production of ketone bodies in the liver. In this paper, an overview is presented of our current understanding of the effects of fasting on adipose tissue metabolism. Fasting leads to reduced uptake of circulating triacylglycerols by adipocytes through inhibition of the activity of the rate-limiting enzyme lipoprotein lipase. In addition, fasting stimulates the degradation of stored triacylglycerols by activating the key enzyme adipose triglyceride lipase. The mechanisms underlying these events are discussed, with a special interest in insights gained from studies on humans. Furthermore, an overview is presented of the effects of fasting on other metabolic pathways in the adipose tissue, including fatty acid synthesis, glucose uptake, glyceroneogenesis, autophagy, and the endocrine function of adipose tissue.
Collapse
Affiliation(s)
- Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, the Netherlands.
| |
Collapse
|
14
|
Rapamycin suppresses inflammation and increases the interaction between p65 and IκBα in rapamycin-induced fatty livers. PLoS One 2023; 18:e0281888. [PMID: 36867603 PMCID: PMC9983852 DOI: 10.1371/journal.pone.0281888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/01/2023] [Indexed: 03/04/2023] Open
Abstract
Rapamycin treatment significantly increases lifespan and ameliorates several aging-related diseases in mice, making it a potential anti-aging drug. However, there are several obvious side effects of rapamycin, which may limit the broad applications of this drug. Lipid metabolism disorders such as fatty liver and hyperlipidemia are some of those unwanted side effects. Fatty liver is characterized as ectopic lipid accumulation in livers, which is usually accompanied by increased inflammation levels. Rapamycin is also a well-known anti-inflammation chemical. How rapamycin affects the inflammation level in rapamycin-induced fatty liver remains poorly understood. Here, we show that eight-day rapamycin treatment induced fatty liver and increased liver free fatty acid levels in mice, while the expression levels of inflammatory markers are even lower than those in the control mice. Mechanistically, the upstream of the pro-inflammatory pathway was activated in rapamycin-induced fatty livers, however, there is no increased NFκB nuclear translocation probably because the interaction between p65 and IκBα was enhanced by rapamycin treatment. The lipolysis pathway in the liver is also suppressed by rapamycin. Liver cirrhosis is an adverse consequence of fatty liver, while prolonged rapamycin treatment did not increase liver cirrhosis markers. Our results indicate that although fatty livers are induced by rapamycin, the fatty livers are not accompanied by increased inflammation levels, implying that rapamycin-induced fatty livers might not be as harmful as other types of fatty livers, such as high-fat diet and alcohol-induced fatty livers.
Collapse
|
15
|
Campbell LE, Anderson AM, Chen Y, Johnson SM, McMahon CE, Liu J. Identification of motifs and mechanisms for lipid droplet targeting of the lipolytic inhibitors G0S2 and HIG2. J Cell Sci 2022; 135:285951. [PMID: 36420951 PMCID: PMC10112975 DOI: 10.1242/jcs.260236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
G0S2 and HIG2 are two selective inhibitors of ATGL (also known as PNPLA2), the key enzyme for intracellular lipolysis. Whereas G0S2 regulates triglyceride (TG) mobilization in adipocytes and hepatocytes, HIG2 functions to enhance intracellular TG accumulation under hypoxic conditions. A homologous hydrophobic domain (HD) is shared by G0S2 and HIG2 (also known as HILPDA) for binding to ATGL. However, the determinants of their lipid droplet (LD) localization are unknown. Here, we study how G0S2 and HIG2 are targeted to LDs, and identify both ATGL-independent and -dependent mechanisms. Structural prediction and studies in cells reveal that ATGL-independent localization of G0S2 to both the endoplasmic reticulum (ER) and LDs is mediated by a hairpin structure consisting of two hydrophobic sequences. Positively charged residues in the hinge region play a crucial role in sorting G0S2, which initially localizes to ER, to LDs. Interestingly, the role of these positive charges becomes dispensable when ATGL is co-expressed. In comparison, HIG2, which lacks a similar hairpin structure, is dependent on ATGL for its full LD targeting. Thus, our studies identify specific structural features and mechanisms for mediating accumulation of these two ATGL inhibitors on LDs.
Collapse
Affiliation(s)
- Latoya E Campbell
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA.,College of Health Solutions, Arizona State University, Tempe, AZ 85281, USA
| | - Aaron M Anderson
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA.,Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Yongbin Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA
| | - Scott M Johnson
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Cailin E McMahon
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine & Science, Rochester, MN 55905, USA.,Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic in Rochester, Rochester, MN 55905, USA
| |
Collapse
|
16
|
Gonzalez MA, Olivas IM, Bencomo‐Alvarez AE, Rubio AJ, Barreto‐Vargas C, Lopez JL, Dang SK, Solecki JP, McCall E, Astudillo G, Velazquez VV, Schenkel K, Reffell K, Perkins M, Nguyen N, Apaflo JN, Alvidrez E, Young JE, Lara JJ, Yan D, Senina A, Ahmann J, Varley KE, Mason CC, Eide CA, Druker BJ, Nurunnabi M, Padilla O, Bajpeyi S, Eiring AM. Loss of G0/G1 switch gene 2 (G0S2) promotes disease progression and drug resistance in chronic myeloid leukaemia (CML) by disrupting glycerophospholipid metabolism. Clin Transl Med 2022; 12:e1146. [PMID: 36536477 PMCID: PMC9763536 DOI: 10.1002/ctm2.1146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) targeting BCR::ABL1 have turned chronic myeloid leukaemia (CML) from a fatal disease into a manageable condition for most patients. Despite improved survival, targeting drug-resistant leukaemia stem cells (LSCs) remains a challenge for curative CML therapy. Aberrant lipid metabolism can have a large impact on membrane dynamics, cell survival and therapeutic responses in cancer. While ceramide and sphingolipid levels were previously correlated with TKI response in CML, the role of lipid metabolism in TKI resistance is not well understood. We have identified downregulation of a critical regulator of lipid metabolism, G0/G1 switch gene 2 (G0S2), in multiple scenarios of TKI resistance, including (1) BCR::ABL1 kinase-independent TKI resistance, (2) progression of CML from the chronic to the blast phase of the disease, and (3) in CML versus normal myeloid progenitors. Accordingly, CML patients with low G0S2 expression levels had a worse overall survival. G0S2 downregulation in CML was not a result of promoter hypermethylation or BCR::ABL1 kinase activity, but was rather due to transcriptional repression by MYC. Using CML cell lines, patient samples and G0s2 knockout (G0s2-/- ) mice, we demonstrate a tumour suppressor role for G0S2 in CML and TKI resistance. Our data suggest that reduced G0S2 protein expression in CML disrupts glycerophospholipid metabolism, correlating with a block of differentiation that renders CML cells resistant to therapy. Altogether, our data unravel a new role for G0S2 in regulating myeloid differentiation and TKI response in CML, and suggest that restoring G0S2 may have clinical utility.
Collapse
Affiliation(s)
- Mayra A. Gonzalez
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Idaly M. Olivas
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Alfonso E. Bencomo‐Alvarez
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Andres J. Rubio
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | | | - Jose L. Lopez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Sara K. Dang
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Jonathan P. Solecki
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Emily McCall
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Gonzalo Astudillo
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Vanessa V. Velazquez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Katherine Schenkel
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Kelaiah Reffell
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Mariah Perkins
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Nhu Nguyen
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Jehu N. Apaflo
- Metabolic, Nutrition and Exercise Research (MiNER) Laboratory, Department of KinesiologyUniversity of Texas at El PasoEl PasoTexasUSA
| | - Efren Alvidrez
- Department of Pharmaceutical SciencesSchool of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
| | - James E. Young
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Joshua J. Lara
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Dongqing Yan
- Huntsman Cancer InstituteThe University of UtahSalt Lake CityUtahUSA
| | - Anna Senina
- Huntsman Cancer InstituteThe University of UtahSalt Lake CityUtahUSA
| | - Jonathan Ahmann
- Huntsman Cancer InstituteThe University of UtahSalt Lake CityUtahUSA
| | | | - Clinton C. Mason
- Huntsman Cancer InstituteThe University of UtahSalt Lake CityUtahUSA
| | - Christopher A. Eide
- Knight Cancer InstituteDivision of Hematology/Medical OncologyOregon Health & Science UniversityPortlandOregonUSA
| | - Brian J. Druker
- Knight Cancer InstituteDivision of Hematology/Medical OncologyOregon Health & Science UniversityPortlandOregonUSA
| | - Md Nurunnabi
- Department of Pharmaceutical SciencesSchool of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
| | - Osvaldo Padilla
- Department of PathologyTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Sudip Bajpeyi
- Metabolic, Nutrition and Exercise Research (MiNER) Laboratory, Department of KinesiologyUniversity of Texas at El PasoEl PasoTexasUSA
| | - Anna M. Eiring
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| |
Collapse
|
17
|
Løkka G, Dhanasiri AKS, Krogdahl Å, Kortner TM. Bile components affect the functions and transcriptome of the rainbow trout intestinal epithelial cell line RTgutGC. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1144-1156. [PMID: 36444097 DOI: 10.1016/j.fsi.2022.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The concomitant increase in cultivation of fish and decrease in supply of marine ingredients, have greatly increased the demand for new nutrient sources. This also regards so-called functional ingredients which may benefit health and welfare of the fish. In vitro cell line-based intestinal epithelial barrier models may serve as tools for narrowing down the broad range of ingredient options, to identify the most promising candidates before in vivo feeding trials are run. In vivo, differentiation of the various epithelial cells in the fish intestine, from the multipotent stem cells, takes place in the presence of a variety of substances from dietary and endogenous origin. Among these, bile salts have recently received attention as regulators of epithelial function in health and disease but have not, until now, been included in the medium when culturing fish gut epithelial cells in vitro. As bile salts are present at high levels in the chyme of the fish intestine, in particular in salmon and rainbow trout, mostly as taurocholate (>90%), their role for effects of diet ingredients on the in vitro gut cell model should be understood. With this study, we wanted to investigate whether inclusion of bile from rainbow trout or pure taurocholate in the culture media would modulate functions of the RTgutGC epithelial cells. Here, we demonstrated that the rainbow trout intestinal epithelial cell line RTgutGC responded significantly to the presence of bile components. Treatment with rainbow trout bile taken from the gall bladder (RTbile) or pure taurocholate (TC) at taurocholate concentrations of ≤0.5 mg/mL retained normal cell morphology, cell viability as in cell oxidation-reduction metabolic activity and membrane integrity, and barrier features, while high concentrations of bile salts (≥1 mg/mL) were cytotoxic to the cells. After long-term (4 days) bile treatment, transcriptome responses showed how bile salts play important roles in intestinal epithelial cell metabolism. qPCR data demonstrated that barrier function genes, brush border enzyme genes and immune genes were significantly affected. Although similar trends were seen, treatment with bile salt as a component of rainbow trout bile or pure taurocholate, induced somewhat different effects. In conclusion, this study clearly indicates that bile salts should be included in the cell medium when running in vitro studies of gut cell functions, not at least immune functions, preferably at the level of ∼0.5 mg/mL supplemented as pure taurocholate to ensure reproducibility.
