1
|
Barrett KE, Mixdorf JC, Svedjehed J, Batterton J, Eagleburger J, Yan Y, Gagnon K, Aluicio-Sarduy E, Barnhart TE, Engle JW. Solid phase extraction chromatography-based radiochemical isolation of cyclotron-produced 51Mn from enriched 54Fe targets. Nucl Med Biol 2025; 142-143:108989. [PMID: 39729887 PMCID: PMC12048252 DOI: 10.1016/j.nucmedbio.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
We report DGA extraction chromatography isolation of 51Mn from isotopically enriched 54Fe. The method has been studied in semi-automated and automated realizations. The former achieves a decay corrected radiochemical yield of 78 ± 1 % (n = 3) and a separation factor of (1.0 ± 0.8) x 105 (n = 3). With GE HealthCare's Solid Target Platform (STP) and FASTlab the latter, fully automated method achieves a decay corrected radiochemical yield of 87 ± 1 % (n = 3) and a separation factor of (2.7 ± 0.9) x 104 (n = 3). Both setups efficiently isolate cyclotron-produced 51MnCl2 suitable for human administration as determined by developed Chemistry, Manufacturing, and Controls (CMC) acceptance criteria, and support exploration of 51Mn as a clinical diagnostic tool.
Collapse
Affiliation(s)
- Kendall E Barrett
- University of Wisconsin Department of Medical Physics, 1111 Highland Avenue, Madison, WI 53705, United States of America
| | - Jason C Mixdorf
- University of Wisconsin Department of Medical Physics, 1111 Highland Avenue, Madison, WI 53705, United States of America
| | | | - Jeanine Batterton
- University of Wisconsin Department of Radiology, 600 Highland Avenue, Madison, WI 53792, United States of America
| | - Jennifer Eagleburger
- University of Wisconsin Department of Radiology, 600 Highland Avenue, Madison, WI 53792, United States of America
| | - Yongjun Yan
- University of Wisconsin Department of Radiology, 600 Highland Avenue, Madison, WI 53792, United States of America
| | | | - Eduardo Aluicio-Sarduy
- University of Wisconsin Department of Medical Physics, 1111 Highland Avenue, Madison, WI 53705, United States of America
| | - Todd E Barnhart
- University of Wisconsin Department of Medical Physics, 1111 Highland Avenue, Madison, WI 53705, United States of America
| | - Jonathan W Engle
- University of Wisconsin Department of Medical Physics, 1111 Highland Avenue, Madison, WI 53705, United States of America; University of Wisconsin Department of Radiology, 600 Highland Avenue, Madison, WI 53792, United States of America.
| |
Collapse
|
2
|
Popa LG, Giurcaneanu C, Zaharia F, Grigoras A, Oprea AD, Beiu C. Dupilumab, a Potential Novel Treatment for Hailey-Hailey Disease. Clin Pract 2025; 15:48. [PMID: 40136584 PMCID: PMC11941320 DOI: 10.3390/clinpract15030048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Background/Objectives: Hailey-Hailey disease (HHD) is an uncommon genodermatosis with autosomal dominant inheritance caused by loss-of-function mutations in the ATP2C1 gene, which lead to disruption in keratinocyte adhesion and intraepidermal acantholysis. The chronic nature of the disease, its frequent recurrences and the lack of specific treatment pose real challenges in the long-term management of these patients. Recent studies have evaluated the effect of dupilumab, a human monoclonal antibody that blocks interleukin-4 and -13 receptor in refractory HHD, with very promising results. The aim of this study was to review the published data on the use of dupilumab for the treatment of HHD, to present our own experience in the field, and to discuss the mechanisms underlying dupilumab's beneficial effects in HHD and the future treatment perspectives. Methods: A search of the medical literature on the use of dupilumab in the treatment of HHD was conducted. The terms "Hailey-Hailey disease", "benign familial pemphigus", "benign chronic pemphigus", and "dupilumab" were searched across multiple databases (Medline, Chrocane Library, EMBASE) from inception until 30 September 2024. Results: To date, six manuscripts describing 11 refractory HHD cases treated with dupilumab have been published. All the patients experienced significant clinical improvement. The authors reported sustained disease quiescence in seven patients (64%), monitored for 5 to 24 months. None of the patients experienced adverse effects related to dupilumab. To the existing evidence, we add a new case of recalcitrant HHD successfully treated with dupilumab. Conclusions: Mounting evidence indicates dupilumab as a safe and efficient therapeutic alternative in patients with severe, refractory HHD. However, the long-term efficacy of dupilumab and the optimal therapeutic regimen for HHD are yet to be determined.
Collapse
Affiliation(s)
- Liliana Gabriela Popa
- Dermatology Department, Elias Emergency University Hospital, 17 Marasti Bd., District 1, 011461 Bucharest, Romania (A.D.O.)
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, District 1, 020021 Bucharest, Romania
| | - Calin Giurcaneanu
- Dermatology Department, Elias Emergency University Hospital, 17 Marasti Bd., District 1, 011461 Bucharest, Romania (A.D.O.)
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, District 1, 020021 Bucharest, Romania
| | - Florentina Zaharia
- Dermatology Department, CF 2 Clinical Hospital, 63 Marasti Bd., District 1, 011464 Bucharest, Romania
| | - Andreea Grigoras
- Dermatology Department, Elias Emergency University Hospital, 17 Marasti Bd., District 1, 011461 Bucharest, Romania (A.D.O.)
| | - Alexandra Denisa Oprea
- Dermatology Department, Elias Emergency University Hospital, 17 Marasti Bd., District 1, 011461 Bucharest, Romania (A.D.O.)
| | - Cristina Beiu
- Dermatology Department, Elias Emergency University Hospital, 17 Marasti Bd., District 1, 011461 Bucharest, Romania (A.D.O.)
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, District 1, 020021 Bucharest, Romania
| |
Collapse
|
3
|
Wu M, Wu C, Song T, Pan K, Wang Y, Liu Z. Structure and transport mechanism of the human calcium pump SPCA1. Cell Res 2023; 33:533-545. [PMID: 37258749 PMCID: PMC10313705 DOI: 10.1038/s41422-023-00827-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
Secretory-pathway Ca2+-ATPases (SPCAs) play critical roles in maintaining Ca2+ homeostasis, but the exact mechanism of SPCAs-mediated Ca2+ transport remains unclear. Here, we determined six cryo-electron microscopy (cryo-EM) structures of human SPCA1 (hSPCA1) in a series of intermediate states, revealing a near-complete conformational cycle. With the aid of molecular dynamics simulations, these structures offer a clear structural basis for Ca2+ entry and release in hSPCA1. We found that hSPCA1 undergoes unique conformational changes during ATP binding and phosphorylation compared to other well-studied P-type II ATPases. In addition, we observed a conformational distortion of the Ca2+-binding site induced by the separation of transmembrane helices 4L and 6, unveiling a distinct Ca2+ release mechanism. Particularly, we determined a structure of the long-sought CaE2P state of P-type IIA ATPases, providing valuable insights into the Ca2+ transport cycle. Together, these findings enhance our understanding of Ca2+ transport by hSPCA1 and broaden our knowledge of P-type ATPases.
Collapse
Affiliation(s)
- Mengqi Wu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Cang Wu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Tiefeng Song
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kewu Pan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, China.
| | - Zhongmin Liu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
4
|
Steimle BL, Bailey DK, Smith FM, Rosenblum SL, Kosman DJ. Calcium and the Ca-ATPase SPCA1 modulate plasma membrane abundance of ZIP8 and ZIP14 to regulate Mn(II) uptake in brain microvascular endothelial cells. J Biol Chem 2022; 298:102211. [PMID: 35787370 PMCID: PMC9352541 DOI: 10.1016/j.jbc.2022.102211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 11/12/2022] Open
Abstract
Manganese (II) accumulation in human brain microvascular endothelial cells is mediated by the metal-ion transporters ZRT IRT-like protein 8 (ZIP8) and ZRT IRT-like protein 14 (ZIP14). The plasma membrane occupancy of ZIP14, in particular, is increased in cells treated with Mn2+, lipopolysaccharide, or IL-6, but the mechanism of this regulation has not been elucidated. The calcium-transporting type 2C member 1 ATPase, SPCA1, is a Golgi-localized Ca2+-uptake transporter thought to support Golgi uptake of Mn2+ also. Here, we show using surface protein biotinylation, indirect immunofluorescence, and GFP-tagged proteins that cytoplasmic Ca2+ regulates ZIP8- and ZIP14-mediated manganese accumulation in human brain microvascular endothelial cells by increasing the plasma membrane localization of these transporters. We demonstrate that RNAi knockdown of SPCA1 expression results in an increase in cytoplasmic Ca2+ levels. In turn, we found increased cytoplasmic Ca2+ enhances membrane-localized ZIP8 and ZIP14 and a subsequent increase in 54Mn2+ uptake. Furthermore, overexpression of WT SPCA1 or a gain-of-function mutant resulted in a decrease in cytoplasmic Ca2+ and 54Mn2+ accumulation. While addition of Ca2+ positively regulated ZIP-mediated 54Mn2+ uptake, we show chelation of Ca2+ diminished manganese transport. In conclusion, the modulation of ZIP8 and ZIP14 membrane cycling by cytoplasmic calcium is a novel finding and provides new insight into the regulation of the uptake of Mn2+ and other divalent metal ions–mediated ZIP metal transporters.
Collapse
Affiliation(s)
- Brittany L Steimle
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, 955 Main St. Buffalo, NY 14203, USA
| | - Danielle K Bailey
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, 955 Main St. Buffalo, NY 14203, USA
| | - Frances M Smith
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, 955 Main St. Buffalo, NY 14203, USA
| | - Shaina L Rosenblum
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, 955 Main St. Buffalo, NY 14203, USA
| | - Daniel J Kosman
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, 955 Main St. Buffalo, NY 14203, USA.
| |
Collapse
|
5
|
Minasov G, Rosas-Lemus M, Shuvalova L, Inniss NL, Brunzelle JS, Daczkowski CM, Hoover P, Mesecar AD, Satchell KJF. Mn 2+ coordinates Cap-0-RNA to align substrates for efficient 2'- O-methyl transfer by SARS-CoV-2 nsp16. Sci Signal 2021; 14:scisignal.abh2071. [PMID: 34131072 PMCID: PMC8432954 DOI: 10.1126/scisignal.abh2071] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Virally encoded 2′-O-methyltransferases catalyze the last step in the capping of viral RNAs, which protects the RNAs from degradation and prevents them from triggering host defenses. Minasov et al. report structures of the SARS-CoV-2 methyltransferase, a heterodimeric complex of the enzyme nsp16 and its coactivator nsp10, in complex with a short, capped RNA (instead of the RNA cap analogs used to generate previous structures), the methyl donor SAM, and divalent metal cations. The metal ions and a four-residue insert of nsp16 were important for precisely aligning the RNA substrate in the active site for efficient catalysis. This insert is present in coronavirus but not in mammalian methyltransferases, suggesting this site as a potential target for the design of coronavirus-specific methyltransferase inhibitors. Capping of viral messenger RNAs is essential for efficient translation, for virus replication, and for preventing detection by the host cell innate response system. The SARS-CoV-2 genome encodes the 2′-O-methyltransferase nsp16, which, when bound to the coactivator nsp10, uses S-adenosylmethionine (SAM) as a donor to transfer a methyl group to the first ribonucleotide of the mRNA in the final step of viral mRNA capping. Here, we provide biochemical and structural evidence that this reaction requires divalent cations, preferably Mn2+, and a coronavirus-specific four-residue insert. We determined the x-ray structures of the SARS-CoV-2 2′-O-methyltransferase (the nsp16-nsp10 heterodimer) in complex with its reaction substrates, products, and divalent metal cations. These structural snapshots revealed that metal ions and the insert stabilize interactions between the capped RNA and nsp16, resulting in the precise alignment of the ribonucleotides in the active site. Comparison of available structures of 2′-O-methyltransferases with capped RNAs from different organisms revealed that the four-residue insert unique to coronavirus nsp16 alters the backbone conformation of the capped RNA in the binding groove, thereby promoting catalysis. This insert is highly conserved across coronaviruses, and its absence in mammalian methyltransferases makes this region a promising site for structure-guided drug design of selective coronavirus inhibitors.
