1
|
Nazir A, Sajjad M. Recent perspectives on biotechnological production, modulation and applications of glycerophosphoryl diester phosphodiesterases. Biodegradation 2025; 36:23. [PMID: 40085296 DOI: 10.1007/s10532-025-10119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Organophosphate (OP) compounds have been extensively employed as pesticides, insecticides and nerve agents. Stockpiles of chemical warfare agents must be destroyed as recommended by Chemical Weapon Convention (CWC). Toxicity of OP compounds to insects and mammals is due to their ability to inhibit the activity of acetylcholinesterase. Accumulation of acetylcholine leads to overstimulation of nerves, leading to convulsion, paralysis or even death. There is a dire need to decontaminate OP contaminated sites by using inexpensive and eco-friendly agents. Recently, OP hydrolyzing enzymes such as glycerophosphoryl diester phosphodiesterases (GDPDs) emerged as appealing agents to clean-up OP contaminated environmental sites. GDPDs are well known for enzymatic generation of glycerol 3-phosphate and corresponding alcoholic moiety from glycerophosphodiesters. Additionally, they are also involved in hydrolysis of OP compounds and degradative products of nerve agents. In the current review, structural and functional characteristics of GDPDs have been elaborated. Production of GDPDs from natural sources is quiet low so the current study aims at recombinant production of GDPDs from various sources. Comparative analysis of biochemical characteristics of various GDPDs indicated that thermostable GDPDs are active over broad temperature and pH range. In addition, thermostable GDPDs are resistant to high concentrations of organic solvents as well as metal ions. In order to enhance their practical utility, different engineering approaches (directed evolution, rational design and site-saturation mutagenesis) as well as immobilization strategies can be utilized to improve catalytic properties of GDPDs. Thus, the current review highlights the utilization of recombinant engineered free or immobilized GDPDs as tools in OP bioremediation.
Collapse
Affiliation(s)
- Arshia Nazir
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Sajjad
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
2
|
Yuan X, Wu T, Lu T, Ye J. Si and Zn dual ions upregulate the osteogenic differentiation of mBMSCs: mRNA transcriptomic sequencing analysis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:54. [PMID: 39251504 PMCID: PMC11383841 DOI: 10.1007/s10856-024-06825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024]
Abstract
Both silicon (Si) and zinc (Zn) ions are essential elements to bone health and their mechanisms for promoting osteogenesis have aroused the extensive attention of researchers. Thereinto, the mechanism by which dual ions promote osteogenic differentiation remains to be elucidated. Herein, the effects of Si and Zn ions on the cytological behaviors of mBMSCs were firstly studied. Then, the molecular mechanism of Si-Zn dual ions regulating the osteogenic differentiation of mBMSCs was investigated via transcriptome sequencing technology. In the single-ion system, Si ion at the concentration of 1.5 mM (Si-1.5) had better comprehensive effects of cell proliferation, ALP activity and osteogenesis-related gene expression levels (ALP, Runx2, OCN, Col-I and BSP); Zn ion at the concentration of 50 μM (Zn-50) demonstrated better combining effects of cell proliferation, ALP activity and same osteogenic genes expression levels. In the dual-ion system, the Si (1.5 mM)-Zn (50 μM) group (Si1.5-Zn50) synthetically enhanced ALP activity and osteogenesis genes compared with single-ion groups. Analysis of the transcriptome sequencing results showed that Si ion had a certain effect on promoting the osteogenic differentiation of mBMSCs; Zn ion had a stronger effect of contributing to a better osteogenic differentiation of mBMSCs than that of Si ion; the Si-Zn dual ions had a synergistic enhancement on conducting to the osteogenic differentiation of mBMSCs compared to single ion (Si or Zn). This study offers a blueprint for exploring the regulation mechanism of osteogenic differentiation by dual ions.