Collapse
Affiliation(s)
- Guro Løkka
- Nutrition and Health Unit, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Anusha K S Dhanasiri
- Nutrition and Health Unit, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Åshild Krogdahl
- Nutrition and Health Unit, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Trond M Kortner
- Nutrition and Health Unit, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| |
Collapse
|
18
|
Schratter M, Lass A, Radner FPW. ABHD5-A Regulator of Lipid Metabolism Essential for Diverse Cellular Functions. Metabolites 2022; 12:1015. [PMID: 36355098 PMCID: PMC9694394 DOI: 10.3390/metabo12111015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2023] Open
Abstract
The α/β-Hydrolase domain-containing protein 5 (ABHD5; also known as comparative gene identification-58, or CGI-58) is the causative gene of the Chanarin-Dorfman syndrome (CDS), a disorder mainly characterized by systemic triacylglycerol accumulation and a severe defect in skin barrier function. The clinical phenotype of CDS patients and the characterization of global and tissue-specific ABHD5-deficient mouse strains have demonstrated that ABHD5 is a crucial regulator of lipid and energy homeostasis in various tissues. Although ABHD5 lacks intrinsic hydrolase activity, it functions as a co-activating enzyme of the patatin-like phospholipase domain-containing (PNPLA) protein family that is involved in triacylglycerol and glycerophospholipid, as well as sphingolipid and retinyl ester metabolism. Moreover, ABHD5 interacts with perilipins (PLINs) and fatty acid-binding proteins (FABPs), which are important regulators of lipid homeostasis in adipose and non-adipose tissues. This review focuses on the multifaceted role of ABHD5 in modulating the function of key enzymes in lipid metabolism.
Collapse
Affiliation(s)
- Margarita Schratter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, 8010 Graz, Austria
| | - Franz P. W. Radner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| |
Collapse
|
19
|
Narrative Review: Glucocorticoids in Alcoholic Hepatitis—Benefits, Side Effects, and Mechanisms. J Xenobiot 2022; 12:266-288. [PMID: 36278756 PMCID: PMC9589945 DOI: 10.3390/jox12040019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Alcoholic hepatitis is a major health and economic burden worldwide. Glucocorticoids (GCs) are the only first-line drugs recommended to treat severe alcoholic hepatitis (sAH), with limited short-term efficacy and significant side effects. In this review, I summarize the major benefits and side effects of GC therapy in sAH and the potential underlying mechanisms. The review of the literature and data mining clearly indicate that the hepatic signaling of glucocorticoid receptor (GR) is markedly impaired in sAH patients. The impaired GR signaling causes hepatic down-regulation of genes essential for gluconeogenesis, lipid catabolism, cytoprotection, and anti-inflammation in sAH patients. The efficacy of GCs in sAH may be compromised by GC resistance and/or GC’s extrahepatic side effects, particularly the side effects of intestinal epithelial GR on gut permeability and inflammation in AH. Prednisolone, a major GC used for sAH, activates both the GR and mineralocorticoid receptor (MR). When GC non-responsiveness occurs in sAH patients, the activation of MR by prednisolone might increase the risk of alcohol abuse, liver fibrosis, and acute kidney injury. To improve the GC therapy of sAH, the effort should be focused on developing the biomarker(s) for GC responsiveness, liver-targeting GR agonists, and strategies to overcome GC non-responsiveness and prevent alcohol relapse in sAH patients.
Collapse
|
20
|
Inaba Y, Iwamoto S, Nakayama K. Genome-wide DNA methylation status of Mongolians exhibits signs of cellular stress response related to their nomadic lifestyle. J Physiol Anthropol 2022; 41:30. [PMID: 35986394 PMCID: PMC9388360 DOI: 10.1186/s40101-022-00305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background Epigenetics is crucial for connecting environmental stresses with physiological responses in humans. Mongolia, where nomadic livestock pastoralism has been the primal livelihood, has a higher prevalence of various chronic diseases than the surrounding East Asian regions, which are more suitable for crop farming. The genes related to dietary stress and pathogenesis of related disorders may have varying epigenetic statuses among the human populations with diverse dietary cultures. Hence, to understand such epigenetic differences, we conducted a comparative analysis of genome-wide DNA methylation of Mongolians and crop-farming East Asians. Methods Genome-wide DNA methylation status of peripheral blood cells (PBCs) from 23 Mongolian adults and 24 Thai adults was determined using the Infinium Human Methylation 450K arrays and analyzed in combination with previously published 450K data of 20 Japanese and 8 Chinese adults. CpG sites/regions differentially methylated between Mongolians and crop-farming East Asians were detected using a linear model adjusted for sex, age, ethnicity, and immune cell heterogeneity on RnBeads software. Results Of the quality-controlled 389,454 autosomal CpG sites, 223 CpG sites were significantly differentially methylated among Mongolians and the four crop farming East Asian populations (false discovery rate < 0.05). Analyses focused on gene promoter regions revealed that PM20D1 (peptidase M20 domain containing 1), which is involved in mitochondrial uncoupling and various processes, including cellular protection from reactive oxygen species (ROS) and thermogenesis, was the top differentially methylated gene. Moreover, gene ontology enrichment analysis revealed that biological processes related to ROS metabolism were overrepresented among the top 1% differentially methylated genes. The promoter regions of these genes were generally hypermethylated in Mongolians, suggesting that the metabolic pathway detoxifying ROS might be globally suppressed in Mongolians, resulting in the high susceptibility of this population to various chronic diseases. Conclusions This study showed a significantly diverse DNA methylation status among Mongolians and crop-farming East Asians. Further, we found an association between the differentially methylated genes and various metabolic and neurodegenerative diseases. Knowledge of the epigenetic regulators might help in proper understanding, treatment, and control of such disorders, and physiological adaptation in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s40101-022-00305-0.
Collapse
|
21
|
Abstract
Metabolic disorders related to obesity are largely dependent on adipose tissue hypertrophy, which involves adipocyte hypertrophy and increased adipogenesis. Adiposize is regulated by lipid accumulation as a result of increased lipogenesis (mainly lipid uptake in mature adipocytes) and reduced lipolysis. Using realtime 2D cell culture analyses of lipid uptake, we show (1) that high glucose concentration (4.5 g/L) was required to accumulate oleic acid increasing lipid droplet size until unilocularization similar to mature adipocytes in few days, (2) oleic acid reduced Peroxisome-Proliferator Activated Receptor Gamma (PPARG) gene transcription and (3) insulin counteracted oleic acid-induced increase of lipid droplet size. Although the lipolytic activity observed in high versus low glucose (1 g/L) conditions was not altered, insulin was found to inhibit oleic acid induced gene transcription required for lipid storage such as Cell Death Inducing DFFA Like Effectors (CIDEC) and G0S2 (G0 switch gene S2), possibly through PPARA activity. Although this signalling pathway requires more detailed investigation, the results point out the differential mechanisms involved in the pro-adipogenic effect of insulin in absence versus its protective effect on adiposity in presence of oleic acid uptake. Abbreviations: AICAR, 5-Aminoimidazole-4-carboxamide-1-D-ribofuranoside; AMPK, AMP-Activated protein kinase, ASCs, adipose stem cell; ATGL, adipose triglyceride lipase; BSA, Bovine serum albumin; CEBPA, CCAAT enhancer binding protein alpha; CIDEs, Cell Death Inducing DFFA Like Effectors; dA, differentiated adipocyte; DMEM, Dulbecco’s Modified Eagle’s Medium; FABPs, Fatty Acid Binding Proteins; FAT/CD36, Fatty acid translocase; FCS, Foetal calf serum; FN1, fibronectin 1; FFA, free fatty acid; G0S2, G0 switch gene S2; GLUTs, Glucose transporters; GPR120, G protein-coupled receptor 120; HG, high glucose; HSL, hormone sensitive lipase; INSR, insulin receptor; LG, low glucose; OA, oleic acid; PBS, Phosphate buffer saline; PPARs, Peroxisome-Proliferator Activated Receptors; PKA, Protein kinase cyclic AMP-dependent; PKG, Protein kinase cyclic GMP dependent; PTGS2, cytochrome oxidase 2; RTCA, realtime cell analysis; TG, triglyceride.
Collapse
Affiliation(s)
- Emmanuelle Berger
- University of Lyon, UMR Ecologie Microbienne Lyon (LEM), Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), CNRS 5557, INRAE 1418, Université Claude Bernard Lyon 1, VetAgro Sup, 69622 Villeurbanne ou 69363 Lyon, France
| | - Alain Géloën
- University of Lyon, UMR Ecologie Microbienne Lyon (LEM), Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), CNRS 5557, INRAE 1418, Université Claude Bernard Lyon 1, VetAgro Sup, 69622 Villeurbanne ou 69363 Lyon, France
| |
Collapse
|
22
|
Zhang R, Meng J, Yang S, Liu W, Shi L, Zeng J, Chang J, Liang B, Liu N, Xing D. Recent Advances on the Role of ATGL in Cancer. Front Oncol 2022; 12:944025. [PMID: 35912266 PMCID: PMC9326118 DOI: 10.3389/fonc.2022.944025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/15/2022] [Indexed: 12/22/2022] Open
Abstract
The hypoxic state of the tumor microenvironment leads to reprogramming lipid metabolism in tumor cells. Adipose triglyceride lipase, also known as patatin-like phospholipase= domain-containing protein 2 and Adipose triglyceride lipase (ATGL), as an essential lipid metabolism-regulating enzyme in cells, is regulated accordingly under hypoxia induction. However, studies revealed that ATGL exhibits both tumor-promoting and tumor-suppressing effects, which depend on the cancer cell type and the site of tumorigenesis. For example, elevated ATGL expression in breast cancer is accompanied by enhanced fatty acid oxidation (FAO), enhancing cancer cells’ metastatic ability. In prostate cancer, on the other hand, tumor activity tends to be negatively correlated with ATGL expression. This review outlined the regulation of ATGL-mediated lipid metabolism pathways in tumor cells, emphasizing the Hypoxia-inducible factors 1 (HIF-1)/Hypoxia-inducible lipid droplet-associated (HIG-2)/ATGL axis, peroxisome proliferator-activated receptor (PPAR)/G0/G1 switch gene 2 (G0S2)/ATGL axis, and fat-specific protein 27 (FSP-27)/Early growth response protein 1 (EGR-1)/ATGL axis. In the light of recent research on different cancer types, the role of ATGL on tumorigenesis, tumor proliferation, and tumor metastasis was systemically reviewed.
