1
|
Lin Y, Yang F, Dai X, Shan J, Cao H, Hu G, Zhang C, Xing C. Mitochondria-associated endoplasmic reticulum membrane as a mediator of vanadium-induced endoplasmic reticulum quality control in duck brains. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26510-26526. [PMID: 38446297 DOI: 10.1007/s11356-023-31413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/04/2023] [Indexed: 03/07/2024]
Abstract
Vanadium (V) plays a crucial role in normal cells, but excess V causes multi-organ toxicity, including neurotoxicity. Mitochondria-associated endoplasmic reticulum membrane (MAM) is a dynamic structure between endoplasmic reticulum (ER) and mitochondria that mediates ER quality control (ERQC). To explore the effects of excess V on MAM and ERQC in the brain, 72 ducks were randomly divided into two groups: the control group (basal diet) and the V group (30 mg V/kg basal diet). On days 22 and 44, brain tissues were collected for histomorphological observation and determination of trace element contents. In addition, the mRNA and protein levels of MAM and ERQC-related factors in the brain were analyzed. Results show that excessive V causes the imbalance of trace elements, the integrity disruption of MAM, rupture of ER and autophagosomes formation. Moreover, it inhibits IP3R and VDAC1 co-localization, down-regulates the expression levels of MAM-related factors, but up-regulates the expression levels of ERQC and autophagy related factors. Together, results indicate that V exposure causes disruption of MAM and activates ERQC, which is further causing autophagy.
Collapse
Affiliation(s)
- Yiqun Lin
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Jiyi Shan
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, People's Republic of China.
| |
Collapse
|
2
|
Castillo-Quan JI, Steinbaugh MJ, Fernández-Cárdenas LP, Pohl NK, Wu Z, Zhu F, Moroz N, Teixeira V, Bland MS, Lehrbach NJ, Moronetti L, Teufl M, Blackwell TK. An antisteatosis response regulated by oleic acid through lipid droplet-mediated ERAD enhancement. SCIENCE ADVANCES 2023; 9:eadc8917. [PMID: 36598980 PMCID: PMC9812393 DOI: 10.1126/sciadv.adc8917] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/23/2022] [Indexed: 05/19/2023]
Abstract
Although excessive lipid accumulation is a hallmark of obesity-related pathologies, some lipids are beneficial. Oleic acid (OA), the most abundant monounsaturated fatty acid (FA), promotes health and longevity. Here, we show that OA benefits Caenorhabditis elegans by activating the endoplasmic reticulum (ER)-resident transcription factor SKN-1A (Nrf1/NFE2L1) in a lipid homeostasis response. SKN-1A/Nrf1 is cleared from the ER by the ER-associated degradation (ERAD) machinery and stabilized when proteasome activity is low and canonically maintains proteasome homeostasis. Unexpectedly, OA increases nuclear SKN-1A levels independently of proteasome activity, through lipid droplet-dependent enhancement of ERAD. In turn, SKN-1A reduces steatosis by reshaping the lipid metabolism transcriptome and mediates longevity from OA provided through endogenous accumulation, reduced H3K4 trimethylation, or dietary supplementation. Our findings reveal an unexpected mechanism of FA signal transduction, as well as a lipid homeostasis pathway that provides strategies for opposing steatosis and aging, and may mediate some benefits of the OA-rich Mediterranean diet.
Collapse
Affiliation(s)
- Jorge Iván Castillo-Quan
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Michael J. Steinbaugh
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Laura Paulette Fernández-Cárdenas
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Nancy K. Pohl
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Ziyun Wu
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Feimei Zhu
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Natalie Moroz
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Biology Department, Emmanuel College, Boston, MA, USA
| | - Veronica Teixeira
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Monet S. Bland
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Nicolas J. Lehrbach
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Lorenza Moronetti
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Magdalena Teufl
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - T. Keith Blackwell
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
- Corresponding author.