Collapse
Affiliation(s)
- George Minasov
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA.,Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Monica Rosas-Lemus
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA.,Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ludmilla Shuvalova
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA.,Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nicole L Inniss
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA.,Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph S Brunzelle
- Northwestern Synchrotron Research Center, Life Sciences Collaborative Access Team, Northwestern University, Argonne, IL 60439, USA
| | - Courtney M Daczkowski
- Department of Biochemistry and Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Paul Hoover
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA
| | - Andrew D Mesecar
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.,Department of Biochemistry and Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA. .,Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
6
|
Crosstalk among Calcium ATPases: PMCA, SERCA and SPCA in Mental Diseases. Int J Mol Sci 2021; 22:ijms22062785. [PMID: 33801794 PMCID: PMC8000800 DOI: 10.3390/ijms22062785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022] Open
Abstract
Calcium in mammalian neurons is essential for developmental processes, neurotransmitter release, apoptosis, and signal transduction. Incorrectly processed Ca2+ signal is well-known to trigger a cascade of events leading to altered response to variety of stimuli and persistent accumulation of pathological changes at the molecular level. To counterbalance potentially detrimental consequences of Ca2+, neurons are equipped with sophisticated mechanisms that function to keep its concentration in a tightly regulated range. Calcium pumps belonging to the P-type family of ATPases: plasma membrane Ca2+-ATPase (PMCA), sarco/endoplasmic Ca2+-ATPase (SERCA) and secretory pathway Ca2+-ATPase (SPCA) are considered efficient line of defense against abnormal Ca2+ rises. However, their role is not limited only to Ca2+ transport, as they present tissue-specific functionality and unique sensitive to the regulation by the main calcium signal decoding protein—calmodulin (CaM). Based on the available literature, in this review we analyze the contribution of these three types of Ca2+-ATPases to neuropathology, with a special emphasis on mental diseases.
Collapse
|
7
|
Klemens CA, Chulkov EG, Wu J, Hye Khan MA, Levchenko V, Flister MJ, Imig JD, Kriegel AJ, Palygin O, Staruschenko A. Loss of Chloride Channel 6 (CLC-6) Affects Vascular Smooth Muscle Contractility and Arterial Stiffness via Alterations to Golgi Calcium Stores. Hypertension 2021; 77:582-593. [PMID: 33390052 DOI: 10.1161/hypertensionaha.120.16589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Genome-wide association studies have found a number of potential genes involved in blood pressure regulation; however, the functional role of many of these candidates has yet to be established. One such candidate gene is CLCN6, which encodes the transmembrane protein, chloride channel 6 (ClC-6). Although the CLCN6 locus has been widely associated with human blood pressure regulation, the mechanistic role of ClC-6 in blood pressure homeostasis at the molecular, cellular, and physiological levels is completely unknown. In this study, we demonstrate that rats with a functional knockout of ClC-6 on the Dahl Salt-Sensitive rat background (SS-Clcn6) have lower diastolic but not systolic blood pressures. The effect of diastolic blood pressure attenuation was independent of dietary salt exposure in knockout animals. Moreover, SS-Clcn6 rats are protected from hypertension-induced cardiac hypertrophy and arterial stiffening; however, they have impaired vasodilation and dysregulated intracellular calcium handling. ClC-6 is highly expressed in vascular smooth muscle cells where it is targeted to the Golgi apparatus. Using bilayer electrophysiology, we provide evidence that recombinant human ClC-6 protein can function as a channel. Last, we demonstrate that loss of ClC-6 function reduces Golgi calcium stores, which may play a previously unidentified role in vascular contraction and relaxation signaling in vascular smooth muscle cells. Collectively, these data indicate that ClC-6 may modulate blood pressure by regulating Golgi calcium reserves, which in turn contribute to vascular smooth muscle function.
Collapse
Affiliation(s)
- Christine A Klemens
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin.,Cardiovascular Center (C.A.K., J.W., J.D.I., O.P., A.S.), Medical College of Wisconsin
| | - Evgeny G Chulkov
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin.,Department of Cell Biology, Neurobiology and Anatomy (E.G.C.), Medical College of Wisconsin
| | - Jing Wu
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin.,Cardiovascular Center (C.A.K., J.W., J.D.I., O.P., A.S.), Medical College of Wisconsin
| | - Md Abdul Hye Khan
- Department of Pharmacology (M.A.H.K., J.D.I.), Medical College of Wisconsin
| | - Vladislav Levchenko
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin
| | - Michael J Flister
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin
| | - John D Imig
- Department of Pharmacology (M.A.H.K., J.D.I.), Medical College of Wisconsin.,Cardiovascular Center (C.A.K., J.W., J.D.I., O.P., A.S.), Medical College of Wisconsin
| | - Alison J Kriegel
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin
| | - Oleg Palygin
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin.,Cardiovascular Center (C.A.K., J.W., J.D.I., O.P., A.S.), Medical College of Wisconsin
| | - Alexander Staruschenko
- From the Department of Physiology (C.A.K., E.G.C., J.W., V.L., M.J.F., A.J.K., O.P., A.S.), Medical College of Wisconsin.,Cardiovascular Center (C.A.K., J.W., J.D.I., O.P., A.S.), Medical College of Wisconsin.,Clement J. Zablocki VA Medical Center, Milwaukee (A.S.)
| |
Collapse
|
8
|
Lim YK, Cheung K, Dang X, Roberts SB, Wang X, Thiyagarajan V. DNA methylation changes in response to ocean acidification at the time of larval metamorphosis in the edible oyster, Crassostrea hongkongensis. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105217. [PMID: 33276167 DOI: 10.1016/j.marenvres.2020.105217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 06/12/2023]
Abstract
Unprecedented rate of increased CO2 level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g. some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors including OA can influence the addition and removal of methyl groups through epigenetic modification (e.g. DNA methylation) process to turn gene expression "on or off" as part of a rapid adaptive mechanism to cope with OA. In this study, we tested the above hypothesis through testing the effect of OA, using decreased pH 7.4 as proxy, on DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1, however over one-third of the larvae raised at pH 7.4 failed to attach on optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.
Collapse
Affiliation(s)
- Yong-Kian Lim
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Khan Cheung
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xin Dang
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Steven B Roberts
- School of Aquatic and Fishery Sciences, University of Washington, 1122, NE Boat Street, Seattle, WA, USA
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| |
Collapse
|
9
|
Viinikangas T, Khosrowabadi E, Kellokumpu S. N-Glycan Biosynthesis: Basic Principles and Factors Affecting Its Outcome. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:237-257. [PMID: 34687012 DOI: 10.1007/978-3-030-76912-3_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Carbohydrate chains are the most abundant and diverse of nature's biopolymers and represent one of the four fundamental macromolecular building blocks of life together with proteins, nucleic acids, and lipids. Indicative of their essential roles in cells and in multicellular organisms, genes encoding proteins associated with glycosylation account for approximately 2% of the human genome. It has been estimated that 50-80% of all human proteins carry carbohydrate chains-glycans-as part of their structure. Despite cells utilize only nine different monosaccharides for making their glycans, their order and conformational variation in glycan chains together with chain branching differences and frequent post-synthetic modifications can give rise to an enormous repertoire of different glycan structures of which few thousand is estimated to carry important structural or functional information for a cell. Thus, glycans are immensely versatile encoders of multicellular life. Yet, glycans do not represent a random collection of unpredictable structures but rather, a collection of predetermined but still dynamic entities that are present at defined quantities in each glycosylation site of a given protein in a cell, tissue, or organism.In this chapter, we will give an overview of what is currently known about N-glycan synthesis in higher eukaryotes, focusing not only on the processes themselves but also on factors that will affect or can affect the final outcome-the dynamicity and heterogeneity of the N-glycome. We hope that this review will help understand the molecular details underneath this diversity, and in addition, be helpful for those who plan to produce optimally glycosylated antibody-based therapeutics.
Collapse
Affiliation(s)
- Teemu Viinikangas
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Elham Khosrowabadi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
10
|
Lim YK, Cheung K, Dang X, Roberts SB, Wang X, Thiyagarajan V. DNA methylation changes in response to ocean acidification at the time of larval metamorphosis in the edible oyster, Crassostrea hongkongensis. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105214. [PMID: 33221553 DOI: 10.1016/j.marenvres.2020.105214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Unprecedented rate of increased CO2 level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g. some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors including OA can influence the addition and removal of methyl groups through epigenetic modification (e.g. DNA methylation) process to turn gene expression "on or off" as part of a rapid adaptive mechanism to cope with OA. In this study, we tested the above hypothesis through testing the effect of OA, using decreased pH 7.4 as proxy, on DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1, however over one-third of the larvae raised at pH 7.4 failed to attach on optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.