Collapse
Affiliation(s)
- Renshuai Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jingsen Meng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Shanbo Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Wenjing Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Lingyu Shi
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jun Zeng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jing Chang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Ning Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- *Correspondence: Ning Liu, ; Dongming Xing,
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Ning Liu, ; Dongming Xing,
| |
Collapse
|
23
|
Stokar J, Gurt I, Cohen-Kfir E, Yakubovsky O, Hallak N, Benyamini H, Lishinsky N, Offir N, Tam J, Dresner-Pollak R. Hepatic adropin is regulated by estrogen and contributes to adverse metabolic phenotypes in ovariectomized mice. Mol Metab 2022; 60:101482. [PMID: 35364299 PMCID: PMC9044006 DOI: 10.1016/j.molmet.2022.101482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/13/2022] [Accepted: 03/24/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Menopause is associated with visceral adiposity, hepatic steatosis and increased risk for cardiovascular disease. As estrogen replacement therapy is not suitable for all postmenopausal women, a need for alternative therapeutics and biomarkers has emerged. METHODS 9-week-old C57BL/6 J female mice were subjected to ovariectomy (OVX) or SHAM surgery (n = 10 per group), fed a standard diet and sacrificed 6- & 12 weeks post-surgery. RESULTS Increased weight gain, hepatic triglyceride content and changes in hepatic gene expression of Cyp17a1, Rgs16, Fitm1 as well as Il18, Rares2, Retn, Rbp4 in mesenteric visceral adipose tissue (VAT) were observed in OVX vs. SHAM. Liver RNA-sequencing 6-weeks post-surgery revealed changes in genes and microRNAs involved in fat metabolism in OVX vs. SHAM mice. Energy Homeostasis Associated gene (Enho) coding for the hepatokine adropin was significantly reduced in OVX mice livers and strongly inversely correlated with weight gain (r = -0.7 p < 0.001) and liver triglyceride content (r = -0.4, p = 0.04), with a similar trend for serum adropin. In vitro, Enho expression was tripled by 17β-estradiol in BNL 1 ME liver cells with increased adropin in supernatant. Analysis of open-access datasets revealed increased hepatic Enho expression in estrogen treated OVX mice and estrogen dependent ERα binding to Enho. Treatment of 5-month-old OVX mice with Adropin (i.p. 450 nmol/kg/twice daily, n = 4,5 per group) for 6-weeks reversed adverse adipokine gene expression signature in VAT, with a trended increase in lean body mass and decreased liver TG content with upregulation of Rgs16. CONCLUSIONS OVX is sufficient to induce deranged metabolism in adult female mice. Hepatic adropin is regulated by estrogen, negatively correlated with adverse OVX-induced metabolic phenotypes, which were partially reversed with adropin treatment. Adropin should be further explored as a potential therapeutic target and biomarker for menopause-related metabolic derangement.
Collapse
Affiliation(s)
- Joshua Stokar
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Irina Gurt
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Einav Cohen-Kfir
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Oran Yakubovsky
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Noa Hallak
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Natan Lishinsky
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Neta Offir
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Rivka Dresner-Pollak
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Israel.
| |
Collapse
|
24
|
Pan J, Zhao S, He L, Zhang M, Li C, Huang S, Wang J, Jin G. Promotion effect of salt on intramuscular neutral lipid hydrolysis during dry-salting process of porcine (biceps femoris) muscles by inducing phosphorylation of ATGL, HSL and their regulatory proteins of Perilipin1, ABHD5 and G0S2. Food Chem 2022; 373:131597. [PMID: 34815115 DOI: 10.1016/j.foodchem.2021.131597] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/21/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022]
Abstract
Towards a better understanding of the formation mechanism of salt on intramuscular triglyceride (TG) hydrolysis occurring in biceps femoris (BF) muscles during dry-salting process, the changes of TG hydrolysis, TG hydrolysis activity and phosphorylation of adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL) as well as their regulatory proteins (Perilipin1, ABHD5, G0S2) with different salt content (0%, 1%, 3%, 5%) and salting time (the first and third day) were analyzed. The results showed that dry-salting significantly increased the TG hydrolase activity and hydrolysis extent with salting process proceed (P < 0.05), especially upon the treatment with 3% amount of salt. The SDS-PAGE and Western-blot results further demonstrated that the promotion of salt on TG hydrolysis in intramuscular adipocytes was mainly attributed to the activation of protein kinase activity and protein phosphorylation process. Accordingly, the ATGL and HSL were activated, and meanwhile, the TG hydrolysis pivotal switch perilipin1 was also turned on by phosphorylation modification.
Collapse
Affiliation(s)
- Jiajing Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; College of Food Science and Technology of Huazhong Agricultural University, Wuhan 430070, China
| | - Shilin Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; College of Food Science and Technology of Huazhong Agricultural University, Wuhan 430070, China
| | - Lichao He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; College of Food and Biotechnology, Wuhan Institute of Design and Science, Wuhan 430205, China
| | - Min Zhang
- College of Food Science and Technology of Huazhong Agricultural University, Wuhan 430070, China
| | - Chengliang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; College of Food Science and Technology of Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangjia Huang
- College of Food Science and Technology of Huazhong Agricultural University, Wuhan 430070, China
| | - Jiamei Wang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Guofeng Jin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; College of Food Science and Technology of Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
25
|
Riegler-Berket L, Wechselberger L, Cerk IK, Padmanabha Das KM, Viertlmayr R, Kulminskaya N, Rodriguez Gamez CF, Schweiger M, Zechner R, Zimmermann R, Oberer M. Residues of the minimal sequence of G0S2 collectively contribute to ATGL inhibition while C-and N-terminal extensions promote binding to ATGL. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159105. [PMID: 35026402 DOI: 10.1016/j.bbalip.2021.159105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2022]
Abstract
The protein encoded by the G0/G1 switch gene 2 (G0S2) is a potent inhibitor of adipose triglyceride lipase (ATGL) and thus an important regulator of intracellular lipolysis. Since dysfunction of lipolysis is associated with metabolic diseases including diabetes and obesity, inhibition of ATGL is considered a therapeutic strategy. G0S2 interacts with ATGL's patatin-domain to mediate non-competitive inhibition, however atomic details of the inhibition mechanism are incompletely understood. Sequences of G0S2 from higher organisms show a highly conserved N-terminal part, including a hydrophobic region covering amino acids 27 to 42. We show that predicted G0S2 orthologs from platypus, chicken and Japanese rice-fish are able to inhibit human and mouse ATGL, emphasizing the contribution of conserved amino acid to ATGL inhibition. Our site directed mutagenesis and truncation studies give insights in the protein-protein interaction on a per-residue level. We determine that the minimal sequence required for ATGL inhibition ranges from amino acids 20 to 44. Residues Y27, V28, G30, A34 G37, V39 or L42 within this sequence play a substantial role in ATGL inhibition. Furthermore, we show that unspecific interactions of the N-terminal part (amino acids 20-27) of the minimal sequence facilitate the interaction to ATGL. Our studies also demonstrate that full-length G0S2 shows higher tolerance to specific single amino acid exchanges in the hydrophobic region due to the stronger contributions of unspecific interactions. However, exchanges of more than one amino-acid in the hydrophobic region also result in the loss of function as ATGL inhibitor even in the full-length protein.
Collapse
Affiliation(s)
- L Riegler-Berket
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - L Wechselberger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - I K Cerk
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - K M Padmanabha Das
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - R Viertlmayr
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - N Kulminskaya
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | | | - M Schweiger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria
| | - R Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria; BioHealth Field of Excellence, University of Graz, 8010 Graz, Austria
| | - R Zimmermann
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria; BioHealth Field of Excellence, University of Graz, 8010 Graz, Austria
| | - M Oberer
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria; BioHealth Field of Excellence, University of Graz, 8010 Graz, Austria.
| |
Collapse
|
26
|
Boone-Villa D, Ventura-Sobrevilla J, Aguilera-Méndez A, Jiménez-Villarreal J. The effect of adenosine monophosphate-activated protein kinase on lipolysis in adipose tissue: an historical and comprehensive review. Arch Physiol Biochem 2022; 128:7-23. [PMID: 35143739 DOI: 10.1080/13813455.2019.1661495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
CONTEXT Lipolysis is one of the most important pathways for energy management, its control in the adipose tissue (AT) is a potential therapeutic target for metabolic diseases. Adenosine Mono Phosphate-activated Protein Kinase (AMPK) is a key regulatory enzyme in lipids metabolism and a potential target for diabetes and obesity treatment. OBJECTIVE The aim of this work is to analyse the existing information on the relationship of AMPK and lipolysis in the AT. METHODS A thorough search of bibliography was performed in the databases Scopus and Web of Knowledge using the terms lipolysis, adipose tissue, and AMPK, the unrelated publications were excluded, and the documents were analysed. RESULTS Sixty-three works were found and classified in 3 categories: inhibitory effects, stimulatory effect, and diverse relationships; remarkably, the newest researches support an upregulating relationship of AMPK over lipolysis. CONCLUSION The most probable reality is that the relationship AMPK-lipolysis depends on the experimental conditions.
Collapse
Affiliation(s)
- Daniel Boone-Villa
- School of Medicine Northern Unit, Universidad Autonoma de Coahuila, Piedras Negras, México
| | | | - Asdrúbal Aguilera-Méndez
- Institute of Biological Chemistry Research, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| | | |
Collapse
|
27
|
Adipose Triglyceride Lipase in Hepatic Physiology and Pathophysiology. Biomolecules 2021; 12:biom12010057. [PMID: 35053204 PMCID: PMC8773762 DOI: 10.3390/biom12010057] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/25/2022] Open
Abstract
The liver is extremely active in oxidizing triglycerides (TG) for energy production. An imbalance between TG synthesis and hydrolysis leads to metabolic disorders in the liver, including excessive lipid accumulation, oxidative stress, and ultimately liver damage. Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme that catalyzes the first step of TG breakdown to glycerol and fatty acids. Although its role in controlling lipid homeostasis has been relatively well-studied in the adipose tissue, heart, and skeletal muscle, it remains largely unknown how and to what extent ATGL is regulated in the liver, responds to stimuli and regulators, and mediates disease progression. Therefore, in this review, we describe the current understanding of the structure–function relationship of ATGL, the molecular mechanisms of ATGL regulation at translational and post-translational levels, and—most importantly—its role in lipid and glucose homeostasis in health and disease with a focus on the liver. Advances in understanding the molecular mechanisms underlying hepatic lipid accumulation are crucial to the development of targeted therapies for treating hepatic metabolic disorders.