| |
Collapse
|
3
|
The Targeting of Native Proteins to the Endoplasmic Reticulum-Associated Degradation (ERAD) Pathway: An Expanding Repertoire of Regulated Substrates. Biomolecules 2021; 11:biom11081185. [PMID: 34439852 PMCID: PMC8393694 DOI: 10.3390/biom11081185] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022] Open
Abstract
All proteins are subject to quality control processes during or soon after their synthesis, and these cellular quality control pathways play critical roles in maintaining homeostasis in the cell and in organism health. Protein quality control is particularly vital for those polypeptides that enter the endoplasmic reticulum (ER). Approximately one-quarter to one-third of all proteins synthesized in eukaryotic cells access the ER because they are destined for transport to the extracellular space, because they represent integral membrane proteins, or because they reside within one of the many compartments of the secretory pathway. However, proteins that mature inefficiently are subject to ER-associated degradation (ERAD), a multi-step pathway involving the chaperone-mediated selection, ubiquitination, and extraction (or “retrotranslocation”) of protein substrates from the ER. Ultimately, these substrates are degraded by the cytosolic proteasome. Interestingly, there is an increasing number of native enzymes and metabolite and solute transporters that are also targeted for ERAD. While some of these proteins may transiently misfold, the ERAD pathway also provides a route to rapidly and quantitatively downregulate the levels and thus the activities of a variety of proteins that mature or reside in the ER.
Collapse
|
4
|
Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol 2021; 18:499-521. [PMID: 33619348 DOI: 10.1038/s41569-021-00511-w] [Citation(s) in RCA: 423] [Impact Index Per Article: 105.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs), such as ischaemic heart disease, cardiomyopathy, atherosclerosis, hypertension, stroke and heart failure, are among the leading causes of morbidity and mortality worldwide. Although specific CVDs and the associated cardiometabolic abnormalities have distinct pathophysiological and clinical manifestations, they often share common traits, including disruption of proteostasis resulting in accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER). ER proteostasis is governed by the unfolded protein response (UPR), a signalling pathway that adjusts the protein-folding capacity of the cell to sustain the cell's secretory function. When the adaptive UPR fails to preserve ER homeostasis, a maladaptive or terminal UPR is engaged, leading to the disruption of ER integrity and to apoptosis. ER stress functions as a double-edged sword, with long-term ER stress resulting in cellular defects causing disturbed cardiovascular function. In this Review, we discuss the distinct roles of the UPR and ER stress response as both causes and consequences of CVD. We also summarize the latest advances in our understanding of the importance of the UPR and ER stress in the pathogenesis of CVD and discuss potential therapeutic strategies aimed at restoring ER proteostasis in CVDs.
Collapse
|
5
|
Buck TM, Zeng X, Cantrell PS, Cattley RT, Hasanbasri Z, Yates ME, Nguyen D, Yates NA, Brodsky JL. The Capture of a Disabled Proteasome Identifies Erg25 as a Substrate for Endoplasmic Reticulum Associated Degradation. Mol Cell Proteomics 2020; 19:1896-1909. [PMID: 32868373 DOI: 10.1074/mcp.ra120.002050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/06/2020] [Indexed: 01/13/2023] Open
Abstract
Studies in the yeast Saccharomyces cerevisiae have helped define mechanisms underlying the activity of the ubiquitin-proteasome system (UPS), uncover the proteasome assembly pathway, and link the UPS to the maintenance of cellular homeostasis. However, the spectrum of UPS substrates is incompletely defined, even though multiple techniques-including MS-have been used. Therefore, we developed a substrate trapping proteomics workflow to identify previously unknown UPS substrates. We first generated a yeast strain with an epitope tagged proteasome subunit to which a proteasome inhibitor could be applied. Parallel experiments utilized inhibitor insensitive strains or strains lacking the tagged subunit. After affinity isolation, enriched proteins were resolved, in-gel digested, and analyzed by high resolution liquid chromatography-tandem MS. A total of 149 proteasome partners were identified, including all 33 proteasome subunits. When we next compared data between inhibitor sensitive and resistant cells, 27 proteasome partners were significantly enriched. Among these proteins were known UPS substrates and proteins that escort ubiquitinated substrates to the proteasome. We also detected Erg25 as a high-confidence partner. Erg25 is a methyl oxidase that converts dimethylzymosterol to zymosterol, a precursor of the plasma membrane sterol, ergosterol. Because Erg25 is a resident of the endoplasmic reticulum (ER) and had not previously been directly characterized as a UPS substrate, we asked whether Erg25 is a target of the ER associated degradation (ERAD) pathway, which most commonly mediates proteasome-dependent destruction of aberrant proteins. As anticipated, Erg25 was ubiquitinated and associated with stalled proteasomes. Further, Erg25 degradation depended on ERAD-associated ubiquitin ligases and was regulated by sterol synthesis. These data expand the cohort of lipid biosynthetic enzymes targeted for ERAD, highlight the role of the UPS in maintaining ER function, and provide a novel tool to uncover other UPS substrates via manipulations of our engineered strain.