Collapse
Affiliation(s)
- Xinyuan Yuan
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, PR China
| | - Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, PR China
| | - Teliang Lu
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, PR China
| | - Jiandong Ye
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou, PR China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, PR China.
| |
Collapse
|
3
|
Briand-Mésange F, Gennero I, Salles J, Trudel S, Dahan L, Ausseil J, Payrastre B, Salles JP, Chap H. From Classical to Alternative Pathways of 2-Arachidonoylglycerol Synthesis: AlterAGs at the Crossroad of Endocannabinoid and Lysophospholipid Signaling. Molecules 2024; 29:3694. [PMID: 39125098 PMCID: PMC11314389 DOI: 10.3390/molecules29153694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid (EC), acting as a full agonist at both CB1 and CB2 cannabinoid receptors. It is synthesized on demand in postsynaptic membranes through the sequential action of phosphoinositide-specific phospholipase Cβ1 (PLCβ1) and diacylglycerol lipase α (DAGLα), contributing to retrograde signaling upon interaction with presynaptic CB1. However, 2-AG production might also involve various combinations of PLC and DAGL isoforms, as well as additional intracellular pathways implying other enzymes and substrates. Three other alternative pathways of 2-AG synthesis rest on the extracellular cleavage of 2-arachidonoyl-lysophospholipids by three different hydrolases: glycerophosphodiesterase 3 (GDE3), lipid phosphate phosphatases (LPPs), and two members of ecto-nucleotide pyrophosphatase/phosphodiesterases (ENPP6-7). We propose the names of AlterAG-1, -2, and -3 for three pathways sharing an ectocellular localization, allowing them to convert extracellular lysophospholipid mediators into 2-AG, thus inducing typical signaling switches between various G-protein-coupled receptors (GPCRs). This implies the critical importance of the regioisomerism of both lysophospholipid (LPLs) and 2-AG, which is the object of deep analysis within this review. The precise functional roles of AlterAGs are still poorly understood and will require gene invalidation approaches, knowing that both 2-AG and its related lysophospholipids are involved in numerous aspects of physiology and pathology, including cancer, inflammation, immune defenses, obesity, bone development, neurodegeneration, or psychiatric disorders.
Collapse
Affiliation(s)
- Fabienne Briand-Mésange
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
| | - Isabelle Gennero
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Juliette Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Psychiatrie D’urgences, de Crise et de Liaison, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, 31059 Toulouse, France
| | - Stéphanie Trudel
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France;
| | - Jérôme Ausseil
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Bernard Payrastre
- I2MC-Institute of Metabolic and Cardiovascular Diseases, INSERM UMR1297 and University of Toulouse III, 31400 Toulouse, France;
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, 31400 Toulouse, France
| | - Jean-Pierre Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Unité d’Endocrinologie et Maladies Osseuses, Hôpital des Enfants, 31059 Toulouse, France
| | - Hugues Chap
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Académie des Sciences, Inscriptions et Belles Lettres de Toulouse, Hôtel d’Assézat, 31000 Toulouse, France
| |
Collapse
|
4
|
Hejazian SM, Pirmoradi S, Zununi Vahed S, Kumar Roy R, Hosseiniyan Khatibi SM. An update on Glycerophosphodiester Phosphodiesterases; From Bacteria to Human. Protein J 2024; 43:187-199. [PMID: 38491249 DOI: 10.1007/s10930-024-10190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
The hydrolysis of deacylated glycerophospholipids into sn-glycerol 3-phosphate and alcohol is facilitated by evolutionarily conserved proteins known as glycerophosphodiester phosphodiesterases (GDPDs). These proteins are crucial for the pathogenicity of bacteria and for bioremediation processes aimed at degrading organophosphorus esters that pose a hazard to both humans and the environment. Additionally, GDPDs are enzymes that respond to multiple nutrients and could potentially serve as candidate genes for addressing deficiencies in zinc, iron, potassium, and especially phosphate in important plants like rice. In mammals, glycerophosphodiesterases (GDEs) play a role in regulating osmolytes, facilitating the biosynthesis of anandamine, contributing to the development of skeletal muscle, promoting the differentiation of neurons and osteoblasts, and influencing pathological states. Due to their capacity to enhance a plant's ability to tolerate various nutrient deficiencies and their potential as pharmaceutical targets in humans, GDPDs have received increased attention in recent times. This review provides an overview of the functions of GDPD families as vital and resilient enzymes that regulate various pathways in bacteria, plants, and humans.