Collapse
Affiliation(s)
- Yong-Kian Lim
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Khan Cheung
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Xin Dang
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Steven B Roberts
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, WA, USA
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China.
| |
Collapse
|
11
|
De Loof A, Schoofs L. Two Undervalued Functions of the Golgi Apparatus: Removal of Excess Ca 2+ and Biosynthesis of Farnesol-Like Sesquiterpenoids, Possibly as Ca 2+-Pump Agonists and Membrane "Fluidizers-Plasticizers". Front Physiol 2020; 11:542879. [PMID: 33178030 PMCID: PMC7593688 DOI: 10.3389/fphys.2020.542879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
The extensive literature dealing with the Golgi system emphasizes its role in protein secretion and modification, usually without specifying from which evolutionary ancient cell physiological necessity such secretion originated. Neither does it specify which functional requirements the secreted proteins must meet. From a reinterpretation of some classical and recent data gained mainly, but not exclusively, from (insect) endocrinology, the view emerged that the likely primordial function of the rough endoplasmic reticulum (RER)–Golgi complex in all eukaryotes was not the secretion of any type of protein but the removal of toxic excess Ca2+ from the cytoplasm. Such activity requires the concurrent secretion of large amounts of Ca2+-carrying/transporting proteins acting as a micro-conveyor belt system inside the RER–Golgi. Thus, (fitness increasing) protein secretion is subordinate to Ca2+ removal. Milk with its high content of protein and Ca2+ (60–90 mM vs. 100 nM in unstimulated mammary gland cells) is an extreme example. The sarco(endo)plasmatic reticulum Ca2+-ATPases (SERCAs) and SPCA1a Ca2+/Mn2+ transport ATPases are major players in Ca2+ removal through the Golgi. Both are blocked by the sesquiterpenoid thapsigargin. This strengthens the hypothesis (2014) that endogenous farnesol-like sesquiterpenoids (FLSs) may act as the long sought for but still unidentified agonist(s) for Ca2+-pumps in both the ER and Golgi. A second putative function also emerges. The fusion of both the incoming and outgoing transport vesicles, respectively, at the cis- and trans- side of Golgi stacks, with the membrane system requiring high flexibility and fast self-closing of the involved membranes. These properties may—possibly partially—be controlled by endogenous hydrophobic membrane “fluidizers” for which FLSs are prime candidates. A recent reexamination of unexplained classical data suggests that they are likely synthesized by the Golgi itself. This game-changing hypothesis is endorsed by several arguments and data, some of which date from 1964, that the insect corpus allatum (CA), which is the major production site of farnesol-esters, has active Golgi systems. Thus, in addition to secreting FLS, in particular juvenile hormone(s), it also secretes a protein(s) or peptide(s) with thus far unknown function. This paper suggests answers to various open questions in cell physiology and general endocrinology.
Collapse
Affiliation(s)
- Arnold De Loof
- Research Group of Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Research Group of Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Mastrangeli R, Audino MC, Palinsky W, Broly H, Bierau H. The Formidable Challenge of Controlling High Mannose-Type N-Glycans in Therapeutic mAbs. Trends Biotechnol 2020; 38:1154-1168. [DOI: 10.1016/j.tibtech.2020.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023]
|
13
|
Foulquier F, Legrand D. Biometals and glycosylation in humans: Congenital disorders of glycosylation shed lights into the crucial role of Golgi manganese homeostasis. Biochim Biophys Acta Gen Subj 2020; 1864:129674. [PMID: 32599014 DOI: 10.1016/j.bbagen.2020.129674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022]
Abstract
About half of the eukaryotic proteins bind biometals that participate in their structure and functions in virtually all physiological processes, including glycosylation. After reviewing the biological roles and transport mechanisms of calcium, magnesium, manganese, zinc and cobalt acting as cofactors of the metalloproteins involved in sugar metabolism and/or glycosylation, the paper will outline the pathologies resulting from a dysregulation of these metals homeostasis and more particularly Congenital Disorders of Glycosylation (CDGs) caused by ion transporter defects. Highlighting of CDGs due to defects in SLC39A8 (ZIP8) and TMEM165, two proteins transporting manganese from the extracellular space to cytosol and from cytosol to the Golgi lumen, respectively, has emphasized the importance of manganese homeostasis for glycosylation. Based on our current knowledge of TMEM165 structure and functions, this review will draw a picture of known and putative mechanisms regulating manganese homeostasis in the secretory pathway.
Collapse
Affiliation(s)
- François Foulquier
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille F-59000, France
| | - Dominique Legrand
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille F-59000, France.
| |
Collapse
|
14
|
Roy AS, Miskinyte S, Garat A, Hovnanian A, Krzewinski-Recchi MA, Foulquier F. SPCA1 governs the stability of TMEM165 in Hailey-Hailey disease. Biochimie 2020; 174:159-170. [PMID: 32335229 DOI: 10.1016/j.biochi.2020.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
TMEM165 is a Golgi protein whose deficiency causes a Congenital Disorder of Glycosylation (CDG). We have demonstrated that Mn2+ supplementation could suppress the glycosylation defects observed in TMEM165-deficient cells and that TMEM165 was a Mn2+-sensitive protein. In the Golgi, the other transmembrane protein capable to regulate Mn2+/Ca2+ homeostasis is SPCA1, encoded by the ATP2C1 gene. A loss of one copy of the ATP2C1 gene leads to Hailey-Hailey Disease (HHD), an acantholytic skin disorder in Humans. Our latest results suggest an unexpected functional link between SPCA1 and TMEM165. In order to clarify this link in case of partial SPCA1 deficiency, HHD fibroblasts were used to assess TMEM165 expression, subcellular localization and Mn2+-induced degradation. No differences were observed regarding TMEM165 expression and localization in HHD patients' fibroblasts compared to control fibroblasts. Nevertheless, we demonstrated both for fibroblasts and keratinocytes that TMEM165 expression is more sensitive to MnCl2 exposure in HHD cells than in control cells. We linked, using ICP-MS and GPP130 as a Golgi Mn2+ sensor, this higher Mn2+-induced sensitivity to a cytosolic Mn accumulation in MnCl2 supplemented HHD fibroblasts. Altogether, these results link the function of SPCA1 to the stability of TMEM165 in a pathological context of Hailey-Hailey disease.
Collapse
Affiliation(s)
- Anne-Sophie Roy
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Snaigune Miskinyte
- Laboratory of Genetic Skin Diseases, INSERM UMR1163 Imagine Institute, Paris, France; University Paris Descartes - Sorbonne Paris Cité, Paris, France
| | - Anne Garat
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé Humaine, F-59000, Lille, France
| | - Alain Hovnanian
- Laboratory of Genetic Skin Diseases, INSERM UMR1163 Imagine Institute, Paris, France; University Paris Descartes - Sorbonne Paris Cité, Paris, France; Department of Genetics, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, France
| | - Marie-Ange Krzewinski-Recchi
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - François Foulquier
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|
15
|
ER-Golgi membrane contact sites. Biochem Soc Trans 2020; 48:187-197. [DOI: 10.1042/bst20190537] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Abstract
Membrane contact sites (MCSs) are sites where the membranes of two different organelles come into close apposition (10–30 nm). Different classes of proteins populate MCSs including factors that act as tethers between the two membranes, proteins that use the MCSs for their function (mainly lipid or ion exchange), and regulatory proteins and enzymes that can act in trans across the MCSs. The ER-Golgi MCSs were visualized by electron microscopists early in the sixties but have remained elusive for decades due to a lack of suitable methodological approaches. Here we report recent progress in the study of this class of MCSs that has led to the identification of their main morphological features and of some of their components and roles. Among these, lipid transfer proteins and lipid exchange have been the most studied and understood so far. However, many unknowns remain regarding their regulation and their role in controlling key TGN functions such as sorting and trafficking as well as their relevance in physiological and pathological conditions.
Collapse
|
16
|
Abstract
Maintenance of the main Golgi functions, glycosylation and sorting, is dependent on the unique Golgi pH microenvironment that is thought to be set by the balance between the rates of V-ATPase-mediated proton pumping and its leakage back to the cytoplasm via an unknown pathway. The concentration of other ions, such as chloride, potassium, calcium, magnesium, and manganese, is also important for Golgi homeostasis and dependent on the transport activity of other ion transporters present in the Golgi membranes. During the last decade, several new disorders have been identified that are caused by, or are associated with, dysregulated Golgi pH and ion homeostasis. Here, we will provide an updated overview on these disorders and the proteins involved. We will also discuss other disorders for which the molecular defects remain currently uncertain but which potentially involve proteins that regulate Golgi pH or ion homeostasis.
Collapse
|
17
|
O'Grady S, Morgan MP. Calcium transport and signalling in breast cancer: Functional and prognostic significance. Semin Cancer Biol 2019; 72:19-26. [PMID: 31866475 DOI: 10.1016/j.semcancer.2019.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/03/2023]
Abstract
Comprised of a complex network of numerous intertwining pathways, the Ca2+ signalling nexus is an essential mediator of many normal cellular activities. Like many other such functions, the normal physiological activity of Ca2+ signalling is frequently co-opted and reshaped in cases of breast cancer, creating a potent oncogenic drive within the affected cell population. Such modifications can occur within pathways mediating either Ca2+ import (e.g. TRP channels, ORAI-STIM1) or Ca2+ export (e.g. PMCA), indicating that both increases and decreases within cellular Ca2+ levels have the potential to increase the malignant potential of a cell. Increased understanding of these pathways may offer clinical benefit in terms of both prognosis and treatment; patient survival has been linked to expression levels of certain Ca2+ transport proteins, whilst selective targeting of these factors with novel anti-cancer agents has demonstrated a variety of anti-tumour effects in in vitro studies. In addition, the activity of several Ca2+ signalling pathways has been shown to influence chemotherapy response, suggesting that a synergistic approach coupling traditional chemotherapy with Ca2+ targeting agents may also improve patient outcome. As such, targeted modulation of these pathways represents a novel approach in precision medicine and breast cancer therapy.
Collapse
Affiliation(s)
- Shane O'Grady
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Maria P Morgan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
18
|
Masone MC, Morra V, Venditti R. Illuminating the membrane contact sites between the endoplasmic reticulum and the trans-Golgi network. FEBS Lett 2019; 593:3135-3148. [PMID: 31610025 DOI: 10.1002/1873-3468.13639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022]
Abstract
Membrane contact sites (MCSs) between different organelles have been identified and extensively studied over the last decade. Several classes of MCSs have now well-established roles, although the contacts between the endoplasmic reticulum (ER) and the trans-side of the Golgi network (TGN) have long remained elusive. Until recently, the study of ER-TGN contact sites has represented a major challenge in the field, as a result of the lack of suitable visualization and isolation techniques. Only in the last 5 years has the combination of advanced technologies and innovative approaches permitted the identification of new molecular players and the functions of ER-TGN MCSs that couple lipid metabolism and anterograde transport. Although much has yet to be discovered, it is now established that ER-TGN MCSs control phosphatidyl-4-phosphate homeostasis by coupling the cis and the trans activity of the ER-resident 4-phosphatase Sac1. In this review, we focus on recent advances on the composition and function of ER-TGN MCSs.