Collapse
Affiliation(s)
- Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, Pennsylvania, USA
| | - Pamela S Cantrell
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, Pennsylvania, USA
| | - Richard T Cattley
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, Pennsylvania, USA
| | - Zikri Hasanbasri
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Megan E Yates
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Diep Nguyen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nathan A Yates
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, Pennsylvania, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
6
|
Niwa M. A cell cycle checkpoint for the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118825. [PMID: 32828757 DOI: 10.1016/j.bbamcr.2020.118825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
The generation of new cells is one of the most fundamental aspects of cell biology. Proper regulation of the cell cycle is critical for human health, as underscored by many diseases associated with errors in cell cycle regulation, including both cancer and hereditary diseases. A large body of work has identified regulatory mechanisms and checkpoints that ensure accurate and timely replication and segregation of chromosomal DNA. However, few studies have evaluated the extent to which similar checkpoints exist for the division of cytoplasmic components, including organelles. Such checkpoint mechanisms might be crucial for compartments that cannot be generated de novo, such as the endoplasmic reticulum (ER). In this review, we highlight recent work in the model organism Saccharomyces cerevisiae that led to the discovery of such a checkpoint that ensures that cells inherit functional ER into the daughter cell.
Collapse
Affiliation(s)
- Maho Niwa
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, NSB#1, Rm 5328, 9500 Gilman Drive, La Jolla, CA 92093-0377, United States of America.
| |
Collapse
|
7
|
Reinhard J, Mattes C, Väth K, Radanović T, Surma MA, Klose C, Ernst R. A Quantitative Analysis of Cellular Lipid Compositions During Acute Proteotoxic ER Stress Reveals Specificity in the Production of Asymmetric Lipids. Front Cell Dev Biol 2020; 8:756. [PMID: 32850859 PMCID: PMC7417482 DOI: 10.3389/fcell.2020.00756] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
The unfolded protein response (UPR) is central to endoplasmic reticulum (ER) homeostasis by controlling its size and protein folding capacity. When activated by unfolded proteins in the ER-lumen or aberrant lipid compositions, the UPR adjusts the expression of hundreds of target genes to counteract ER stress. The proteotoxic drugs dithiothreitol (DTT) and tunicamycin (TM) are commonly used to induce misfolding of proteins in the ER and to study the UPR. However, their potential impact on the cellular lipid composition has never been systematically addressed. Here, we report the quantitative, cellular lipid composition of Saccharomyces cerevisiae during acute, proteotoxic stress in both rich and synthetic media. We show that DTT causes rapid remodeling of the lipidome when used in rich medium at growth-inhibitory concentrations, while TM has only a marginal impact on the lipidome under our conditions of cultivation. We formulate recommendations on how to study UPR activation by proteotoxic stress without interferences from a perturbed lipid metabolism. Furthermore, our data suggest an intricate connection between the cellular growth rate, the abundance of the ER, and the metabolism of fatty acids. We show that Saccharomyces cerevisiae can produce asymmetric lipids with two saturated fatty acyl chains differing substantially in length. These observations indicate that the pairing of saturated fatty acyl chains is tightly controlled and suggest an evolutionary conservation of asymmetric lipids and their biosynthetic machineries.
Collapse
Affiliation(s)
- John Reinhard
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany.,PZMS, Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany
| | - Carsten Mattes
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany.,PZMS, Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany
| | - Kristina Väth
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany.,PZMS, Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany
| | - Toni Radanović
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany.,PZMS, Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany
| | | | | | - Robert Ernst
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany.,PZMS, Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany
| |
Collapse
|