Collapse
|
28
|
Ma Y, Yin X, Qin Z, Ke X, Mi Y, Zheng P, Tang Y. Role of Plin5 Deficiency in Progression of Non-Alcoholic Fatty Liver Disease Induced by a High-Fat Diet in Mice. J Comp Pathol 2021; 189:88-97. [PMID: 34886991 DOI: 10.1016/j.jcpa.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022]
Abstract
Characterized by steatosis, inflammation and fibrosis, non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder. As a major lipid droplet-binding protein, Plin5 has been reported to have multiple effects on metabolism, but the effect of Plin5 deficiency on NAFLD is unknown. Plin5 knockout mice and wild-type mice were used to investigate the role of Plin5 in the progression of NAFLD by feeding a high-fat diet (HFD) for 20 weeks. Plin5 deficiency improved obesity induced by the HFD and altered glucose tolerance. Histological examination revealed that Plin5 deficiency alleviated hepatic steatosis and fibrosis induced by the HFD. Plin5 deficiency was also associated with a significant change in lipid metabolism-associated molecules. Further studies of these molecules indicated that Plin5 deficiency activated the expression of AMP-activated protein kinase and inhibited the core regulator of lipogenesis, sterol regulatory element binding protein 1 and its downstream lipid synthesis-related genes. These findings suggest that Plin5 deficiency ameliorates NAFLD by regulating lipid metabolism and inhibiting lipogenesis, and may provide a new strategy for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yuying Ma
- Academy of Medical Sciences, Zhengzhou, Henan, China; Department of Gastroenterology and Hepatology, Key Laboratory of H. Pylori and Gastrointestinal Microecology of Henan Province, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuecui Yin
- Academy of Medical Sciences, Zhengzhou, Henan, China; Department of Gastroenterology and Hepatology, Key Laboratory of H. Pylori and Gastrointestinal Microecology of Henan Province, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenzhen Qin
- Department of Endocrine Geriatrics, Seventh People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Xiaofei Ke
- Department of Pediatrics, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Mi
- Department of Gastroenterology and Hepatology, Key Laboratory of H. Pylori and Gastrointestinal Microecology of Henan Province, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pengyuan Zheng
- Department of Gastroenterology and Hepatology, Key Laboratory of H. Pylori and Gastrointestinal Microecology of Henan Province, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Youcai Tang
- Department of Gastroenterology and Hepatology, Key Laboratory of H. Pylori and Gastrointestinal Microecology of Henan Province, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Department of Pediatrics, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
29
|
Grabner GF, Xie H, Schweiger M, Zechner R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab 2021; 3:1445-1465. [PMID: 34799702 DOI: 10.1038/s42255-021-00493-6] [Citation(s) in RCA: 348] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
The perception that intracellular lipolysis is a straightforward process that releases fatty acids from fat stores in adipose tissue to generate energy has experienced major revisions over the last two decades. The discovery of new lipolytic enzymes and coregulators, the demonstration that lipophagy and lysosomal lipolysis contribute to the degradation of cellular lipid stores and the characterization of numerous factors and signalling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels have revolutionized our understanding of lipolysis. In this review, we focus on the mechanisms that facilitate intracellular fatty-acid mobilization, drawing on canonical and noncanonical enzymatic pathways. We summarize how intracellular lipolysis affects lipid-mediated signalling, metabolic regulation and energy homeostasis in multiple organs. Finally, we examine how these processes affect pathogenesis and how lipolysis may be targeted to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
30
|
Bai X, Liao Y, Sun F, Xiao X, Fu S. Diurnal regulation of oxidative phosphorylation restricts hepatocyte proliferation and inflammation. Cell Rep 2021; 36:109659. [PMID: 34496251 DOI: 10.1016/j.celrep.2021.109659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/14/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
The principles guiding the diurnal organization of biological pathways remain to be fully elucidated. Here, we perturb the hepatic transcriptome through nutrient regulators (high-fat diet and mTOR signaling components) to identify enduring properties of pathway organization. Temporal separation and counter-regulation between pathways of energy metabolism and inflammation/proliferation emerge as persistent transcriptome features across animal models, and network analysis identifies the G0s2 and Rgs16 genes as potential mediators at the metabolism-inflammation interface. Mechanistically, G0s2 and Rgs16 are sequentially induced during the light phase, promoting amino acid oxidation and suppressing overall mitochondrial respiration. In their absence, sphingolipids and diacylglycerides accumulate, accompanied by hepatic inflammation and hepatocyte proliferation. Notably, the expression of G0s2 and Rgs16 is further induced in obese mouse livers, and silencing of their expression accentuates hepatic fibrosis. Therefore, diurnal regulation of energy metabolism alleviates inflammatory and proliferative stresses under physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiaojie Bai
- School of Life Sciences, Tsinghua University, Beijing, China 100084
| | - Yilie Liao
- School of Life Sciences, Tsinghua University, Beijing, China 100084
| | - Fangfang Sun
- School of Life Sciences, Tsinghua University, Beijing, China 100084
| | - Xia Xiao
- School of Life Sciences, Tsinghua University, Beijing, China 100084
| | - Suneng Fu
- School of Life Sciences, Tsinghua University, Beijing, China 100084; Department of Basic Research, Guangzhou Laboratory, Guangdong, China 510005.
| |
Collapse
|
31
|
Solhi R, Lotfinia M, Gramignoli R, Najimi M, Vosough M. Metabolic hallmarks of liver regeneration. Trends Endocrinol Metab 2021; 32:731-745. [PMID: 34304970 DOI: 10.1016/j.tem.2021.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/29/2022]
Abstract
Despite the crucial role of cell metabolism in biological processes, particularly cell division, metabolic aspects of liver regeneration are not well defined. Better understanding of the metabolic activity governing division of liver cells will provide powerful insights into mechanisms of physiological and pathological liver regeneration. Recent studies have provided evidence that metabolic response to liver failure might be a proximal signal to initiate cell proliferation in liver regeneration. In this review, we highlight how lipids, carbohydrates, and proteins dynamically change and orchestrate liver regeneration. In addition, we discuss translational studies in which metabolic intervention has been used to treat chronic liver diseases (CLDs).
Collapse
Affiliation(s)
- Roya Solhi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Majid Lotfinia
- Physiology Research Center, Basic Sciences Research Institute, Kashan University of Medical Sciences, Kashan, Iran; Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.
| |
Collapse
|
32
|
Gupta K, Yadav P, Maryam S, Ahuja G, Sengupta D. Quantification of Age-Related Decline in Transcriptional Homeostasis. J Mol Biol 2021; 433:167179. [PMID: 34339725 DOI: 10.1016/j.jmb.2021.167179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Age-dependent dysregulation of transcription regulatory machinery triggers modulations in the gene expression levels leading to the decline in cellular fitness. Tracking of these transcripts along the temporal axis in multiple species revealed a spectrum of evolutionarily conserved pathways, such as electron transport chain, translation regulation, DNA repair, etc. Recent shreds of evidence suggest that aging deteriorates the transcription machinery itself, indicating the hidden complexity of the aging transcriptomes. This reinforces the need for devising novel computational methods to view aging through the lens of transcriptomics. Here, we present Homeostatic Divergence Score (HDS) to quantify the extent of messenger RNA (mRNA) homeostasis by assessing the balance between spliced and unspliced mRNA repertoire in single cells. We validated its utility in two independent aging datasets, and identified sets of genes undergoing age-related breakdown of transcriptional homeostasis. Moreover, testing of our method on a subpopulation of human embryonic stem cells revealed a set of differentially processed transcripts segregating these subpopulations. Our preliminary analyses in this direction suggest that mRNA processing level information offered by single-cell RNA sequencing (scRNA-seq) data is a superior determinant of chronological age as compared to transcriptional noise.
Collapse
Affiliation(s)
- Krishan Gupta
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India
| | - Princey Yadav
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India
| | - Sidrah Maryam
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India
| | - Gaurav Ahuja
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India.
| | - Debarka Sengupta
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India; Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India; Centre for Artificial Intelligence, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India; Institute of Health and Biomedical Innovation, Queensland University of Technology, Australia.
| |
Collapse
|
33
|
Faranda AP, Shihan MH, Wang Y, Duncan MK. The effect of sex on the mouse lens transcriptome. Exp Eye Res 2021; 209:108676. [PMID: 34146586 DOI: 10.1016/j.exer.2021.108676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The transcriptome of mammalian tissues differs between males and females, and these differences can change across the lifespan, likely regulating known sexual dimorphisms in disease prevalence and severity. Cataract, the most prevalent disease of the ocular lens, occurs at similar rates in young individuals, but its incidence is elevated in older women compared to men of the same age. However, the influence of sex on the lens transcriptome was unknown. RNAseq based transcriptomic profiling of young adult C57BL/6J mouse lens epithelial and fiber cells revealed that few genes are differentially expressed between the sexes. In contrast, lens cells from aged (24 month old) male and female C57BL/6J mice differentially expressed many genes, including several whose expression is lens preferred. Like cataracts, posterior capsular opacification (PCO), a major sequela of cataract surgery, may also be more prevalent in women. Lens epithelial cells isolated from mouse eyes 24 h after lens fiber cell removal exhibited numerous transcriptomic differences between the sexes, including genes implicated in complement cascades and extracellular matrix regulation, and these differences are much more pronounced in aged mice than in young mice. These results provide an unbiased basis for future studies on how sex affects the lens response to aging, cataract development, and cataract surgery.
Collapse
Affiliation(s)
- Adam P Faranda
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA
| | - Mahbubul H Shihan
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA
| | - Yan Wang
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
34
|
Kaur S, Auger C, Barayan D, Shah P, Matveev A, Knuth CM, Harris TE, Jeschke MG. Adipose-specific ATGL ablation reduces burn injury-induced metabolic derangements in mice. Clin Transl Med 2021; 11:e417. [PMID: 34185433 PMCID: PMC8181198 DOI: 10.1002/ctm2.417] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 12/25/2022] Open
Abstract
Hypermetabolism following severe burn injuries is associated with adipocyte dysfunction, elevated beige adipocyte formation, and increased energy expenditure. The resulting catabolism of adipose leads to detrimental sequelae such as fatty liver, increased risk of infections, sepsis, and even death. While the phenomenon of pathological white adipose tissue (WAT) browning is well-documented in cachexia and burn models, the molecular mechanisms are essentially unknown. Here, we report that adipose triglyceride lipase (ATGL) plays a central role in burn-induced WAT dysfunction and systemic outcomes. Targeting adipose-specific ATGL in a murine (AKO) model resulted in diminished browning, decreased circulating fatty acids, and mitigation of burn-induced hepatomegaly. To assess the clinical applicability of targeting ATGL, we demonstrate that the selective ATGL inhibitor atglistatin mimics the AKO results, suggesting a path forward for improving patient outcomes.