Collapse
Affiliation(s)
| | - Valentina Morra
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Rossella Venditti
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Napoli Federico II, Naples, Italy
| |
Collapse
|
19
|
Muncanovic D, Justesen MH, Preisler SS, Pedersen PA. Characterization of Hailey-Hailey Disease-mutants in presence and absence of wild type SPCA1 using Saccharomyces cerevisiae as model organism. Sci Rep 2019; 9:12442. [PMID: 31455819 PMCID: PMC6712213 DOI: 10.1038/s41598-019-48866-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/12/2019] [Indexed: 01/07/2023] Open
Abstract
Hailey-Hailey disease is an autosomal genetic disease caused by mutations in one of the two ATP2C1 alleles encoding the secretory pathway Ca2+/Mn2+-ATPase, hSPCA1. The disease almost exclusively affects epidermis, where it mainly results in acantholysis of the suprabasal layers. The etiology of the disease is complex and not well understood. We applied a yeast based complementation system to characterize fourteen disease-causing ATP2C1 missense mutations in presence or absence of wild type ATP2C1 or ATP2A2, encoding SERCA2. In our yeast model system, mutations in ATP2C1 affected Mn2+ transport more than Ca2+ transport as twelve out of fourteen mutations were unable to complement Mn2+ sensitivity while thirteen out of fourteen to some extent complemented the high Ca2+requirement. Nine out of fourteen mutations conferred a cold sensitive complementation capacity. In absence of a wild type ATP2C1 allele, twelve out of fourteen mutations induced an unfolded protein response indicating that in vivo folding of hSPCA1 is sensitive to disease causing amino acid substitutions and four of the fourteen mutations caused the hSPCA1 protein to accumulate in the vacuolar membrane. Co-expression of either wild type ATP2C1 or ATP2A2 prevented induction of the unfolded protein response and hSPCA1 mis-localization.
Collapse
Affiliation(s)
- Daniel Muncanovic
- Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, OE, Denmark
| | - Mette Heberg Justesen
- Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, OE, Denmark
| | - Sarah Spruce Preisler
- Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, OE, Denmark
| | - Per Amstrup Pedersen
- Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, OE, Denmark.
| |
Collapse
|
20
|
von Blume J, Hausser A. Lipid-dependent coupling of secretory cargo sorting and trafficking at the trans-Golgi network. FEBS Lett 2019; 593:2412-2427. [PMID: 31344259 PMCID: PMC8048779 DOI: 10.1002/1873-3468.13552] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022]
Abstract
In eukaryotic cells, the trans-Golgi network (TGN) serves as a platform for secretory cargo sorting and trafficking. In recent years, it has become evident that a complex network of lipid–lipid and lipid–protein interactions contributes to these key functions. This review addresses the role of lipids at the TGN with a particular emphasis on sphingolipids and diacylglycerol. We further highlight how these lipids couple secretory cargo sorting and trafficking for spatiotemporal coordination of protein transport to the plasma membrane.
Collapse
Affiliation(s)
- Julia von Blume
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Germany
| |
Collapse
|
21
|
Fernandes J, Chandler JD, Lili LN, Uppal K, Hu X, Hao L, Go YM, Jones DP. Transcriptome Analysis Reveals Distinct Responses to Physiologic versus Toxic Manganese Exposure in Human Neuroblastoma Cells. Front Genet 2019; 10:676. [PMID: 31396262 PMCID: PMC6668488 DOI: 10.3389/fgene.2019.00676] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022] Open
Abstract
Manganese (Mn) is an essential trace element, which also causes neurotoxicity in exposed occupational workers. Mn causes mitochondrial toxicity; however, little is known about transcriptional responses discriminated by physiological and toxicological levels of Mn. Identification of such mechanisms could provide means to evaluate risk of Mn toxicity and also potential avenues to protect against adverse effects. To study the Mn dose-response effects on transcription, analyzed by RNA-Seq, we used human SH-SY5Y neuroblastoma cells exposed for 5 h to Mn (0 to 100 μM), a time point where no immediate cell death occurred at any of the doses. Results showed widespread effects on abundance of protein-coding genes for metabolism of reactive oxygen species, energy sensing, glycolysis, and protein homeostasis including the unfolded protein response and transcriptional regulation. Exposure to a concentration (10 μM Mn for 5 h) that did not result in cell death after 24-h increased abundance of differentially expressed genes (DEGs) in the protein secretion pathway that function in protein trafficking and cellular homeostasis. These include BET1 (Golgi vesicular membrane-trafficking protein), ADAM10 (ADAM metallopeptidase domain 10), and ARFGAP3 (ADP-ribosylation factor GTPase-activating protein 3). In contrast, 5-h exposure to 100 μM Mn, a concentration that caused cell death after 24 h, increased abundance of DEGs for components of the mitochondrial oxidative phosphorylation pathway. Integrated pathway analysis results showed that protein secretion gene set was associated with amino acid metabolites in response to 10 μM Mn, while oxidative phosphorylation gene set was associated with energy, lipid, and neurotransmitter metabolites at 100 μM Mn. These results show that differential effects of Mn occur at a concentration which does not cause subsequent cell death compared to a concentration that causes subsequent cell death. If these responses translate to effects on the secretory pathway and mitochondrial functions in vivo, differential activities of these systems could provide a sensitive basis to discriminate sub-toxic and toxic environmental and occupational Mn exposures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Dean P. Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
22
|
Kellokumpu S. Golgi pH, Ion and Redox Homeostasis: How Much Do They Really Matter? Front Cell Dev Biol 2019; 7:93. [PMID: 31263697 PMCID: PMC6584808 DOI: 10.3389/fcell.2019.00093] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Exocytic and endocytic compartments each have their own unique luminal ion and pH environment that is important for their normal functioning. A failure to maintain this environment - the loss of homeostasis - is not uncommon. In the worst case, all the main Golgi functions, including glycosylation, membrane trafficking and protein sorting, can be perturbed. Several factors contribute to Golgi homeostasis. These include not only ions such as H+, Ca2+, Mg2+, Mn2+, but also Golgi redox state and nitric oxide (NO) levels, both of which are dependent on the oxygen levels in the cells. Changes to any one of these factors have consequences on Golgi functions, the nature of which can be dissimilar or similar depending upon the defects themselves. For example, altered Golgi pH homeostasis gives rise to Cutis laxa disease, in which glycosylation and membrane trafficking are both affected, while altered Ca2+ homeostasis due to the mutated SCPA1 gene in Hailey-Hailey disease, perturbs various protein sorting, proteolytic cleavage and membrane trafficking events in the Golgi. This review gives an overview of the molecular machineries involved in the maintenance of Golgi ion, pH and redox homeostasis, followed by a discussion of the organelle dysfunction and disease that frequently result from their breakdown. Congenital disorders of glycosylation (CDGs) are discussed only when they contribute directly to Golgi pH, ion or redox homeostasis. Current evidence emphasizes that, rather than being mere supporting factors, Golgi pH, ion and redox homeostasis are in fact key players that orchestrate and maintain all Golgi functions.
Collapse
Affiliation(s)
- Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
23
|
Pakdel M, von Blume J. Exploring new routes for secretory protein export from the trans-Golgi network. Mol Biol Cell 2019; 29:235-240. [PMID: 29382805 PMCID: PMC5996961 DOI: 10.1091/mbc.e17-02-0117] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
Sorting of soluble proteins for transport to intracellular compartments and for secretion from cells is essential for cell and tissue homeostasis. The trans-Golgi network (TGN) is a major sorting station that sorts secretory proteins into specific carriers to transport them to their final destinations. The sorting of lysosomal hydrolases at the TGN by the mannose 6-phosphate receptor is well understood. The recent discovery of a Ca2+-based sorting of secretory cargo at the TGN is beginning to uncover the mechanism by which cells sort secretory cargoes from Golgi residents and cargoes destined to the other cellular compartments. This Ca2+-based sorting involves the cytoplasmic actin cytoskeleton, which through membrane anchored Ca2+ ATPase SPCA1 and the luminal Ca2+ binding protein Cab45 sorts of a subset of secretory proteins at the TGN. We present this discovery and highlight important challenges that remain unaddressed in the overall pathway of cargo sorting at the TGN.
Collapse
Affiliation(s)
- Mehrshad Pakdel
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Julia von Blume
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
24
|
Nguyen Dang A, Mun M, Rose CM, Ahyow P, Meier A, Sandoval W, Yuk IH. Interaction of cell culture process parameters for modulating mAb afucosylation. Biotechnol Bioeng 2019; 116:831-845. [DOI: 10.1002/bit.26908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/08/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
| | - Melissa Mun
- Cell Culture, PTD, GenentechSouth San Francisco California
| | - Christopher M. Rose
- Microchemistry, Proteomics and Lipidomics, gRED, GenentechSouth San Francisco California
| | - Patrick Ahyow
- Cell Culture, PTD, GenentechSouth San Francisco California
| | - Angela Meier
- Cell Culture, PTD, GenentechSouth San Francisco California
| | - Wendy Sandoval
- Microchemistry, Proteomics and Lipidomics, gRED, GenentechSouth San Francisco California
| | - Inn H. Yuk
- Cell Culture, PTD, GenentechSouth San Francisco California
| |
Collapse
|
25
|
Mennerich D, Kellokumpu S, Kietzmann T. Hypoxia and Reactive Oxygen Species as Modulators of Endoplasmic Reticulum and Golgi Homeostasis. Antioxid Redox Signal 2019; 30:113-137. [PMID: 29717631 DOI: 10.1089/ars.2018.7523] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Eukaryotic cells execute various functions in subcellular compartments or organelles for which cellular redox homeostasis is of importance. Apart from mitochondria, hypoxia and stress-mediated formation of reactive oxygen species (ROS) were shown to modulate endoplasmic reticulum (ER) and Golgi apparatus (GA) functions. Recent Advances: Research during the last decade has improved our understanding of disulfide bond formation, protein glycosylation and secretion, as well as pH and redox homeostasis in the ER and GA. Thus, oxygen (O2) itself, NADPH oxidase (NOX) formed ROS, and pH changes appear to be of importance and indicate the intricate balance of intercompartmental communication. CRITICAL ISSUES Although the interplay between hypoxia, ER stress, and Golgi function is evident, the existence of more than 20 protein disulfide isomerase family members and the relative mild phenotypes of, for example, endoplasmic reticulum oxidoreductin 1 (ERO1)- and NOX4-knockout mice clearly suggest the existence of redundant and alternative pathways, which remain largely elusive. FUTURE DIRECTIONS The identification of these pathways and the key players involved in intercompartmental communication needs suitable animal models, genome-wide association, as well as proteomic studies in humans. The results of those studies will be beneficial for the understanding of the etiology of diseases such as type 2 diabetes, Alzheimer's disease, and cancer, which are associated with ROS, protein aggregation, and glycosylation defects.