Collapse
Affiliation(s)
| | - Saeed Pirmoradi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | | | | | - Seyed Mahdi Hosseiniyan Khatibi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Levy-Myers R, Daudelin D, Na CH, Sockanathan S. An independent regulator of global release pathways in astrocytes generates a subtype of extracellular vesicles required for postsynaptic function. SCIENCE ADVANCES 2023; 9:eadg2067. [PMID: 37352348 PMCID: PMC10289663 DOI: 10.1126/sciadv.adg2067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/18/2023] [Indexed: 06/25/2023]
Abstract
Extracellular vesicles (EVs) are heterogeneous in size, composition, and function. We show that the six-transmembrane protein glycerophosphodiester phosphodiesterase 3 (GDE3) regulates actin remodeling, a global EV biogenic pathway, to release an EV subtype with distinct functions. GDE3 is necessary and sufficient for releasing EVs containing annexin A1 and GDE3 from the plasma membrane via Wiskott-Aldrich syndrome protein family member 3 (WAVE3), a major regulator of actin dynamics. GDE3 is expressed in astrocytes but not neurons, yet mice lacking GDE3 [Gde3 knockout (KO)] have decreased miniature excitatory postsynaptic current (mEPSC) amplitudes in hippocampal CA1 neurons. EVs from cultured wild-type astrocytes restore mEPSC amplitudes in Gde3 KOs, while EVs from Gde3 KO astrocytes or astrocytes inhibited for WAVE3 actin branching activity do not. Thus, GDE3-WAVE3 is a nonredundant astrocytic pathway that remodels actin to release a functionally distinct EV subtype, supporting the concept that independent regulation of global EV release pathways differentially regulates EV signaling within the cellular EV landscape.
Collapse
Affiliation(s)
- Reuben Levy-Myers
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, PCTB1004, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Daniel Daudelin
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, PCTB1004, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, MRB 706, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Shanthini Sockanathan
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, PCTB1004, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Wu Y, Wang J, Ge L, Hu Q. Significance of a PTEN Mutational Status-Associated Gene Signature in the Progression and Prognosis of Endometrial Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5130648. [PMID: 35251475 PMCID: PMC8890874 DOI: 10.1155/2022/5130648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/10/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND PTEN mutations have been reported to be involved in the development and prognosis of endometrial carcinoma (EC). However, a prognostic gene signature associated with PTEN mutational status has not yet been developed. In this study, we generated a PTEN mutation-associated prognostic gene signature for EC. METHODS We obtained the single-nucleotide variation and transcriptomic profiling data from The Cancer Genome Atlas database as training data and implemented the least absolute shrinkage and selection operator (LASSO) Cox regression algorithm to establish a PTEN mutation-associated prognostic gene signature. The overall survival rates of the high-risk and low-risk groups were determined with the Kaplan-Meier (K-M) method, and the accuracy of risk score prediction was tested by using the receiver operating characteristic (ROC) curve. RESULTS The K-M curves revealed that the EC patients with PTEN mutations augured favorable survival outcomes. Differential expression analysis between the EC patients with PTEN mutation and wild-type PTEN identified 224 differentially expressed genes (DEGs). Eighty-four DEGs that manifested prognostic value were fitted into the LASSO-Cox analysis, and a PTEN gene signature with seven mutation-associated prognostic genes that showed robust prognostic ability was constructed; this signature was then successfully validated in the other two datasets from the cBioPortal database as well as with 60 clinical specimens. Furthermore, the PTEN mutation-associated prognostic gene signature proved to be an independent prognostic predictor of EC. Remarkably, the EC patients in the high-risk group were characterized by higher tumor stages and grades as well as lower tumor mutation burden with respect to EC, with a poor survival outcome. Collectively, the PTEN mutation-associated prognostic gene signature that we developed could now be used as a favorable prognostic biomarker for EC. CONCLUSION In summary, we developed and validated a prognostic predictor for EC associated with PTEN mutational status that may be used as a favorable prognostic biomarker and therapeutic target for EC.