Collapse
Affiliation(s)
- Supreet Kaur
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Christopher Auger
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Dalia Barayan
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
- Institute of Medical SciencesUniversity of TorontoTorontoOntarioCanada
| | - Priyal Shah
- Institute of Medical SciencesUniversity of TorontoTorontoOntarioCanada
| | - Anna Matveev
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Carly M. Knuth
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
- Institute of Medical SciencesUniversity of TorontoTorontoOntarioCanada
| | - Thurl E. Harris
- Department of PharmacologyUniversity of Virginia School of MedicineCharlottesville VAUSA
| | - Marc G. Jeschke
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
- Institute of Medical SciencesUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
35
|
Su S, Jing X, Zhang C, Hou Y, Li Z, Yang X, Zhou X, Xu P, Tang Y, Zhu J. Interaction Between the Intestinal Microbial Community and Transcriptome Profile in Common Carp ( Cyprinus carpio L.). Front Microbiol 2021; 12:659602. [PMID: 34127924 PMCID: PMC8195870 DOI: 10.3389/fmicb.2021.659602] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
In a previous study, we found that the growth performance of the new strain of Huanghe carp is related to gene expression and bacterial community in the gut. In order to better understand the relationship between the gene expression level and bacterial abundance in the gut, we studied the growth performance, gut bacterial structure, and transcriptome profile in the 4th generation of the new carp strain (selection group) at harvesting time, and compared them with the control line (traditional Huanghe carp). Body weight, depth, width, and length increased 14.58, 7.14, 5.04, and 5.07%, respectively. The gut microbiome of the selection group also exhibited significantly higher species diversity parameters (Shannon, Simpson, and chao1). Both PCA and phylogenetic analyses divided all gut samples into two parts: control and selection group. Aeromonas was the dominant taxon in the control group, followed by Firmicutes and Roseomonas; in the selection group, Roseomonas was the dominant taxon, followed by Firmicutes and then Aeromonas. Among the 249 significantly differentially expressed genes, 194 were downregulated and 55 were upregulated. Functional GO annotation produced 13 terms in the biological process, 8 in the cellular component, and 7 in the molecular function categories. KEGG annotation indicated that most of these genes were associated with the immune-related pathways. A total of 2,892 pairs of genes (245) and baceterial genera (256) were analyzed using Pearson's correlation analysis. Most of the identified associations were mapped to the immune system, bacterial community, and cell differentiation categories. The top-10 bacterial genera identified by these analyses were Methylocystis, Ohtaekwangia, Roseomonas, Shewanella, Lutispora, GpVI, Desulfovibrio, Candidatus_Berkiella, Bordetella, and Azorhizobium. Genes paired with bacteria flora were divided into four functional categories: immune, growth, adipocyte differentiation, and nerve regulation. These genes may be related to the comparatively fast growth and high muscle polyunsaturated fatty acid content of the Huanghe carp new strain. Meanwhile, nerve regulation-related genes may be a reflection of the microbiota-gut-brain axis. These results illustrate that gut bacterial community structure is associated with the growth performance and gene expression in the Huanghe carp new strain.
Collapse
Affiliation(s)
- Shengyan Su
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Xiaojun Jing
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.,College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chengfeng Zhang
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yiran Hou
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Zhixun Li
- Henan Academy of Fishery Sciences, Zhengzhou, China
| | - Xingli Yang
- Henan Academy of Fishery Sciences, Zhengzhou, China
| | - Xiaolin Zhou
- Henan Academy of Fishery Sciences, Zhengzhou, China
| | - Pao Xu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yongkai Tang
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jian Zhu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
36
|
Li R, Cao C, Zheng Z, Yang X, Tan CP, Xu Y, Liu Y. Palm oil consumption and its repercussion on endogenous fatty acids distribution. Food Funct 2021; 12:2020-2031. [PMID: 33565560 DOI: 10.1039/d0fo02511a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The consumption of saturated lipids in combination with a sedentary lifestyle increases the risk of obesity and metabolic syndrome. However, the distribution of endogenous fatty acids (FA) after the consumption of saturated lipids and the connection between FA distribution and lipid metabolism-related genes relative expression have not been fully elucidated to date. In this study, we characterized FA profiles in the liver and visceral fats of Sprague Dawley (SD) rats fed with a high-palm-oil diet. The investigation showed that the levels of C16:0 and C18:1 (n-9) increased significantly (P < 0.05) in the liver of the high-palm-oil group (POG), while C16:1 (n-7) and C18:2 (n-6) accumulated markedly (P < 0.05) in the visceral fats of the control group (CN). A correlation analysis indicated a negative correlation between C16:0 and C16:1 (n-7) in the epididymal fat of POG. Our study also demonstrated that the intake of saturated lipids caused changes in lipid metabolism-related gene expression, especially stearoyl-CoA desaturase (SCD), which was upregulated at the third week but was inhibited in the subsequent weeks in the POG liver and perirenal fat. The SCD had a notable positive correlation with C16:1 (n-7) in the POG liver and perirenal fat but a significant negative correlation with C16:0 in the POG epididymal fat. In conclusion, the results of this study indicate that a high-C16:0 diet may result in adaptive SCD expression, and these findings may help to elucidate the effects of dietary fat on lipid metabolism.
Collapse
Affiliation(s)
- Ruizhi Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Chen Cao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Zhaojun Zheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Xiaoyan Yang
- Shandong Bohi Industry Co., Ltd., No.333, Binhe Road, Boxing Industrial Park, Binzhou City, Shandong Province, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Malaysia
| | - Yongjiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
37
|
Park SR, Cho CS, Xi J, Kang HM, Lee JH. Holistic characterization of single-hepatocyte transcriptome responses to high-fat diet. Am J Physiol Endocrinol Metab 2021; 320:E244-E258. [PMID: 33103450 PMCID: PMC8260362 DOI: 10.1152/ajpendo.00391.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During nutritional overload and obesity, hepatocyte function is grossly altered, and a subset of hepatocytes begins to accumulate fat droplets, leading to nonalcoholic fatty liver disease (NAFLD). Recent single-cell studies revealed how nonparenchymal cells, such as macrophages, hepatic stellate cells, and endothelial cells, heterogeneously respond to NAFLD. However, it remains to be characterized how hepatocytes, the major constituents of the liver, respond to nutritional overload in NAFLD. Here, using droplet-based, single-cell RNA sequencing (Drop-seq), we characterized how the transcriptomic landscape of individual hepatocytes is altered in response to high-fat diet (HFD) and NAFLD. We showed that the entire hepatocyte population undergoes substantial transcriptome changes upon HFD, although the patterns of alteration were highly heterogeneous, with zonation-dependent and -independent effects. Periportal (zone 1) hepatocytes downregulated many zone 1-specific marker genes, whereas a small number of genes mediating gluconeogenesis were upregulated. Pericentral (zone 3) hepatocytes also downregulated many zone 3-specific genes; however, they upregulated several genes that promote HFD-induced fat droplet formation, consistent with findings that zone 3 hepatocytes accumulate more lipid droplets. Zone 3 hepatocytes also upregulated ketogenic pathways as an adaptive mechanism to HFD. Interestingly, many of the top HFD-induced genes, which encode proteins regulating lipid metabolism, were strongly co-expressed with each other in a subset of hepatocytes, producing a variegated pattern of spatial co-localization that is independent of metabolic zonation. In conclusion, our data set provides a useful resource for understanding hepatocellular alteration during NAFLD at single cell level.
Collapse
Affiliation(s)
- Sung Rye Park
- Department of Molecular and Integrative Physiology and Institute for Gerontology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Chun-Seok Cho
- Department of Molecular and Integrative Physiology and Institute for Gerontology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jingyue Xi
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Hyun Min Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology and Institute for Gerontology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
38
|
de la Rosa Rodriguez MA, Deng L, Gemmink A, van Weeghel M, Aoun ML, Warnecke C, Singh R, Borst JW, Kersten S. Hypoxia-inducible lipid droplet-associated induces DGAT1 and promotes lipid storage in hepatocytes. Mol Metab 2021; 47:101168. [PMID: 33465519 PMCID: PMC7881268 DOI: 10.1016/j.molmet.2021.101168] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Objective Storage of triglycerides in lipid droplets is governed by a set of lipid droplet-associated proteins. One of these lipid droplet-associated proteins, hypoxia-inducible lipid droplet-associated (HILPDA), was found to impair lipid droplet breakdown in macrophages and cancer cells by inhibiting adipose triglyceride lipase. Here, we aimed to better characterize the role and mechanism of action of HILPDA in hepatocytes. Methods We performed studies in HILPDA-deficient and HILPDA-overexpressing liver cells, liver slices, and mice. The functional role and physical interactions of HILPDA were investigated using a variety of biochemical and microscopic techniques, including real-time fluorescence live-cell imaging and Förster resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM). Results Levels of HILPDA were markedly induced by fatty acids in several hepatoma cell lines. Hepatocyte-specific deficiency of HILPDA in mice modestly but significantly reduced hepatic triglycerides in mice with non-alcoholic steatohepatitis. Similarly, deficiency of HILPDA in mouse liver slices and primary hepatocytes reduced lipid storage and accumulation of fluorescently-labeled fatty acids in lipid droplets, respectively, which was independent of adipose triglyceride lipase. Fluorescence microscopy showed that HILPDA partly colocalizes with lipid droplets and with the endoplasmic reticulum, is especially abundant in perinuclear areas, and mainly associates with newly added fatty acids. Real-time fluorescence live-cell imaging further revealed that HILPDA preferentially localizes to lipid droplets that are being remodeled. Overexpression of HILPDA in liver cells increased the activity of diacylglycerol acyltransferases (DGAT) and DGAT1 protein levels, concurrent with increased lipid storage. Confocal microscopy coupled to FRET-FLIM analysis demonstrated that HILPDA physically interacts with DGAT1 in living liver cells. The stimulatory effect of HILPDA on lipid storage via DGAT1 was corroborated in adipocytes. Conclusions Our data indicate that HILPDA physically interacts with DGAT1 and increases DGAT activity. Our findings suggest a novel regulatory mechanism by which fatty acids promote triglyceride synthesis and storage. HILPDA expression is induced by fatty acids in hepatoma cells. HILPDA deficiency modestly decreases liver triglyceride storage in mice with NASH. HILPDA preferentially associates with newly synthesized lipid droplets and active lipid droplets. HILPDA promotes lipid storage at least in part independently of ATGL. HILPDA physically interacts and induces DGAT1.