Collapse
Affiliation(s)
- Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| |
Collapse
|
26
|
Houdou M, Lebredonchel E, Garat A, Duvet S, Legrand D, Decool V, Klein A, Ouzzine M, Gasnier B, Potelle S, Foulquier F. Involvement of thapsigargin- and cyclopiazonic acid-sensitive pumps in the rescue of TMEM165-associated glycosylation defects by Mn 2. FASEB J 2018; 33:2669-2679. [PMID: 30307768 DOI: 10.1096/fj.201800387r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Congenital disorders of glycosylation are severe inherited diseases in which aberrant protein glycosylation is a hallmark. Transmembrane protein 165 (TMEM165) is a novel Golgi transmembrane protein involved in type II congenital disorders of glycosylation. Although its biologic function is still a controversial issue, we have demonstrated that the Golgi glycosylation defect due to TMEM165 deficiency resulted from a Golgi Mn2+ homeostasis defect. The goal of this study was to delineate the cellular pathway by which extracellular Mn2+ rescues N-glycosylation in TMEM165 knockout (KO) cells. We first demonstrated that after extracellular exposure, Mn2+ uptake by HEK293 cells at the plasma membrane did not rely on endocytosis but was likely done by plasma membrane transporters. Second, we showed that the secretory pathway Ca2+-ATPase 1, also known to mediate the influx of cytosolic Mn2+ into the lumen of the Golgi apparatus, is not crucial for the Mn2+-induced rescue glycosylation of lysosomal-associated membrane protein 2 (LAMP2). In contrast, our results demonstrate the involvement of cyclopiazonic acid- and thapsigargin (Tg)-sensitive pumps in the rescue of TMEM165-associated glycosylation defects by Mn2+. Interestingly, overexpression of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 2b isoform in TMEM165 KO cells partially rescues the observed LAMP2 glycosylation defect. Overall, this study indicates that the rescue of Golgi N-glycosylation defects in TMEM165 KO cells by extracellular Mn2+ involves the activity of Tg and cyclopiazonic acid-sensitive pumps, probably the SERCA pumps.-Houdou, M., Lebredonchel, E., Garat, A., Duvet, S., Legrand, D., Decool, V., Klein, A., Ouzzine, M., Gasnier, B., Potelle, S., Foulquier, F. Involvement of thapsigargin- and cyclopiazonic acid-sensitive pumps in the rescue of TMEM165-associated glycosylation defects by Mn2+.
Collapse
Affiliation(s)
- Marine Houdou
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), University of Lille, Lille, France
| | - Elodie Lebredonchel
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), University of Lille, Lille, France
| | - Anne Garat
- Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, Equipe d'Accueil (EA) 4483, Impact de l'Environnement Chimique sur la Santé Humaine (IMPECS), University of Lille, Lille, France
| | - Sandrine Duvet
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), University of Lille, Lille, France
| | - Dominique Legrand
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), University of Lille, Lille, France
| | - Valérie Decool
- Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, Equipe d'Accueil (EA) 4483, Impact de l'Environnement Chimique sur la Santé Humaine (IMPECS), University of Lille, Lille, France
| | - André Klein
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), University of Lille, Lille, France
| | - Mohamed Ouzzine
- Unité Mixte de Recherche (UMR) 7365, Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine, Biopôle-Faculté de Médecine, Vandoeuvre-lès-Nancy, France
| | - Bruno Gasnier
- Neurophotonics Laboratory, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8250, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Sven Potelle
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), University of Lille, Lille, France
| | - François Foulquier
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), University of Lille, Lille, France
| |
Collapse
|
27
|
Xiao H, Huang X, Xu H, Chen X, Xiong W, Yang Z, Deng X, He Z, Deng H. A novel splice-site mutation in the ATP2C1 gene of a Chinese family with Hailey-Hailey disease. J Cell Biochem 2018; 120:3630-3636. [PMID: 30654607 DOI: 10.1002/jcb.27640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 08/15/2018] [Indexed: 12/18/2022]
Abstract
Hailey-Hailey disease (HHD), also known as familial benign chronic pemphigus, is an autosomal dominant genodermatosis. It is characterized by erosions, blisters and erythematous plaques at sites of friction or intertriginous areas. The pathogenic gene of HHD has been revealed as the ATPase secretory pathway Ca2+ transporting 1 gene ( ATP2C1), which encodes the protein, secretory pathway Ca 2+/Mn 2+-ATPase 1 (SPCA1). ATP2C1 gene mutations are responsible for HHD by resulting in abnormal Ca 2+ homeostasis in the skin and giving rise to acantholysis, a characteristic pathology of HHD. In this study, a four-generation family containing three HHD sufferers was recruited. Direct sequencing of the ATP2C1 gene was performed in the proband and other available family members. Reverse-transcriptase polymerase chain reaction analysis was conducted to show the potential variant effect on ATP2C1 splicing. A novel heterozygous c.325-2A>G transition at the splice acceptor site of intron 4 in the ATP2C1 gene was identified, and it co-segregated with the disease in this family. The mutation resulted in exon 5 skipping and an in-frame deletion of 12 amino acids (p.Ala109_Gln120del) in SPCA1. This splice-site mutation may be responsible for HHD in this family. This study would further expand the mutation spectrum of the ATP2C1 gene and may be helpful in the genetic counseling and prenatal diagnosis of HHD.
Collapse
Affiliation(s)
- Heng Xiao
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangjun Huang
- Department of General Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hongbo Xu
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhijian Yang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiong Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenghao He
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
28
|
Rodríguez MA, Martínez-Higuera A, Valle-Solis MI, Hernandes-Alejandro M, Chávez-Munguía B, Figueroa-Gutiérrez AH, Salas-Casas A. A putative calcium-ATPase of the secretory pathway family may regulate calcium/manganese levels in the Golgi apparatus of Entamoeba histolytica. Parasitol Res 2018; 117:3381-3389. [PMID: 30084034 DOI: 10.1007/s00436-018-6030-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023]
Abstract
Calcium regulates many cellular processes in protozoa, including growth, differentiation, programmed cell death, exocytosis, endocytosis, phagocytosis, fusion of the endosomes of distinct stages with phagosomes, fusion of phagosomes with lysosomes, and recycling the membrane. In Entamoeba histolytica, the protozoa responsible for human amoebiasis, calcium ions are essential for signaling pathways that lead to growth and development. In addition, calcium is crucial in the modulation of gene expression in this microorganism. However, there is scant information about the proteins responsible for regulating calcium levels in this parasite. In this work, we characterized a protein of E. histolytica that shows a close phylogenetic relationship with Ca2+ pumps that belong to the family of secretory pathway calcium ATPases (SPCA), which for several organisms are located in the Golgi apparatus. The amoeba protein analyzed herein has several amino acid residues that are characteristic of SPCA members. By an immunofluorescent technique using specific antibodies and immunoelectron microscopy, the protein was detected on the membrane of some cytoplasmic vacuoles. Moreover, this putative calcium-ATPase was located in vacuoles stained with NBD C6-ceramide, a Golgi marker. Overall, the current findings support the hypothesis that the presently analyzed protein corresponds to the SPCA of E. histolytica.
Collapse
Affiliation(s)
- Mario A Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | | | - Martha I Valle-Solis
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Mario Hernandes-Alejandro
- Departamento de Bioingeniería, Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional (UPIBI-IPN), Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Ana H Figueroa-Gutiérrez
- Instituto de Ciencias de la Salud, Área Académica de Gerontología, Universidad Autónoma del Estado de Hidalgo, Ex Hacienda la Concepción, s/n; Carretera Actopan-Tilcuautla, San Agustín Tlaxiaca, Hidalgo, Mexico
| | - Andrés Salas-Casas
- Instituto de Ciencias de la Salud, Área Académica de Gerontología, Universidad Autónoma del Estado de Hidalgo, Ex Hacienda la Concepción, s/n; Carretera Actopan-Tilcuautla, San Agustín Tlaxiaca, Hidalgo, Mexico.
| |
Collapse
|
29
|
Hernroth BE, Baden SP. Alteration of host-pathogen interactions in the wake of climate change - Increasing risk for shellfish associated infections? ENVIRONMENTAL RESEARCH 2018; 161:425-438. [PMID: 29202413 DOI: 10.1016/j.envres.2017.11.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
The potential for climate-related spread of infectious diseases through marine systems has been highlighted in several reports. With this review we want to draw attention to less recognized mechanisms behind vector-borne transmission pathways to humans. We have focused on how the immune systems of edible marine shellfish, the blue mussels and Norway lobsters, are affected by climate related environmental stressors. Future ocean acidification (OA) and warming due to climate change constitute a gradually increasing persistent stress with negative trade-off for many organisms. In addition, the stress of recurrent hypoxia, inducing high levels of bioavailable manganese (Mn) is likely to increase in line with climate change. We summarized that OA, hypoxia and elevated levels of Mn did have an overall negative effect on immunity, in some cases also with synergistic effects. On the other hand, moderate increase in temperature seems to have a stimulating effect on antimicrobial activity and may in a future warming scenario counteract the negative effects. However, rising sea surface temperature and climate events causing high land run-off promote the abundance of naturally occurring pathogenic Vibrio and will in addition, bring enteric pathogens which are circulating in society into coastal waters. Moreover, the observed impairments of the immune defense enhance the persistence and occurrence of pathogens in shellfish. This may increase the risk for direct transmission of pathogens to consumers. It is thus essential that in the wake of climate change, sanitary control of coastal waters and seafood must recognize and adapt to the expected alteration of host-pathogen interactions.
Collapse
Affiliation(s)
- Bodil E Hernroth
- The Royal Swedish Academy of Sciences, Kristineberg 566, SE-451 78 Fiskebäckskil, Sweden; Dept. of Natural Science, Kristianstad University, SE-291 88 Kristianstad, Sweden.
| | - Susanne P Baden
- Dept. of Biological and Environmental Sciences, University of Gothenburg, Kristineberg 566, SE-451 78 Fiskebäckskil, Sweden
| |
Collapse
|
30
|
Sousa L, Pessoa MTC, Costa TGF, Cortes VF, Santos HL, Barbosa LA. Iron overload impact on P-ATPases. Ann Hematol 2018; 97:377-385. [PMID: 29307086 DOI: 10.1007/s00277-017-3222-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 12/23/2017] [Indexed: 12/16/2022]
Abstract
Iron is a chemical element that is active in the fundamental physiological processes for human life, but its burden can be toxic to the body, mainly because of the stimulation of membrane lipid peroxidation. For this reason, the action of iron on many ATPases has been studied, especially on P-ATPases, such as the Na+,K+-ATPase and the Ca2+-ATPase. On the Fe2+-ATPase activity, the free iron acts as an activator, decreasing the intracellular Fe2+ and playing a protection role for the cell. On the Ca2+-ATPase activity, the iron overload decreases the enzyme activity, raising the cytoplasmic Ca2+ and decreasing the sarco/endoplasmic reticulum and the Golgi apparatus Ca2+ concentrations, which could promote an enzyme oxidation, nitration, and fragmentation. However, the iron overload effect on the Na+,K+-ATPase may change according to the tissue expressions. On the renal cells, as well as on the brain and the heart, iron promotes an enzyme inactivation, whereas its effect on the erythrocytes seems to be the opposite, directly stimulating the ATPase activity, or stimulating it by signaling pathways involving ROS and PKC. Modulations in the ATPase activity may impair the ionic transportation, which is essential for cell viability maintenance, inducing irreversible damage to the cell homeostasis. Here, we will discuss about the iron overload effect on the P-ATPases, such as the Na+,K+-ATPase, the Ca2+-ATPase, and the Fe2+-ATPase.