Collapse
Affiliation(s)
- Ying Wu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lina Ge
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Effects of Cannabinoid Exposure during Neurodevelopment on Future Effects of Drugs of Abuse: A Preclinical Perspective. Int J Mol Sci 2021; 22:ijms22189989. [PMID: 34576153 PMCID: PMC8472179 DOI: 10.3390/ijms22189989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 12/29/2022] Open
Abstract
The endocannabinoid system plays a central role in the earliest stages of embryonic, postnatal and adolescent neurodevelopment. Aberrant activity of this system at key developmental phases has been shown to affect neural development. The aim of this review is to synthesise and analyse preclinical insights within rodent populations, focusing on the effects that perinatal (embryonic, gestational and early postnatal developmental stages) and adolescent (postnatal day 21–60) cannabinoid exposure impose across time on the subsequent activity of various drugs of abuse. Results in rodents show that exposure to cannabinoids during the perinatal and adolescent period can lead to multifaceted behavioural and molecular changes. In the perinatal period, significant effects of Δ9-THC exposure on subsequent opiate and amphetamine reward-related behaviours were observed primarily in male rodents. These effects were not extended to include cocaine or alcohol. In adolescence, various cannabinoid agonists were used experimentally. This array of cannabinoids demonstrated consistent effects on opioids across sex. In contrast, no significant effects were observed regarding the future activity of amphetamines and cocaine. However, these studies focused primarily on male rodents. In conclusion, numerous gaps and limitations are apparent in the current body of research. The sparsity of studies analysing the perinatal period must be addressed. Future research within both periods must also focus on delineating sex-specific effects, moving away from a male-centric focus. Studies should also aim to utilise more clinically relevant cannabinoid treatments.
Collapse
|
8
|
Lee K, Hardy DB. Metabolic Consequences of Gestational Cannabinoid Exposure. Int J Mol Sci 2021; 22:9528. [PMID: 34502436 PMCID: PMC8430813 DOI: 10.3390/ijms22179528] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022] Open
Abstract
Up to 20% of pregnant women ages 18-24 consume cannabis during pregnancy. Moreover, clinical studies indicate that cannabis consumption during pregnancy leads to fetal growth restriction (FGR), which is associated with an increased risk of obesity, type II diabetes (T2D), and cardiovascular disease in the offspring. This is of great concern considering that the concentration of Δ9- tetrahydrocannabinol (Δ9-THC), a major psychoactive component of cannabis, has doubled over the last decade and can readily cross the placenta and enter fetal circulation, with the potential to negatively impact fetal development via the endocannabinoid (eCB) system. Cannabis exposure in utero could also lead to FGR via placental insufficiency. In this review, we aim to examine current pre-clinical and clinical findings on the direct effects of exposure to cannabis and its constituents on fetal development as well as indirect effects, namely placental insufficiency, on postnatal metabolic diseases.
Collapse
Affiliation(s)
- Kendrick Lee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada;
- The Children’s Health Research Institute, The Lawson Health Research Institute, London, ON N6A 5C1, Canada
| | - Daniel B. Hardy
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada;
- The Children’s Health Research Institute, The Lawson Health Research Institute, London, ON N6A 5C1, Canada
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| |
Collapse
|
9
|
What Role Does the Endocannabinoid System Play in the Pathogenesis of Obesity? Nutrients 2021; 13:nu13020373. [PMID: 33530406 PMCID: PMC7911032 DOI: 10.3390/nu13020373] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
The endocannabinoid system (ECS) is an endogenous signaling system formed by specific receptors (cannabinoid type 1 and type 2 (CB1 and CB2)), their endogenous ligands (endocannabinoids), and enzymes involved in their synthesis and degradation. The ECS, centrally and peripherally, is involved in various physiological processes, including regulation of energy balance, promotion of metabolic process, food intake, weight gain, promotion of fat accumulation in adipocytes, and regulation of body homeostasis; thus, its overactivity may be related to obesity. In this review, we try to explain the role of the ECS and the impact of genetic factors on endocannabinoid system modulation in the pathogenesis of obesity, which is a global and civilizational problem affecting the entire world population regardless of age. We also emphasize that the search for potential new targets for health assessment, treatment, and the development of possible therapies in obesity is of great importance.