Collapse
Affiliation(s)
- Montserrat A de la Rosa Rodriguez
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, the Netherlands
| | - Lei Deng
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, the Netherlands
| | - Anne Gemmink
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center+, Maastricht, 6200 MD, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, the Netherlands
| | - Marie Louise Aoun
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 505D, Bronx, NY, 10461, USA
| | - Christina Warnecke
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Rajat Singh
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 505D, Bronx, NY, 10461, USA
| | - Jan Willem Borst
- Laboratory of Biochemistry, Microspectroscopy Research Facility, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, the Netherlands.
| |
Collapse
|
39
|
Nagarajan SR, Butler LM, Hoy AJ. The diversity and breadth of cancer cell fatty acid metabolism. Cancer Metab 2021; 9:2. [PMID: 33413672 PMCID: PMC7791669 DOI: 10.1186/s40170-020-00237-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor cellular metabolism exhibits distinguishing features that collectively enhance biomass synthesis while maintaining redox balance and cellular homeostasis. These attributes reflect the complex interactions between cell-intrinsic factors such as genomic-transcriptomic regulation and cell-extrinsic influences, including growth factor and nutrient availability. Alongside glucose and amino acid metabolism, fatty acid metabolism supports tumorigenesis and disease progression through a range of processes including membrane biosynthesis, energy storage and production, and generation of signaling intermediates. Here, we highlight the complexity of cellular fatty acid metabolism in cancer, the various inputs and outputs of the intracellular free fatty acid pool, and the numerous ways that these pathways influence disease behavior.
Collapse
Affiliation(s)
- Shilpa R Nagarajan
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
40
|
Povero D, Johnson SM, Liu J. Hypoxia, hypoxia-inducible gene 2 (HIG2)/HILPDA, and intracellular lipolysis in cancer. Cancer Lett 2020; 493:71-79. [PMID: 32818550 PMCID: PMC11218043 DOI: 10.1016/j.canlet.2020.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/27/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022]
Abstract
Tumor tissues are chronically exposed to hypoxia owing to aberrant vascularity. Hypoxia induces metabolic alterations in cancer, thereby promoting aggressive malignancy and metastasis. While previous efforts largely focused on adaptive responses in glucose and glutamine metabolism, recent studies have begun to yield important insight into the hypoxic regulation of lipid metabolic reprogramming in cancer. Emerging evidence points to lipid droplet (LD) accumulation as a hallmark of hypoxic cancer cells. One critical underlying mechanism involves the inhibition of adipose triglyceride lipase (ATGL)-mediated intracellular lipolysis by a small protein encoded by hypoxia-inducible gene 2 (HIG2), also known as hypoxia inducible lipid droplet associated (HILPDA). In this review we summarize and discuss recent key findings on hypoxia-dependent regulation of metabolic adaptations especially lipolysis in cancer. We also pose several questions and hypotheses pertaining to the metabolic impact of lipolytic regulation in cancer under hypoxia and during hypoxia-reoxygenation transition.
Collapse
Affiliation(s)
- Davide Povero
- From Department of Biochemistry and Molecular Biology, Rochester, MN, 55905, USA; Division of Endocrinology, Rochester, MN, 55905, USA
| | - Scott M Johnson
- From Department of Biochemistry and Molecular Biology, Rochester, MN, 55905, USA; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Jun Liu
- From Department of Biochemistry and Molecular Biology, Rochester, MN, 55905, USA; Division of Endocrinology, Rochester, MN, 55905, USA.
| |
Collapse
|
41
|
Carey KL, Paulus GLC, Wang L, Balce DR, Luo JW, Bergman P, Ferder IC, Kong L, Renaud N, Singh S, Kost-Alimova M, Nyfeler B, Lassen KG, Virgin HW, Xavier RJ. TFEB Transcriptional Responses Reveal Negative Feedback by BHLHE40 and BHLHE41. Cell Rep 2020; 33:108371. [PMID: 33176151 DOI: 10.1016/j.celrep.2020.108371] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/18/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022] Open
Abstract
Transcription factor EB (TFEB) activates lysosomal biogenesis genes in response to environmental cues. Given implications of impaired TFEB signaling and lysosomal dysfunction in metabolic, neurological, and infectious diseases, we aim to systematically identify TFEB-directed circuits by examining transcriptional responses to TFEB subcellular localization and stimulation. We reveal that steady-state nuclear TFEB is sufficient to activate transcription of lysosomal, autophagy, and innate immunity genes, whereas other targets require higher thresholds of stimulation. Furthermore, we identify shared and distinct transcriptional signatures between mTOR inhibition and bacterial autophagy. Using a genome-wide CRISPR library, we find TFEB targets that protect cells from or sensitize cells to lysosomal cell death. BHLHE40 and BHLHE41, genes responsive to high, sustained levels of nuclear TFEB, act in opposition to TFEB upon lysosomal cell death induction. Further investigation identifies genes counter-regulated by TFEB and BHLHE40/41, adding this negative feedback to the current understanding of TFEB regulatory mechanisms.
Collapse
Affiliation(s)
- Kimberly L Carey
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Geraldine L C Paulus
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingfei Wang
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dale R Balce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jessica W Luo
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Phil Bergman
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Ianina C Ferder
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingjia Kong
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nicole Renaud
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Maria Kost-Alimova
- Center for the Science of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Beat Nyfeler
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Kara G Lassen
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ramnik J Xavier
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
42
|
Jӓntti M, Harvey BK. Trophic activities of endoplasmic reticulum proteins CDNF and MANF. Cell Tissue Res 2020; 382:83-100. [PMID: 32845431 DOI: 10.1007/s00441-020-03263-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) and cerebral dopamine neurotrophic factor (CDNF) are endoplasmic reticulum (ER) luminal proteins that confer trophic activities in a wide range of tissues under diverse pathological conditions. Despite initially being classified as neurotrophic factors, neither protein structurally nor functionally resembles bona fide neurotrophic factors. Their highly homologous structures comprise a unique globular, saposin-like domain within the N-terminus joined by a flexible linker to a C-terminus containing a SAP-like domain, CXXC motif and an ER retention sequence. Neurotrophic factors exert effects by binding to cognate receptors in the plasma membrane; however, no cell surface receptors have been identified for MANF and CDNF. Both can act as unfolded protein response (UPR) genes that modulate the UPR and inflammatory processes. The trophic activity of MANF and CDNF extends beyond the central nervous system with MANF being crucial for the development of pancreatic β cells and both have trophic effects in a variety of diseases related to the liver, heart, skeletal tissue, kidney and peripheral nervous system. In this article, the unique features of MANF and CDNF, such as their structure and mechanisms of action related to ER stress and inflammation, will be reviewed. Recently identified interactions with lipids and membrane trafficking will also be described. Lastly, their function and therapeutic potential in different diseases including a recent clinical trial using CDNF to treat Parkinson's disease will be discussed. Collectively, this review will highlight MANF and CDNF as broad-acting trophic factors that regulate functions of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Maria Jӓntti
- Molecular Mechanisms of Cellular Stress and Inflammation Lab, Intramural Research Program, National Institute on Drug Abuse, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Brandon K Harvey
- Molecular Mechanisms of Cellular Stress and Inflammation Lab, Intramural Research Program, National Institute on Drug Abuse, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| |
Collapse
|
43
|
Bonisoli-Alquati A, Xu W, Stouffer PC, Taylor SS. Transcriptome analysis indicates a broad range of toxic effects of Deepwater Horizon oil on Seaside Sparrows. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137583. [PMID: 32325582 DOI: 10.1016/j.scitotenv.2020.137583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 06/11/2023]
Abstract
In marine species, the transcriptomic response to Deepwater Horizon (DWH) oil implicated many biochemical pathways, with corresponding adverse outcomes on organ development and physiological performance. Terrestrial organisms differ in their mechanisms of exposure to polycyclic aromatic hydrocarbons (PAHs) and their physiological challenges, and may reveal either distinct effects of oil on biochemical pathways or the generality of the responses to oil shown in marine species. Using a cross-species hybridization microarray approach, we investigated the transcriptomic response in the liver of Seaside Sparrows (Ammospiza maritima) exposed to DWH oil compared with birds from a control site. Our analysis identified 295 genes differentially expressed between birds exposed to oil and controls. Gene ontology (GO) and canonical pathway analysis suggested that the identified genes were involved in a coordinated response that promoted hepatocellular proliferation and liver regeneration while inhibiting apoptosis, necrosis, and liver steatosis. Exposure to oil also altered the expression of genes regulating energy homeostasis, including carbohydrate metabolism and gluconeogenesis, and the biosynthesis, transport and metabolism of lipids. These results provide a molecular mechanism for the long-standing observation of hepatic hypertrophy and altered lipid biosynthesis and transport in birds exposed to crude oil. Several of the activated pathways and pathological outcomes shown here overlap with the ones altered in fish species upon exposure to oil. Overall, our study shows that the path of oil contamination from the marine system into salt marshes can lead to similar responses in terrestrial birds to those described in marine organisms, suggesting similar adverse outcomes and shared machinery for detoxification.
Collapse
Affiliation(s)
- A Bonisoli-Alquati
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA, United States of America.
| | - W Xu
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX, United States of America
| | - P C Stouffer
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA, United States of America; LSU AgCenter, Baton Rouge, LA, United States of America
| | - S S Taylor
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA, United States of America; LSU AgCenter, Baton Rouge, LA, United States of America
| |
Collapse
|
44
|
de la Rosa Rodriguez MA, Kersten S. Regulation of lipid droplet homeostasis by hypoxia inducible lipid droplet associated HILPDA. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158738. [PMID: 32417386 DOI: 10.1016/j.bbalip.2020.158738] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/17/2020] [Accepted: 05/06/2020] [Indexed: 12/28/2022]
Abstract
Nearly all cell types have the ability to store excess energy as triglycerides in specialized organelles called lipid droplets. The formation and degradation of lipid droplets is governed by a diverse set of enzymes and lipid droplet-associated proteins. One of the lipid droplet-associated proteins is Hypoxia Inducible Lipid Droplet Associated (HILPDA). HILPDA was originally discovered in a screen to identify novel hypoxia-inducible proteins. Apart from hypoxia, levels of HILPDA are induced by fatty acids and adrenergic agonists. HILPDA is a small protein of 63 amino acids in humans and 64 amino acids in mice. Inside cells, HILPDA is located in the endoplasmic reticulum and around lipid droplets. Gain- and loss-of-function experiments have demonstrated that HILPDA promotes lipid storage in hepatocytes, macrophages and cancer cells. HILPDA increases lipid droplet accumulation at least partly by inhibiting triglyceride hydrolysis via ATGL and stimulating triglyceride synthesis via DGAT1. Overall, HILPDA is a novel regulatory signal that adjusts triglyceride storage and the intracellular availability of fatty acids to the external fatty acid supply and the capacity for oxidation.