Collapse
Affiliation(s)
- Leilismara Sousa
- Laboratório de Bioquímica Celular, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, 35501-296, Brazil
| | - Marco Tulio C Pessoa
- Laboratório de Bioquímica Celular, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, 35501-296, Brazil
| | - Tamara G F Costa
- Laboratório de Bioquímica Celular, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, 35501-296, Brazil
| | - Vanessa F Cortes
- Laboratório de Bioquímica Celular, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, 35501-296, Brazil
| | - Herica L Santos
- Laboratório de Bioquímica Celular, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, 35501-296, Brazil
| | - Leandro Augusto Barbosa
- Laboratório de Bioquímica Celular, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av Sebastião Gonçalves Coelho, 400, Divinópolis, MG, 35501-296, Brazil.
| |
Collapse
|
31
|
Svehla P, Bédécarrats A, Jahn C, Nargeot R, Ciobanu L. Intracellular manganese enhanced MRI signals reflect the frequency of action potentials in Aplysia neurons. J Neurosci Methods 2017; 295:121-128. [PMID: 29248445 DOI: 10.1016/j.jneumeth.2017.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Manganese-enhanced magnetic resonance imaging (MEMRI) is an increasingly popular alternative to standard functional MRI methods in animal studies. The contrast in MEMRI images is based on the accumulation of Mn2+ ions inside neurons, and, since manganese can serve as calcium analogue, this accumulation reflects calcium dynamics providing versatile information about brain neuroarchitecture and functionality. However, despite its use as a functional imaging tool, the exact relationship between the MEMRI signal and neuronal activity remains elusive. NEW METHOD In order to better understand the mechanisms underlying Mn2+ accumulation resulting in MEMRI signal enhancement we investigated single neuron responses of isolated Aplysia buccal ganglia subjected to chemical (dopamine) or electrical stimulation of an input nerve (oesophageal nerve). The elicited electrical activity that represents a fictive feeding was recorded with electrophysiological methods and the Mn2+ uptake in individual neurons was evaluated with MEMRI at 17.2T. RESULTS & COMPARISON WITH EXISTING METHOD(S) We show a positive correlation between bursts of electrical activity and MEMRI signal intensity in identified neurons and demonstrate that the MEMRI signal reflects mainly fast and high membrane depolarization processes such as action potentials, and it is not sensitive to slow and small membrane depolarizations, such as post-synaptic potentials.
Collapse
Affiliation(s)
- Pavel Svehla
- NeuroSpin, CEA Saclay, 91191 Gif-sur-Yvette, France; University Paris-Sud, XI, 91450 Orsay, France
| | | | | | - Romuald Nargeot
- University of Bordeaux, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Luisa Ciobanu
- NeuroSpin, CEA Saclay, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
32
|
Deng H, Xiao H. The role of the ATP2C1 gene in Hailey-Hailey disease. Cell Mol Life Sci 2017; 74:3687-3696. [PMID: 28551824 PMCID: PMC11107712 DOI: 10.1007/s00018-017-2544-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/27/2017] [Accepted: 05/18/2017] [Indexed: 12/24/2022]
Abstract
Hailey-Hailey disease (HHD) is a rare autosomal dominant acantholytic dermatosis, characterized by a chronic course of repeated and exacerbated skin lesions in friction regions. The pathogenic gene of HHD was reported to be the ATPase calcium-transporting type 2C member 1 gene (ATP2C1) located on chromosome 3q21-q24. Its function is to maintain normal intracellular concentrations of Ca2+/Mn2+ by transporting Ca2+/Mn2+ into the Golgi apparatus. ATP2C1 gene mutations are reportedly responsible for abnormal cytosolic Ca2+/Mn2+ levels and the clinical manifestations of HHD. Environmental factors and genetic modifiers may also affect the clinical variability of HHD. This article aims to critically discuss the clinical and pathological features of HHD, differential diagnoses, and genetic and functional studies of the ATP2C1 gene in HHD. Further understanding the role of the ATP2C1 gene in the pathogenesis of HHD by genetic, molecular, and animal studies may contribute to a better clinical diagnosis and provide new strategies for the treatment and prevention of HHD.
Collapse
Affiliation(s)
- Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Tongzipo Road 138, Changsha, 410013, Hunan, People's Republic of China.
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China.
| | - Heng Xiao
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Tongzipo Road 138, Changsha, 410013, Hunan, People's Republic of China
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| |
Collapse
|
33
|
Calcium signaling and cell cycle: Progression or death. Cell Calcium 2017; 70:3-15. [PMID: 28801101 DOI: 10.1016/j.ceca.2017.07.006] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/23/2017] [Accepted: 07/23/2017] [Indexed: 12/12/2022]
Abstract
Cytosolic Ca2+ concentration levels fluctuate in an ordered manner along the cell cycle, in line with the fact that Ca2+ is involved in the regulation of cell proliferation. Cell proliferation should be an error-free process, yet is endangered by mistakes. In fact, a complex network of proteins ensures that cell cycle does not progress until the previous phase has been successfully completed. Occasionally, errors occur during the cell cycle leading to cell cycle arrest. If the error is severe, and the cell cycle checkpoints work perfectly, this results into cellular demise by activation of apoptotic or non-apoptotic cell death programs. Cancer is characterized by deregulated proliferation and resistance against cell death. Ca2+ is a central key to these phenomena as it modulates signaling pathways that control oncogenesis and cancer progression. Here, we discuss how Ca2+ participates in the exogenous and endogenous signals controlling cell proliferation, as well as in the mechanisms by which cells die if irreparable cell cycle damage occurs. Moreover, we summarize how Ca2+ homeostasis remodeling observed in cancer cells contributes to deregulated cell proliferation and resistance to cell death. Finally, we discuss the possibility to target specific components of Ca2+ signal pathways to obtain cytostatic or cytotoxic effects.
Collapse
|
34
|
Sladek V, Tvaroška I. First-Principles Interaction Analysis Assessment of the Manganese Cation in the Catalytic Activity of Glycosyltransferases. J Phys Chem B 2017; 121:6148-6162. [DOI: 10.1021/acs.jpcb.7b03714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Vladimir Sladek
- Institute
of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, 84538 Bratislava, Slovakia
- Department
of Chemistry, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Tokyo 171-8501, Japan
| | - Igor Tvaroška
- Institute
of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, 84538 Bratislava, Slovakia
| |
Collapse
|
35
|
Brunnquell CL, Hernandez R, Graves SA, Smit-Oistad I, Nickles RJ, Cai W, Meyerand ME, Suzuki M. Uptake and retention of manganese contrast agents for PET and MRI in the rodent brain. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:371-380. [PMID: 27396476 DOI: 10.1002/cmmi.1701] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/28/2016] [Accepted: 05/18/2016] [Indexed: 01/04/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (MRI) is an established neuroimaging method for signal enhancement, tract tracing, and functional studies in rodents. Along with the increasing availability of combined positron emission tomography (PET) and MRI scanners, the recent development of the positron-emitting isotope 52 Mn has prompted interest in the use of Mn2+ as a dual-modality contrast agent. In this work, we characterized and compared the uptake of systemically delivered Mn2+ and radioactive 52 Mn2+ in the rat brain for MRI and PET, respectively. Additionally, we examined the biodistribution of two formulations of 52 Mn2+ in the rat. In MRI, maximum uptake was observed one day following delivery of the highest MnCl2 dose tested (60 mg/kg), with some brain regions showing delayed maximum enhancement 2-4 days following delivery. In PET, we observed low brain uptake after systemic delivery, with a maximum of approximately 0.2% ID/g. We also studied the effect of final formulation vehicle (saline compared with MnCl2 ) on 52 Mn2+ organ biodistribution and brain uptake. We observed that the addition of bulk Mn2+ carrier to 52 Mn2+ in solution resulted in significantly reduced 52 Mn2+ uptake in the majority of organs, including the brain. These results lay the groundwork for further development of 52 Mn PET or dual Mn-enhanced PET-MR neuroimaging in rodents, and indicate several interesting potential applications of 52 Mn PET in other organs and systems. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Stephen A Graves
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Ivy Smit-Oistad
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert J Nickles
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.,Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | - M Elizabeth Meyerand
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
36
|
Micaroni M, Giacchetti G, Plebani R, Xiao GG, Federici L. ATP2C1 gene mutations in Hailey-Hailey disease and possible roles of SPCA1 isoforms in membrane trafficking. Cell Death Dis 2016; 7:e2259. [PMID: 27277681 PMCID: PMC5143377 DOI: 10.1038/cddis.2016.147] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/17/2016] [Accepted: 04/28/2016] [Indexed: 12/12/2022]
Abstract
ATP2C1 gene codes for the secretory pathway Ca(2+)/Mn(2+)-ATPase pump type 1 (SPCA1) localizing at the golgi apparatus. Mutations on the human ATP2C1 gene, causing decreased levels of the SPCA1 expression, have been identified as the cause of the Hailey-Hailey disease, a rare skin disorder. In the last few years, several mutations have been described, and here we summarize how they are distributed along the gene and how missense mutations affect protein expression. SPCA1 is expressed in four different isoforms through alternative splicing of the ATP2C1 gene and none of these isoforms is differentially affected by any of these mutations. However, a better understanding of the tissue specific expression of the isoforms, their localization along the secretory pathway, their specific binding partners and the role of the C-terminal tail making isoforms different from each other, will be future goals of the research in this field.
