1
|
Nowakowska-Gołacka J, Sominka H, Sowa-Rogozińska N, Słomińska-Wojewódzka M. Toxins Utilize the Endoplasmic Reticulum-Associated Protein Degradation Pathway in Their Intoxication Process. Int J Mol Sci 2019; 20:E1307. [PMID: 30875878 PMCID: PMC6471375 DOI: 10.3390/ijms20061307] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/25/2022] Open
Abstract
Several bacterial and plant AB-toxins are delivered by retrograde vesicular transport to the endoplasmic reticulum (ER), where the enzymatically active A subunit is disassembled from the holotoxin and transported to the cytosol. In this process, toxins subvert the ER-associated degradation (ERAD) pathway. ERAD is an important part of cellular regulatory mechanism that targets misfolded proteins to the ER channels, prior to their retrotranslocation to the cytosol, ubiquitination and subsequent degradation by a protein-degrading complex, the proteasome. In this article, we present an overview of current understanding of the ERAD-dependent transport of AB-toxins to the cytosol. We describe important components of ERAD and discuss their significance for toxin transport. Toxin recognition and disassembly in the ER, transport through ER translocons and finally cytosolic events that instead of overall proteasomal degradation provide proper folding and cytotoxic activity of AB-toxins are discussed as well. We also comment on recent reports presenting medical applications for toxin transport through the ER channels.
Collapse
Affiliation(s)
- Jowita Nowakowska-Gołacka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Hanna Sominka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Natalia Sowa-Rogozińska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Monika Słomińska-Wojewódzka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
2
|
Vermeire K, Bell TW, Van Puyenbroeck V, Giraut A, Noppen S, Liekens S, Schols D, Hartmann E, Kalies KU, Marsh M. Signal peptide-binding drug as a selective inhibitor of co-translational protein translocation. PLoS Biol 2014; 12:e1002011. [PMID: 25460167 PMCID: PMC4251836 DOI: 10.1371/journal.pbio.1002011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/21/2014] [Indexed: 11/24/2022] Open
Abstract
In eukaryotic cells, surface expression of most type I transmembrane proteins requires translation and simultaneous insertion of the precursor protein into the endoplasmic reticulum (ER) membrane for subsequent routing to the cell surface. This co-translational translocation pathway is initiated when a hydrophobic N-terminal signal peptide (SP) on the nascent protein emerges from the ribosome, binds the cytosolic signal recognition particle (SRP), and targets the ribosome-nascent chain complex to the Sec61 translocon, a universally conserved protein-conducting channel in the ER-membrane. Despite their common function in Sec61 targeting and ER translocation, SPs have diverse but unique primary sequences. Thus, drugs that recognise SPs could be exploited to inhibit translocation of specific proteins into the ER. Here, through flow cytometric analysis the small-molecule macrocycle cyclotriazadisulfonamide (CADA) is identified as a highly selective human CD4 (hCD4) down-modulator. We show that CADA inhibits CD4 biogenesis and that this is due to its ability to inhibit co-translational translocation of CD4 into the lumen of the ER, both in cells as in a cell-free in vitro translation/translocation system. The activity of CADA maps to the cleavable N-terminal SP of hCD4. Moreover, through surface plasmon resonance analysis we were able to show direct binding of CADA to the SP of hCD4 and identify this SP as the target of our drug. Furthermore, CADA locks the SP in the translocon during a post-targeting step, possibly in a folded state, and prevents the translocation of the associated protein into the ER lumen. Instead, the precursor protein is routed to the cytosol for degradation. These findings demonstrate that a synthetic, cell-permeable small-molecule can be developed as a SP-binding drug to selectively inhibit protein translocation and to reversibly regulate the expression of specific target proteins.
Collapse
Affiliation(s)
- Kurt Vermeire
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
- Institute of Biology, CSCM, University of Lübeck, Lübeck, Germany
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Thomas W. Bell
- Department of Chemistry, University of Nevada, Reno, Nevada, United States of America
| | - Victor Van Puyenbroeck
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Anne Giraut
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Sam Noppen
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Sandra Liekens
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Dominique Schols
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Enno Hartmann
- Institute of Biology, CSCM, University of Lübeck, Lübeck, Germany
| | - Kai-Uwe Kalies
- Institute of Biology, CSCM, University of Lübeck, Lübeck, Germany
| | - Mark Marsh
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
3
|
Falcone D, Henderson MP, Nieuwland H, Coughlan CM, Brodsky JL, Andrews DW. Stability and function of the Sec61 translocation complex depends on the Sss1p tail-anchor sequence. Biochem J 2011; 436:291-303. [PMID: 21355855 PMCID: PMC3095691 DOI: 10.1042/bj20101865] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sss1p, an essential component of the heterotrimeric Sec61 complex in the ER (endoplasmic reticulum), is a tail-anchored protein whose precise mechanism of action is largely unknown. Tail-anchored proteins are involved in many cellular processes and are characterized by a single transmembrane sequence at or near the C-terminus. The Sec61 complex is the molecular machine through which secretory and membrane proteins translocate into and across the ER membrane. To understand the function of the tail anchor of Sss1p, we introduced mutations into the tail-anchor sequence and analysed the resulting yeast phenotypes. Point mutations in the C-terminal hydrophobic core of the tail anchor of Sss1p were identified that allowed Sss1p assembly into Sec61 complexes, but resulted in diminished growth, defects in co- and post-translational translocation, inefficient ribosome binding to Sec61 complexes, reduction in the stability of both heterotrimeric Sec61 and heptameric Sec complexes and a complete breakdown of ER structure. The underlying defect caused by the mutations involves loss of a stabilizing function of the Sss1p tail-anchor sequence for both the heterotrimeric Sec61 and the heptameric Sec complexes. These results indicate that by stabilizing multiprotein membrane complexes, the hydrophobic core of a tail-anchor sequence can be more than a simple membrane anchor.