Collapse
Affiliation(s)
- Montserrat A de la Rosa Rodriguez
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| |
Collapse
|
45
|
Boada-Romero E, Martinez J, Heckmann BL, Green DR. The clearance of dead cells by efferocytosis. Nat Rev Mol Cell Biol 2020; 21:398-414. [PMID: 32251387 DOI: 10.1038/s41580-020-0232-1] [Citation(s) in RCA: 450] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Multiple modes of cell death have been identified, each with a unique function and each induced in a setting-dependent manner. As billions of cells die during mammalian embryogenesis and daily in adult organisms, clearing dead cells and associated cellular debris is important in physiology. In this Review, we present an overview of the phagocytosis of dead and dying cells, a process known as efferocytosis. Efferocytosis is performed by macrophages and to a lesser extent by other 'professional' phagocytes (such as monocytes and dendritic cells) and 'non-professional' phagocytes, such as epithelial cells. Recent discoveries have shed light on this process and how it functions to maintain tissue homeostasis, tissue repair and organismal health. Here, we outline the mechanisms of efferocytosis, from the recognition of dying cells through to phagocytic engulfment and homeostatic resolution, and highlight the pathophysiological consequences that can arise when this process is abrogated.
Collapse
Affiliation(s)
- Emilio Boada-Romero
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jennifer Martinez
- Inflammation & Autoimmunity Group, National Institute for Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
46
|
Geng W, Long SL, Chang YJ, Saxton AM, Joyce SA, Lin J. Evaluation of bile salt hydrolase inhibitor efficacy for modulating host bile profile and physiology using a chicken model system. Sci Rep 2020; 10:4941. [PMID: 32188876 PMCID: PMC7080769 DOI: 10.1038/s41598-020-61723-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 02/27/2020] [Indexed: 11/24/2022] Open
Abstract
Gut microbial enzymes, bile salt hydrolases (BSHs) are the gateway enzymes for bile acid (BA) modification in the gut. This activity is a promising target for developing innovative non-antibiotic growth promoters to enhance animal production and health. Compelling evidence has shown that inhibition of BSH activity should enhance weight gain by altering the BA pool, host signalling and lipid metabolism. We recently identified a panel of promising BSH inhibitors. Here, we address the potential of them as alternative, effective, non-antibiotic feed additives, for commercial application, to promote animal growth using a chicken model. In this study, the in vivo efficacy of three BSH inhibitors (caffeic acid phenethylester, riboflavin, carnosic acid) were evaluated. 7-day old chicks (10 birds/group) were either untreated or they received one of the specific BSH inhibitors (25 mg/kg body weight) via oral gavage for 17 days. The chicks in treatment groups consistently displayed higher body weight gain than the untreated chicks. Metabolomic analysis demonstrated that BSH inhibitor treatment led to significant changes in both circulating and intestinal BA signatures in support of blunted intestinal BSH activity. Consistent with this finding, liver and intestinal tissue RNA-Seq analysis showed that carnosic acid treatment significantly altered expression of genes involved in lipid and bile acid metabolism. Taken together, this study validates microbial BSH activity inhibition as an alternative target and strategy to antibiotic treatment for animal growth promotion.
Collapse
Affiliation(s)
- Wenjing Geng
- Department of Animal Science, The University of Tennessee, 2506, River Drive, Knoxville, USA
| | - Sarah L Long
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Yun-Juan Chang
- Department of High Performance Computing and Research, University of Rutgers, Newark, USA
| | - Arnold M Saxton
- Department of Animal Science, The University of Tennessee, 2506, River Drive, Knoxville, USA
| | - Susan A Joyce
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, 2506, River Drive, Knoxville, USA.
| |
Collapse
|
47
|
Logue MW, Miller MW, Wolf EJ, Huber BR, Morrison FG, Zhou Z, Zheng Y, Smith AK, Daskalakis NP, Ratanatharathorn A, Uddin M, Nievergelt CM, Ashley-Koch AE, Baker DG, Beckham JC, Garrett ME, Boks MP, Geuze E, Grant GA, Hauser MA, Kessler RC, Kimbrel NA, Maihofer AX, Marx CE, Qin XJ, Risbrough VB, Rutten BPF, Stein MB, Ursano RJ, Vermetten E, Vinkers CH, Ware EB, Stone A, Schichman SA, McGlinchey RE, Milberg WP, Hayes JP, Verfaellie M. An epigenome-wide association study of posttraumatic stress disorder in US veterans implicates several new DNA methylation loci. Clin Epigenetics 2020; 12:46. [PMID: 32171335 PMCID: PMC7071645 DOI: 10.1186/s13148-020-0820-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Previous studies using candidate gene and genome-wide approaches have identified epigenetic changes in DNA methylation (DNAm) associated with posttraumatic stress disorder (PTSD). METHODS In this study, we performed an EWAS of PTSD in a cohort of Veterans (n = 378 lifetime PTSD cases and 135 controls) from the Translational Research Center for TBI and Stress Disorders (TRACTS) cohort assessed using the Illumina EPIC Methylation BeadChip which assesses DNAm at more than 850,000 sites throughout the genome. Our model included covariates for ancestry, cell heterogeneity, sex, age, and a smoking score based on DNAm at 39 smoking-associated CpGs. We also examined in EPIC-based DNAm data generated from pre-frontal cortex (PFC) tissue from the National PTSD Brain Bank (n = 72). RESULTS The analysis of blood samples yielded one genome-wide significant association with PTSD at cg19534438 in the gene G0S2 (p = 1.19 × 10-7, padj = 0.048). This association was replicated in an independent PGC-PTSD-EWAS consortium meta-analysis of military cohorts (p = 0.0024). We also observed association with the smoking-related locus cg05575921 in AHRR despite inclusion of a methylation-based smoking score covariate (p = 9.16 × 10-6), which replicates a previously observed PGC-PTSD-EWAS association (Smith et al. 2019), and yields evidence consistent with a smoking-independent effect. The top 100 EWAS loci were then examined in the PFC data. One of the blood-based PTSD loci, cg04130728 in CHST11, which was in the top 10 loci in blood, but which was not genome-wide significant, was significantly associated with PTSD in brain tissue (in blood p = 1.19 × 10-5, padj = 0.60, in brain, p = 0.00032 with the same direction of effect). Gene set enrichment analysis of the top 500 EWAS loci yielded several significant overlapping GO terms involved in pathogen response, including "Response to lipopolysaccharide" (p = 6.97 × 10-6, padj = 0.042). CONCLUSIONS The cross replication observed in independent cohorts is evidence that DNA methylation in peripheral tissue can yield consistent and replicable PTSD associations, and our results also suggest that that some PTSD associations observed in peripheral tissue may mirror associations in the brain.
Collapse
Affiliation(s)
- Mark W. Logue
- grid.410370.10000 0004 4657 1992National Center for PTSD, VA Boston Healthcare System, Boston, MA USA ,grid.475010.70000 0004 0367 5222Department of Psychiatry, Boston University School of Medicine, Boston, MA USA ,grid.475010.70000 0004 0367 5222,Biomedical Genetics, Boston University School of Medicine, Boston, MA USA ,grid.189504.10000 0004 1936 7558Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
| | - Mark W. Miller
- grid.410370.10000 0004 4657 1992National Center for PTSD, VA Boston Healthcare System, Boston, MA USA ,grid.475010.70000 0004 0367 5222Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Erika J. Wolf
- grid.410370.10000 0004 4657 1992National Center for PTSD, VA Boston Healthcare System, Boston, MA USA ,grid.475010.70000 0004 0367 5222Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Bertrand Russ Huber
- grid.410370.10000 0004 4657 1992National Center for PTSD, VA Boston Healthcare System, Boston, MA USA ,grid.475010.70000 0004 0367 5222Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Filomene G. Morrison
- grid.410370.10000 0004 4657 1992National Center for PTSD, VA Boston Healthcare System, Boston, MA USA ,grid.475010.70000 0004 0367 5222Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Zhenwei Zhou
- grid.189504.10000 0004 1936 7558Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
| | - Yuanchao Zheng
- grid.189504.10000 0004 1936 7558Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
| | - Alicia K. Smith
- grid.189967.80000 0001 0941 6502Department of Gynecology and Obstetrics, Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Nikolaos P. Daskalakis
- grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, Boston, MA USA ,grid.240206.20000 0000 8795 072XMcLean Hospital, Belmont, MA USA ,Cohen Veterans Bioscience, Cambridge, MA USA ,grid.59734.3c0000 0001 0670 2351Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Andrew Ratanatharathorn
- grid.21729.3f0000000419368729Department of Epidemiology, Columbia University, New York, NY USA
| | - Monica Uddin
- grid.170693.a0000 0001 2353 285XGenomics Program, University of South Florida College of Public Health, Tampa, FL USA ,grid.170693.a0000 0001 2353 285X,Global Health and Infectious Disease Research Program, University of South Florida College of Public Health, Tampa, FL USA
| | - Caroline M. Nievergelt
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA ,grid.410371.00000 0004 0419 2708Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA USA ,grid.410371.00000 0004 0419 2708Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA USA
| | - Allison E. Ashley-Koch
- grid.189509.c0000000100241216Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC USA
| | - Dewleen G. Baker
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA ,grid.410371.00000 0004 0419 2708Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA USA ,grid.410371.00000 0004 0419 2708Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA USA
| | - Jean C. Beckham
- grid.26009.3d0000 0004 1936 7961Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC USA ,grid.410332.70000 0004 0419 9846Research, Durham VA Medical Center, Durham, NC USA ,grid.281208.10000 0004 0419 3073Genetics Research Laboratory, VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Durham, NC USA
| | - Melanie E. Garrett
- grid.189509.c0000000100241216Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC USA
| | - Marco P. Boks
- grid.7692.a0000000090126352Department of Psychiatry, UMC Utrecht Brain Center, Utrecht, Utrecht Netherlands
| | - Elbert Geuze
- grid.7692.a0000000090126352Department of Psychiatry, UMC Utrecht Brain Center, Utrecht, Utrecht Netherlands ,Brain Research and Innovation Centre, Netherlands Ministry of Defence, Utrecht, Utrecht Netherlands
| | - Gerald A. Grant
- grid.240952.80000000087342732Department of Neurosurgery, Stanford University Medical Center, Stanford, CA USA
| | - Michael A. Hauser
- grid.189509.c0000000100241216Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC USA
| | - Ronald C. Kessler
- grid.38142.3c000000041936754XDepartment of Health Care Policy, Harvard Medical School, Boston, MA USA
| | - Nathan A. Kimbrel
- grid.410332.70000 0004 0419 9846Research, Durham VA Medical Center, Durham, NC USA ,grid.281208.10000 0004 0419 3073Genetics Research Laboratory, VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Durham, NC USA ,grid.26009.3d0000 0004 1936 7961Duke Molecular Physiology Institute, Duke University, Durham, NC USA
| | - Adam X. Maihofer
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA ,grid.410371.00000 0004 0419 2708Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA USA ,grid.410371.00000 0004 0419 2708Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA USA
| | - Christine E. Marx
- grid.21925.3d0000 0004 1936 9000Department of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh, Pittsburgh, PA USA ,grid.189509.c0000000100241216Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC USA
| | - Xue-Jun Qin