Collapse
Affiliation(s)
- M Micaroni
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - G Giacchetti
- Aging Research Center (Ce.S.I.), University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy
| | - R Plebani
- Aging Research Center (Ce.S.I.), University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy.,Department of Medical Oral and Biotechnological Sciences, School of Medicine and Health Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy
| | - G G Xiao
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - L Federici
- Aging Research Center (Ce.S.I.), University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy.,Department of Medical Oral and Biotechnological Sciences, School of Medicine and Health Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy
| |
Collapse
|
37
|
A New Approach of Short Wave Protection against Middle Cerebral Artery Occlusion/Reperfusion Injury via Attenuation of Golgi Apparatus Stress by Inhibition of Downregulation of Secretory Pathway Ca(2+)-ATPase Isoform 1 in Rats. J Stroke Cerebrovasc Dis 2016; 25:1813-1822. [PMID: 27133772 DOI: 10.1016/j.jstrokecerebrovasdis.2016.03.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/02/2016] [Accepted: 03/17/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Short wave (SW), a pattern of electromagnetic therapy, achieves an oscillating electromagnetic field. It has been reported that it may have a potential effect on cerebral injury. The present study was designed to investigate the potential role and possible mechanism of SW in focal cerebral ischemia/reperfusion (I/R) injury in rats. Secretory pathway Ca(2+)/Mn(2+) ATPase isoform 1 is a major component of Golgi apparatus stress. It has been reported as representative of Golgi apparatus stress. METHODS Up to 120 minutes of middle cerebral artery occlusion (MCAO) and reperfusion injury was induced in male Sprague-Dawley rats. Different sessions of SW daily were administered over head after reperfusion from day 1 to day 7. Functional recovery scores, survival rates, infarct volume analysis, electron microscope test, and western blotting studies were used to analyze the therapy. RESULTS SW protected against neuronal death and apoptosis in cornu ammon 1 region of hippocampus by reducing neuronal deficit, infarct volume, and ultrastructure. SW partly inhibited upregulation of caspase3. In addition, the expression of secretory pathway Ca(2+)-ATPase isoform 1 (SPCA1) was upregulated by SW. CONCLUSIONS Our data indicate that SW can be protected against focal cerebral I/R injury, and the influence on Golgi apparatus stress might provide us a new perspective in further study. To the authors' knowledge, this is the first report using SW to increase expression of SPCA1 indicating modulate Golgi apparatus stress in MCAO and reperfusion model.
Collapse
|
38
|
Fan Y, Zhang C, Peng W, Li T, Yin J, Kong Y, Lan C, Li X, Wang R, Hu Z. Secretory pathway Ca(2+)-ATPase isoform 1 knockdown promotes Golgi apparatus stress injury in a mouse model of focal cerebral ischemia-reperfusion: In vivo and in vitro study. Brain Res 2016; 1642:189-196. [PMID: 27038757 DOI: 10.1016/j.brainres.2016.03.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/24/2016] [Accepted: 03/29/2016] [Indexed: 11/29/2022]
Abstract
The present study was designed to investigate the potential role of secretory pathway Ca(2+)-ATPase isoform 1(SPCA1) in experimental focal cerebral ischemia-reperfusion injury. Cerebral ischemia-reperfusion was induced by transient middle cerebral artery occlusion (MCAO) for 2h s in Sprague-Dawley rats, and then the expression levels of SPAC1 mRNA and protein were determined. Results showed that SPCA1 level was transiently increased 1 day after reperfusion in peri-infarction area, while markedly increased in infarction core on 3day and 7 day after reperfusion. Then a SPCA1 lentivirus was used to achieve knockdown of SPCA1 gene: Ca(2+) transporting type 2C, member 1 (ATP2C1) gene. It has been observed that SPCA1 knockdown by lentivirus markedly increased cerebral infarction volume in vivo. Meanwhile, SPCA1 knockdown also facilitated per-oxidative production, including nitric oxide (NO) and 3-nitrotyrosine (3-NT) and decreased the expression of total superoxide dismutase (SOD) and manganese superoxide dismutase (MnSOD). Moreover, in vitro study showed that SPCA1 knockdown increased hydrogen peroxide (H2O2)-induced lactate dehydrogenase (LDH) leakage dose-dependently, and elevated caspase3 level in neuro-2a (N2a) cells. In addition, SPCA1 knockdown increased H2O2-induced production of nitric oxide and 3-NT dose-dependently, and reversed the increased activity of total SOD and MnSOD in neuro-2a cells. In conclusion, the present study indicated that SPCA1 could suppress over active Golgi apparatus (GA) stress thus attenuate cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yongmei Fan
- Department of Rehabilitation, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Changjie Zhang
- Department of Rehabilitation, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Wenna Peng
- Department of Rehabilitation, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Ting Li
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Jing Yin
- Department of Rehabilitation, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Ying Kong
- Department of Rehabilitation, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Chunna Lan
- Department of Rehabilitation, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Xiaofang Li
- Department of Rehabilitation, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Rumi Wang
- Department of Rehabilitation, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Zhiping Hu
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
| |
Collapse
|
39
|
Li LH, Tian XR, Jiang Z, Zeng LW, He WF, Hu ZP. The Golgi Apparatus: Panel Point of Cytosolic Ca(2+) Regulation. Neurosignals 2016; 21:272-84. [PMID: 23796968 DOI: 10.1159/000350471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/05/2013] [Indexed: 12/21/2022] Open
Abstract
The Golgi apparatus (GA), an intermediate organelle of the cell inner membrane system, plays a key role in protein glycosylation and secretion. In recent years, this organelle has been found to act as a vital intracellular Ca(2+) store because different Ca (2+) regulators, such as the inositol-1,4,5-triphosphate receptor, sarco/endoplasmic reticulum Ca(2+) -ATPase and secretory pathway Ca 2+ -ATPase, were demonstrated to localize on their membrane. The mechanisms involved in Ca(2+) release and uptake in the GA have now been established.Here, based on careful backward looking on compartments and patterns in GA Ca (2+) regulation, we review neurological diseases related to GA calcium remodeling and propose a modified cytosolic Ca(2+) adjustment model, in which GA acts as part of the panel point.
Collapse
Affiliation(s)
- Li-Hua Li
- Department of Neurology, Second Xiangya Hospital, Central-South University, Changsha; School of Medicine, Jishou University, Jishou , PR China
| | | | | | | | | | | |
Collapse
|
40
|
Sácký J, Leonhardt T, Kotrba P. Functional analysis of two genes coding for distinct cation diffusion facilitators of the ectomycorrhizal Zn-accumulating fungus Russula atropurpurea. Biometals 2016; 29:349-63. [PMID: 26906559 DOI: 10.1007/s10534-016-9920-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 12/26/2022]
Abstract
Russula atropurpurea can accumulate remarkably high concentrations of Zn in its sporocarps. We have previously demonstrated that 40 % of the intracellular Zn in this species is sequestered by MT-like RaZBP peptides. To see what other mechanisms for the handling of the accumulated Zn are available to R. atropurpurea, we searched its transcriptome for cDNAs coding for transporters of the cation diffusion facilitator (CDF) family. The transcriptome search enabled us to identify RaCDF1 and RaCDF2, which were further subjected to functional studies in metal sensitive Saccharomyces cerevisiae. The expression of RaCDF1 and its translational fusion with green fluorescent protein (GFP) protected the yeasts against Zn and Co, but not Cd or Mn, toxicity and led to increased Zn accumulation in the cells. The GFP fluorescence, observed in the RaCDF1::GFP-expressing yeasts on tonoplasts, indicated that the RaCDF1-mediated Zn and Co tolerance was a result of vacuolar sequestration of the metals. The expression of RaCDF2 supported Zn, but not Mn, tolerance in the yeasts and reduced the cellular uptake of Zn, which is congruent with the proposed idea of the Zn-efflux function of RaCDF2, supported by the localization of GFP-derived fluorescence on the plasma membrane of the yeasts expressing functional RaCDF2::GFP. Contrarily, RaCDF2 increased the sensitivity to Co and Cd in the yeasts and significantly promoted Cd uptake, which suggested that it can act as a bidirectional metal transporter. The notion that RaCDF1 and RaCDF2 are genuine CDF transporters in R. atropurputrea was further reinforced by the fact that the RaCDF-associated metal tolerance and uptake phenotypes were lost upon the replacement of histidyl (in RaCDF1) and aspartyl (in RaCDF2), which are highly conserved in the second transmembrane domain and known to be essential for the function of CDF proteins.
Collapse
Affiliation(s)
- Jan Sácký
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28, Prague, Czech Republic
| | - Tereza Leonhardt
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28, Prague, Czech Republic
| | - Pavel Kotrba
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28, Prague, Czech Republic.
| |
Collapse
|
41
|
Li LH, Tian XR, Hu ZP. The key target of neuroprotection after the onset of ischemic stroke: secretory pathway Ca(2+)-ATPase 1. Neural Regen Res 2015; 10:1271-8. [PMID: 26487855 PMCID: PMC4590240 DOI: 10.4103/1673-5374.162760] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The regulatory mechanisms of cytoplasmic Ca(2+) after myocardial infarction-induced Ca(2+) overload involve secretory pathway Ca(2+)-ATPase 1 and the Golgi apparatus and are well understood. However, the effect of Golgi apparatus on Ca(2+) overload after cerebral ischemia and reperfusion remains unclear. Four-vessel occlusion rats were used as animal models of cerebral ischemia. The expression of secretory pathway Ca(2+)-ATPase 1 in the cortex and hippocampus was detected by immunoblotting, and Ca(2+) concentrations in the cytoplasm and Golgi vesicles were determined. Results showed an overload of cytoplasmic Ca(2+) during ischemia and reperfusion that reached a peak after reperfusion. Levels of Golgi Ca(2+) showed an opposite effect. The expression of Golgi-specific secretory pathway Ca(2+)-ATPase 1 in the cortex and hippocampus decreased before ischemia and reperfusion, and increased after reperfusion for 6 hours. This variation was similar to the alteration of calcium in separated Golgi vesicles. These results indicate that the Golgi apparatus participates in the formation and alleviation of calcium overload, and that secretory pathway Ca(2+)-ATPase 1 tightly responds to ischemia and reperfusion in nerve cells. Thus, we concluded that secretory pathway Ca(2+)-ATPase 1 plays an essential role in cytosolic calcium regulation and its expression can be used as a marker of Golgi stress, responding to cerebral ischemia and reperfusion. The secretory pathway Ca(2+)-ATPase 1 can be an important neuroprotective target of ischemic stroke.
Collapse
Affiliation(s)
- Li-Hua Li
- School of Medicine, Jishou University, Jishou, Hunan Province, China ; Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiang-Rong Tian
- School of Medicine, Jishou University, Jishou, Hunan Province, China ; College of Biology and Environmental Science, Jishou University, Jishou, Hunan Province, China
| | - Zhi-Ping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
42
|
Pass R, Frudd K, Barnett JP, Blindauer CA, Brown DR. Prion infection in cells is abolished by a mutated manganese transporter but shows no relation to zinc. Mol Cell Neurosci 2015; 68:186-93. [PMID: 26253862 DOI: 10.1016/j.mcn.2015.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/27/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022] Open
Abstract
The cellular prion protein has been identified as a metalloprotein that binds copper. There have been some suggestions that prion protein also influences zinc and manganese homeostasis. In this study we used a series of cell lines to study the levels of zinc and manganese under different conditions. We overexpressed either the prion protein or known transporters for zinc and manganese to determine relations between the prion protein and both manganese and zinc homeostasis. Our observations supported neither a link between the prion protein and zinc metabolism nor any effect of altered zinc levels on prion protein expression or cellular infection with prions. In contrast we found that a gain of function mutant of a manganese transporter caused reduction of manganese levels in prion infected cells, loss of observable PrP(Sc) in cells and resistance to prion infection. These studies strengthen the link between manganese and prion disease.