Collapse
Affiliation(s)
- Domina Falcone
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada, L8N 3Z5
| | - Matthew P. Henderson
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada, L8N 3Z5
| | - Hendrik Nieuwland
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada, L8N 3Z5
| | - Christine M. Coughlan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - David W. Andrews
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada, L8N 3Z5
| |
Collapse
|
4
|
Cryo-EM structure of the ribosome-SecYE complex in the membrane environment. Nat Struct Mol Biol 2011; 18:614-21. [PMID: 21499241 PMCID: PMC3412285 DOI: 10.1038/nsmb.2026] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 02/03/2011] [Indexed: 12/12/2022]
Abstract
The ubiquitous SecY/Sec61–complex translocates nascent secretory proteins across cellular membranes and integrates membrane proteins into lipid bilayers. Several structures of mostly detergent solubilized Sec–complexes have been reported. Here, we present a single–particle cryo–electron microscopy structure of the SecYEG complex in a membrane environment at sub–nanometer resolution, bound to a translating ribosome. Using the SecYEG complex reconstituted in a so–called Nanodisc, we could trace the nascent polypeptide chain from the peptidyl transferase center into the membrane. The reconstruction allowed for the identification of ribosome–lipid interactions. The rRNA helix 59 (H59) directly contacts the lipid surface and appears to modulate the membrane in immediate vicinity to the proposed lateral gate of the PCC. Based on our map and molecular dynamics simulations we present a model of a signal anchor–gated PCC in the membrane.
Collapse
|
5
|
Gumbart J, Trabuco LG, Schreiner E, Villa E, Schulten K. Regulation of the protein-conducting channel by a bound ribosome. Structure 2010; 17:1453-64. [PMID: 19913480 DOI: 10.1016/j.str.2009.09.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 09/13/2009] [Accepted: 09/15/2009] [Indexed: 01/01/2023]
Abstract
During protein synthesis, it is often necessary for the ribosome to form a complex with a membrane-bound channel, the SecY/Sec61 complex, in order to translocate nascent proteins across a cellular membrane. Structural data on the ribosome-channel complex are currently limited to low-resolution cryo-electron microscopy maps, including one showing a bacterial ribosome bound to a monomeric SecY complex. Using that map along with available atomic-level models of the ribosome and SecY, we have determined, through molecular dynamics flexible fitting (MDFF), an atomic-resolution model of the ribosome-channel complex. We characterized computationally the sites of ribosome-SecY interaction within the complex and determined the effect of ribosome binding on the SecY channel. We also constructed a model of a ribosome in complex with a SecY dimer by adding a second copy of SecY to the MDFF-derived model. The study involved 2.7-million-atom simulations over altogether nearly 50 ns.
Collapse
Affiliation(s)
- James Gumbart
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
6
|
Becker T, Bhushan S, Jarasch A, Armache JP, Funes S, Jossinet F, Gumbart J, Mielke T, Berninghausen O, Schulten K, Westhof E, Gilmore R, Mandon EC, Beckmann R. Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 2009; 326:1369-73. [PMID: 19933108 DOI: 10.1126/science.1178535] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The trimeric Sec61/SecY complex is a protein-conducting channel (PCC) for secretory and membrane proteins. Although Sec complexes can form oligomers, it has been suggested that a single copy may serve as an active PCC. We determined subnanometer-resolution cryo-electron microscopy structures of eukaryotic ribosome-Sec61 complexes. In combination with biochemical data, we found that in both idle and active states, the Sec complex is not oligomeric and interacts mainly via two cytoplasmic loops with the universal ribosomal adaptor site. In the active state, the ribosomal tunnel and a central pore of the monomeric PCC were occupied by the nascent chain, contacting loop 6 of the Sec complex. This provides a structural basis for the activity of a solitary Sec complex in cotranslational protein translocation.
Collapse
Affiliation(s)
- Thomas Becker
- Gene Center Munich and Center for Integrated Protein Science, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hiss JA, Schneider G. Architecture, function and prediction of long signal peptides. Brief Bioinform 2009; 10:569-78. [DOI: 10.1093/bib/bbp030] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|