Collapse
|
10
|
Briand-Mésange F, Pons V, Allart S, Masquelier J, Chicanne G, Beton N, Payrastre B, Muccioli GG, Ausseil J, Davignon JL, Salles JP, Chap H. Glycerophosphodiesterase 3 (GDE3) is a lysophosphatidylinositol-specific ectophospholipase C acting as an endocannabinoid signaling switch. J Biol Chem 2020; 295:15767-15781. [PMID: 32917725 DOI: 10.1074/jbc.ra120.015278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Endocannabinoid signaling plays a regulatory role in various (neuro)biological functions. 2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid, and although its canonical biosynthetic pathway involving phosphoinositide-specific phospholipase C and diacylglycerol lipase α is known, alternative pathways remain unsettled. Here, we characterize a noncanonical pathway implicating glycerophosphodiesterase 3 (GDE3, from GDPD2 gene). Human GDE3 expressed in HEK293T cell membranes catalyzed the conversion of lysophosphatidylinositol (LPI) into monoacylglycerol and inositol-1-phosphate. The enzyme was equally active against 1-acyl and 2-acyl LPI. When using 2-acyl LPI, where arachidonic acid is the predominant fatty acid, LC-MS analysis identified 2-AG as the main product of LPI hydrolysis by GDE3. Furthermore, inositol-1-phosphate release into the medium occurred upon addition of LPI to intact cells, suggesting that GDE3 is actually an ecto-lysophospholipase C. In cells expressing G-protein-coupled receptor GPR55, GDE3 abolished 1-acyl LPI-induced signaling. In contrast, upon simultaneous ex-pression of GDE3 and cannabinoid receptor CB2, 2-acyl LPI evoked the same signal as that induced by 2-AG. These data strongly suggest that, in addition to degrading the GPR55 LPI ligand, GDE3 can act as a switch between GPR55 and CB2 signaling. Coincident with a major expression of both GDE3 and CB2 in the spleen, spleens from transgenic mice lacking GDE3 displayed doubling of LPI content compared with WT mice. Decreased production of 2-AG in whole spleen was also observed, supporting the in vivo relevance of our findings. These data thus open a new research avenue in the field of endocannabinoid generation and reinforce the view of GPR55 and LPI being genuine actors of the endocannabinoid system.
Collapse
Affiliation(s)
- Fabienne Briand-Mésange
- Center for Physiopathology of Toulouse Purpan, University of Toulouse, Toulouse, France; National Center for Scientific Research, Toulouse, France; National Institute of Health and Medical Research, Paul Sabatier University, Toulouse, France
| | - Véronique Pons
- Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; National Institute of Health and Medical Research, Paul Sabatier University, Toulouse, France
| | - Sophie Allart
- Center for Physiopathology of Toulouse Purpan, University of Toulouse, Toulouse, France; National Center for Scientific Research, Toulouse, France; National Institute of Health and Medical Research, Paul Sabatier University, Toulouse, France
| | - Julien Masquelier
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Catholic University of Louvain, Brussels, Belgium
| | - Gaëtan Chicanne
- Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; National Institute of Health and Medical Research, Paul Sabatier University, Toulouse, France
| | - Nicolas Beton
- Center for Physiopathology of Toulouse Purpan, University of Toulouse, Toulouse, France; National Center for Scientific Research, Toulouse, France; National Institute of Health and Medical Research, Paul Sabatier University, Toulouse, France
| | - Bernard Payrastre
- Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; National Institute of Health and Medical Research, Paul Sabatier University, Toulouse, France
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Catholic University of Louvain, Brussels, Belgium
| | - Jérôme Ausseil
- Center for Physiopathology of Toulouse Purpan, University of Toulouse, Toulouse, France; National Center for Scientific Research, Toulouse, France; National Institute of Health and Medical Research, Paul Sabatier University, Toulouse, France
| | - Jean-Luc Davignon
- Center for Physiopathology of Toulouse Purpan, University of Toulouse, Toulouse, France; National Center for Scientific Research, Toulouse, France; National Institute of Health and Medical Research, Paul Sabatier University, Toulouse, France
| | - Jean-Pierre Salles
- Center for Physiopathology of Toulouse Purpan, University of Toulouse, Toulouse, France; National Center for Scientific Research, Toulouse, France; National Institute of Health and Medical Research, Paul Sabatier University, Toulouse, France
| | - Hugues Chap
- Center for Physiopathology of Toulouse Purpan, University of Toulouse, Toulouse, France; National Center for Scientific Research, Toulouse, France; National Institute of Health and Medical Research, Paul Sabatier University, Toulouse, France.
| |
Collapse
|