Collapse
Affiliation(s)
- Rachel Pass
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Karen Frudd
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - James P Barnett
- Department of Chemistry, University of Warwick, Coventry, UK
| | | | - David R Brown
- Department of Biology and Biochemistry, University of Bath, Bath, UK.
| |
Collapse
|
43
|
SLC30A10 is a cell surface-localized manganese efflux transporter, and parkinsonism-causing mutations block its intracellular trafficking and efflux activity. J Neurosci 2015; 34:14079-95. [PMID: 25319704 DOI: 10.1523/jneurosci.2329-14.2014] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Manganese (Mn) is an essential metal, but elevated cellular levels are toxic and may lead to the development of an irreversible parkinsonian-like syndrome that has no treatment. Mn-induced parkinsonism generally occurs as a result of exposure to elevated Mn levels in occupational or environmental settings. Additionally, patients with compromised liver function attributable to diseases, such as cirrhosis, fail to excrete Mn and may develop Mn-induced parkinsonism in the absence of exposure to elevated Mn. Recently, a new form of familial parkinsonism was reported to occur as a result of mutations in SLC30A10. The cellular function of SLC30A10 and the mechanisms by which mutations in this protein cause parkinsonism are unclear. Here, using a combination of mechanistic and functional studies in cell culture, Caenorhabditis elegans, and primary midbrain neurons, we show that SLC30A10 is a cell surface-localized Mn efflux transporter that reduces cellular Mn levels and protects against Mn-induced toxicity. Importantly, mutations in SLC30A10 that cause familial parkinsonism blocked the ability of the transporter to traffic to the cell surface and to mediate Mn efflux. Although expression of disease-causing SLC30A10 mutations were not deleterious by themselves, neurons and worms expressing these mutants exhibited enhanced sensitivity to Mn toxicity. Our results provide novel insights into the mechanisms involved in the onset of a familial form of parkinsonism and highlight the possibility of using enhanced Mn efflux as a therapeutic strategy for the potential management of Mn-induced parkinsonism, including that occurring as a result of mutations in SLC30A10.
Collapse
|
44
|
Silanikove N, Shapiro F, Merin U, Leitner G. The intracellular source, composition and regulatory functions of nanosized vesicles from bovine milk-serum. RSC Adv 2015. [DOI: 10.1039/c5ra07599h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A hypothesis that the source of milk-serum derived vesicles (MSDVs) is the Golgi apparatus (GA) was examined.
Collapse
Affiliation(s)
- N. Silanikove
- Biology of Lactation Laboratory
- Agricultural Research Organization
- The Volcani Center
- Bet Dagan 50250
- Israel
| | - Fira Shapiro
- Biology of Lactation Laboratory
- Agricultural Research Organization
- The Volcani Center
- Bet Dagan 50250
- Israel
| | - Uzi Merin
- Department of Food Quality and Safety
- Agricultural Research Organization
- The Volcani Center
- Bet Dagan 50250
- Israel
| | - Gabriel Leitner
- National Mastitis Reference Center
- Kimron Veterinary Institute
- Bet Dagan 50250
- Israel
| |
Collapse
|
45
|
Foong PM, Abedi Karjiban R, Normi YM, Salleh AB, Abdul Rahman MB. Bioinformatics survey of the metal usage by psychrophilic yeast Glaciozyma antarctica PI12. Metallomics 2014; 7:156-64. [PMID: 25412156 DOI: 10.1039/c4mt00163j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal ions are one of the essential elements which are extensively involved in many cellular activities. With rapid advancements in genome sequencing techniques, bioinformatics approaches have provided a promising way to extract functional information of a protein directly from its primary structure. Recent findings have suggested that the metal content of an organism can be predicted from its complete genome sequences. Characterizing the biological metal usage of cold-adapted organisms may help to outline a comprehensive understanding of the metal-partnerships between the psychrophile and its adjacent environment. The focus of this study is targeted towards the analysis of the metal composition of a psychrophilic yeast Glaciozyma antarctica PI12 isolated from sea ice of Antarctica. Since the cellular metal content of an organism is usually reflected in the expressed metal-binding proteins, the putative metal-binding sequences from G. antarctica PI12 were identified with respect to their sequence homologies, domain compositions, protein families and cellular distribution. Most of the analyses revealed that the proteome was enriched with zinc, and the content of metal decreased in the order of Zn > Fe > Mg > Mn, Ca > Cu. Upon comparison, it was found that the metal compositions among yeasts were almost identical. These observations suggested that G. antarctica PI12 could have inherited a conserved trend of metal usage similar to modern eukaryotes, despite its geographically isolated habitat.
Collapse
Affiliation(s)
- Pik Mun Foong
- Enzyme and Microbial Technology Research Center (EMTech), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | | | | | | | | |
Collapse
|
46
|
Pizzo P, Lissandron V, Pozzan T. The trans-Golgi compartment. Commun Integr Biol 2014; 3:462-4. [DOI: 10.4161/cib.3.5.12473] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 05/25/2010] [Indexed: 11/19/2022] Open
|
47
|
Kienzle C, Basnet N, Crevenna AH, Beck G, Habermann B, Mizuno N, von Blume J. Cofilin recruits F-actin to SPCA1 and promotes Ca2+-mediated secretory cargo sorting. ACTA ACUST UNITED AC 2014; 206:635-54. [PMID: 25179631 PMCID: PMC4151145 DOI: 10.1083/jcb.201311052] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The cofilin CFL-1 recruits actin to the P-type calcium ATPase SPCA1 at the trans-Golgi network, thereby activating the ATPase, promoting Ca2+ influx, and driving secretory cargo sorting. The actin filament severing protein cofilin-1 (CFL-1) is required for actin and P-type ATPase secretory pathway calcium ATPase (SPCA)-dependent sorting of secretory proteins at the trans-Golgi network (TGN). How these proteins interact and activate the pump to facilitate cargo sorting, however, is not known. We used purified proteins to assess interaction of the cytoplasmic domains of SPCA1 with actin and CFL-1. A 132–amino acid portion of the SPCA1 phosphorylation domain (P-domain) interacted with actin in a CFL-1–dependent manner. This domain, coupled to nickel nitrilotriacetic acid (Ni-NTA) agarose beads, specifically recruited F-actin in the presence of CFL-1 and, when expressed in HeLa cells, inhibited Ca2+ entry into the TGN and secretory cargo sorting. Mutagenesis of four amino acids in SPCA1 that represent the CFL-1 binding site also affected Ca2+ import into the TGN and secretory cargo sorting. Altogether, our findings reveal the mechanism of CFL-1–dependent recruitment of actin to SPCA1 and the significance of this interaction for Ca2+ influx and secretory cargo sorting.
Collapse
Affiliation(s)
| | - Nirakar Basnet
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Alvaro H Crevenna
- Physical Chemistry, Department of Chemistry and Biochemistry and Center for NanoScience (CeNS), Ludwig Maximilians University of Munich, 81377 Munich, Germany
| | - Gisela Beck
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Bianca Habermann
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Naoko Mizuno
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Julia von Blume
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
48
|
Montalbetti N, Dalghi MG, Albrecht C, Hediger MA. Nutrient transport in the mammary gland: calcium, trace minerals and water soluble vitamins. J Mammary Gland Biol Neoplasia 2014; 19:73-90. [PMID: 24567109 DOI: 10.1007/s10911-014-9317-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/22/2014] [Indexed: 01/19/2023] Open
Abstract
Milk nutrients are secreted by epithelial cells in the alveoli of the mammary gland by several complex and highly coordinated systems. Many of these nutrients are transported from the blood to the milk via transcellular pathways that involve the concerted activity of transport proteins on the apical and basolateral membranes of mammary epithelial cells. In this review, we focus on transport mechanisms that contribute to the secretion of calcium, trace minerals and water soluble vitamins into milk with particular focus on the role of transporters of the SLC series as well as calcium transport proteins (ion channels and pumps). Numerous members of the SLC family are involved in the regulation of essential nutrients in the milk, such as the divalent metal transporter-1 (SLC11A2), ferroportin-1 (SLC40A1) and the copper transporter CTR1 (SLC31A1). A deeper understanding of the physiology and pathophysiology of these transporters will be of great value for drug discovery and treatment of breast diseases.
Collapse
Affiliation(s)
- Nicolas Montalbetti
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland,
| | | | | | | |
Collapse
|
49
|
Abstract
In mammalian cells, the Golgi complex has an elaborate structure consisting of stacked, flattened cisternal membranes collected into a ribbon in the center of the cell. Amazingly, the flattened cisternae can rapidly dilate to accommodate large cargo as it traffics through the organelle. The mechanism by which this occurs is unknown. Exocytosis of large cargo is essential for many physiological processes, including collagen and lipoprotein secretion, and defects in the process lead to disease. In addition, enveloped viruses that bud into the endoplasmic reticulum or Golgi complex must also be transported through Golgi cisternae for secretion from the infected cell. This review summarizes our understanding of intra-Golgi transport of large cargo, and outlines current questions open for experimentation.
Collapse
Affiliation(s)
- Carolyn E Machamer
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 20205, USA.
| |
Collapse
|
50
|
Nishimoto K, Rainey WE, Bollag WB, Seki T. Lessons from the gene expression pattern of the rat zona glomerulosa. Mol Cell Endocrinol 2013; 371:107-13. [PMID: 23287491 PMCID: PMC3625490 DOI: 10.1016/j.mce.2012.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/20/2012] [Accepted: 12/20/2012] [Indexed: 12/24/2022]
Abstract
We recently identified hundreds of transcripts with differential expression in rat zona glomerulosa (zG) and zona fasciculata. Although the genes up-regulated in the zG may be playing important roles in aldosterone production, the relationship between most of these genes and aldosterone production has not been uncovered. Because aldosterone, in the presence of a high sodium diet, is now considered a significant cardiovascular risk factor, in this review we performed gene ontology and pathway analyses on the same microarray data to better define the genes that may influence zG function. Overall, we identified a number of genes that may be involved in aldosterone production through transforming growth factor β (TGF-β), WNT, calcium, potassium, and ACTH signaling pathways. The list of genes we present in the current report may become an important tool for researchers working on primary aldosteronism and aldosterone-related cardiovascular diseases.
Collapse
Affiliation(s)
- Koshiro Nishimoto
- Department of Physiology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912
- Department of Urology, Tachikawa Hospital, Tokyo 190-8531, Japan
| | - William E. Rainey
- Department of Physiology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912
- Charlie Norwood VA Medical Center, Augusta, GA 30904
| | - Tsugio Seki
- Department of Physiology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912
- Corresponding author: Tsugio Seki, Department of Physiology, Medical College of Georgia, Georgia Health Sciences University, 1120 15th Street, CA3064, Augusta, GA 30912; Tel., +1-706-721-1321; Fax., +1-706-721-7299
| |
Collapse
|