- grid.189509.c0000000100241216Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC USA
| | - Victoria B. Risbrough
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA ,grid.410371.00000 0004 0419 2708Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA USA ,grid.410371.00000 0004 0419 2708Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA USA
| | - Bart P. F. Rutten
- grid.412966.e0000 0004 0480 1382School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht Universitair Medisch Centrum, Maastricht, Limburg Netherlands
| | - Murray B. Stein
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA ,grid.410371.00000 0004 0419 2708Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA USA ,grid.410371.00000 0004 0419 2708Million Veteran Program, Veterans Affairs San Diego Healthcare System, San Diego, CA USA
| | - Robert J. Ursano
- grid.265436.00000 0001 0421 5525Department of Psychiatry, Uniformed Services University, Bethesda, MD USA
| | - Eric Vermetten
- Arq, Psychotrauma Reseach Expert Group, Diemen, NH Netherlands ,grid.10419.3d0000000089452978Department of Psychiatry, Leiden University Medical Center, Leiden, ZH Netherlands ,Netherlands Defense Department, Research Center, Utrecht, UT Netherlands ,grid.137628.90000 0004 1936 8753Department of Psychiatry, New York University School of Medicine, New York, NY USA
| | - Christiaan H. Vinkers
- Department of Anatomy and Neurosciences, Amsterdam UMC (location VUmc), Amsterdam, Holland Netherlands ,Department of Psychiatry, Amsterdam UMC (location VUmc), Amsterdam, Holland Netherlands
| | - Erin B. Ware
- grid.214458.e0000000086837370Institute for Social Research, Survey Research Center, University of Michigan, Michigan, MI USA
| | - Annjanette Stone
- grid.413916.80000 0004 0419 1545Pharmacogenomics Analysis Laboratory, Research Service, Central Arkansas Veterans Healthcare System, Little Rock, AR USA
| | - Steven A. Schichman
- grid.413916.80000 0004 0419 1545Pharmacogenomics Analysis Laboratory, Research Service, Central Arkansas Veterans Healthcare System, Little Rock, AR USA
| | - Regina E. McGlinchey
- grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, Boston, MA USA ,grid.410370.10000 0004 4657 1992Geriatric Research Educational and Clinical Center and Translational Research Center for TBI and Stress Disorders, VA Boston Health Care System, Boston, MA USA
| | - William P. Milberg
- grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, Boston, MA USA ,grid.410370.10000 0004 4657 1992Geriatric Research Educational and Clinical Center and Translational Research Center for TBI and Stress Disorders, VA Boston Health Care System, Boston, MA USA
| | - Jasmeet P. Hayes
- grid.410370.10000 0004 4657 1992National Center for PTSD, VA Boston Healthcare System, Boston, MA USA ,grid.475010.70000 0004 0367 5222Department of Psychiatry, Boston University School of Medicine, Boston, MA USA ,grid.261331.40000 0001 2285 7943Department of Psychology and Chronic Brain Injury Program, The Ohio State University, Columbus, OH USA
| | - Mieke Verfaellie
- grid.475010.70000 0004 0367 5222Department of Psychiatry, Boston University School of Medicine, Boston, MA USA ,grid.475010.70000 0004 0367 5222Memory Disorders Research Center, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA USA
| | | |
Collapse
|
48
|
de Oliveira Peixoto J, Savoldi IR, Ibelli AMG, Cantão ME, Jaenisch FRF, Giachetto PF, Settles ML, Zanella R, Marchesi JAP, Pandolfi JR, Coutinho LL, Ledur MC. Proximal femoral head transcriptome reveals novel candidate genes related to epiphysiolysis in broiler chickens. BMC Genomics 2019; 20:1031. [PMID: 31888477 PMCID: PMC6937697 DOI: 10.1186/s12864-019-6411-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/18/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The proximal femoral head separation (FHS) or epiphysiolysis is a prevalent disorder affecting the chicken femur epiphysis, being considered a risk factor to infection which can cause bacterial chondronecrosis with osteomyelitis in broilers. To identify the genetic mechanisms involved in epiphysiolysis, differentially expressed (DE) genes in the femur of normal and FHS-affected broilers were identified using RNA-Seq technology. Femoral growth plate (GP) samples from 35-day-old commercial male broilers were collected from 4 healthy and 4 FHS-affected broilers. Sequencing was performed using an Illumina paired-end protocol. Differentially expressed genes were obtained using the edgeR package based on the False Discovery Rate (FDR < 0.05). RESULTS Approximately 16 million reads/sample were generated with 2 × 100 bp paired-end reads. After data quality control, approximately 12 million reads/sample were mapped to the reference chicken genome (Galgal5). A total of 12,645 genes were expressed in the femur GP. Out of those, 314 were DE between groups, being 154 upregulated and 160 downregulated in FHS-affected broilers. In the functional analyses, several biological processes (BP) were overrepresented. Among them, those related to cell adhesion, extracellular matrix (ECM), bone development, blood circulation and lipid metabolism, which are more related to chicken growth, are possibly involved with the onset of FHS. On the other hand, BP associated to apoptosis or cell death and immune response, which were also found in our study, could be related to the consequence of the FHS. CONCLUSIONS Genes with potential role in the epiphysiolysis were identified through the femur head transcriptome analysis, providing a better understanding of the mechanisms that regulate bone development in fast-growing chickens. In this study, we highlighted the importance of cell adhesion and extracellular matrix related genes in triggering FHS. Furthermore, we have shown new insights on the involvement of lipidemia and immune response/inflammation with FHS in broilers. Understanding the changes in the GP transcriptome might support breeding strategies to address poultry robustness and to obtain more resilient broilers.
Collapse
Affiliation(s)
- Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil
| | - Igor Ricardo Savoldi
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Universidade do Contestado, Concórdia, Santa Catarina Brazil
- Programa de Pós-Graduação em Zootecnia, UDESC-Oeste, Chapecó, SC Brazil
| | - Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil
- Universidade do Contestado, Concórdia, Santa Catarina Brazil
| | - Maurício Egídio Cantão
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
| | - Fátima Regina Ferreira Jaenisch
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
| | | | | | - Ricardo Zanella
- Universidade de Passo Fundo, Passo Fundo, RS Brazil
- Programa de Mestrado em BioExperimentação, UPF, Passo Fundo, RS Brazil
| | - Jorge Augusto Petroli Marchesi
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP Brazil
| | - José Rodrigo Pandolfi
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
| | | | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Programa de Pós-Graduação em Zootecnia, UDESC-Oeste, Chapecó, SC Brazil
| |
Collapse
|
49
|
Cho E, Kwon YJ, Ye DJ, Baek HS, Kwon TU, Choi HK, Chun YJ. G0/G1 Switch 2 Induces Cell Survival and Metastasis through Integrin-Mediated Signal Transduction in Human Invasive Breast Cancer Cells. Biomol Ther (Seoul) 2019; 27:591-602. [PMID: 31272137 PMCID: PMC6824625 DOI: 10.4062/biomolther.2019.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 12/25/2022] Open
Abstract
Human breast cancer cell line, MDA-MB-231, is highly invasive and aggressive, compared to less invasive cell line, MCF-7. To explore the genes that might influence the malignancy of MDA-MB-231, DNA microarray analysis was performed. The results showed that G0/G1 switch 2 (G0S2) was one of the most highly expressed genes among the genes upregulated in MDA-MB-231. Although G0S2 acts as a direct inhibitor of adipose triglyceride lipase, action of G0S2 in cancer progression is not yet understood. To investigate whether G0S2 affects invasiveness of MDA-MB-231 cells, G0S2 expression was inhibited using siRNA, which led to decreased cell proliferation, migration, and invasion of MDA-MB-231 cells. Consequently, G0S2 inhibition inactivated integrinregulated FAK-Src signaling, which promoted Hippo signaling and inactivated ERK1/2 signaling. In addition, G0S2 downregulation decreased β-catenin expression, while E-cadherin expression was increased. It was demonstrated for the first time that G0S2 mediates the Hippo pathway and induces epithelial to mesenchymal transition (EMT). Taken together, our results suggest that G0S2 is a major factor contributing to cell survival and metastasis of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Eunah Cho
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974,
Republic of Korea
| | - Yeo-Jung Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974,
Republic of Korea
| | - Dong-Jin Ye
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974,
Republic of Korea
| | - Hyoung-Seok Baek
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974,
Republic of Korea
| | - Tae-Uk Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974,
Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974,
Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974,
Republic of Korea
| |
Collapse
|
50
|
Lin H, Rogers GT, Lunetta KL, Levy D, Miao X, Troy LM, Jacques PF, Murabito JM. Healthy diet is associated with gene expression in blood: the Framingham Heart Study. Am J Clin Nutr 2019; 110:742-749. [PMID: 31187853 PMCID: PMC6736078 DOI: 10.1093/ajcn/nqz060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 03/21/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Genes in metabolic and nutrient signaling pathways play important roles in lifespan in model organisms and human longevity. OBJECTIVE The aim of this study was to examine the relation of a quantitative measure of healthy diet to gene expression in a community-based cohort. METHODS We used the 2015 Dietary Guidelines for Americans Adherence Index (DGAI) score to quantify key dietary recommendations of an overall healthy diet. Our current analyses included 2220 Offspring participants (mean age 66 ± 9 y, 55.4% women) and 2941 Third-Generation participants (mean age 46 ± 9 y, 54.5% women) from the Framingham Heart Study. Gene expression was profiled in blood through the use of the Affymetrix Human Exon 1.0 ST Array. We conducted a transcriptome-wide association study of DGAI adjusting for age, sex, smoking, cell counts, and technical covariates. We also constructed a combined gene score from genes significantly associated with DGAI. RESULTS The DGAI was significantly associated with the expression of 19 genes (false discovery rate <0.05). The most significant gene, ARRDC3, is a member of the arrestin family of proteins, and evidence in animal models and human data suggests that this gene is a regulator of obesity and energy expenditure. The DGAI gene score was associated with body mass index (P = 1.4 × 10-50), fasting glucose concentration (P = 2.5 × 10-11), type 2 diabetes (P = 1.1 × 10-5), and metabolic syndrome (P = 1.8 × 10-32). CONCLUSIONS Healthier diet was associated with genes involved in metabolic function. Further work is needed to replicate our findings and investigate the relation of a healthy diet to altered gene regulation.
Collapse
Affiliation(s)
- Honghuang Lin
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA
- Sections of Computational Biomedicine and
| | - Gail T Rogers
- Friedman School of Nutrition Science and Policy and the Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Kathryn L Lunetta
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Daniel Levy
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Xiao Miao
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lisa M Troy
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA
| | - Paul F Jacques
- Friedman School of Nutrition Science and Policy and the Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Joanne M Murabito
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA
- General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| |
Collapse
|