1
|
Dent P, Booth L, Poklepovic A, Von Hoff D, Martinez J, Zhou Y, Hancock JF. Osimertinib-resistant NSCLC cells activate ERBB2 and YAP/TAZ and are killed by neratinib. Biochem Pharmacol 2021; 190:114642. [PMID: 34077739 PMCID: PMC11082938 DOI: 10.1016/j.bcp.2021.114642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/15/2022]
Abstract
We performed additional mechanistic analyses to redefine neratinib biology and determined the mechanisms by which the multi-kinase inhibitor neratinib interacted with the thymidylate synthase inhibitor pemetrexed to kill NSCLC cells expressing either mutant KRAS (G12S; Q61H; G12A; G12C) or mutant NRAS (Q61K) or mutant ERBB1 (L858R; L858R T790M; exon 19 deletion). Neratinib rapidly reduced KRASG12V and RAC1G12V nanoclustering which was followed by KRASG12V, but not RAC1G12V, being extensively mislocalized away from the plasma membrane. This correlated with reduced levels of, and reorganized membrane localization of phosphatidylserine and cholesterol. Reduced nanoclustering was not associated with inactivation of ERBB1, Merlin or Ezrin. The drug combination killed cells expressing mutant KRAS, NRAS or mutant ERBB1 proteins. Afatinib or osimertinib resistant cells were killed with a similar efficacy to non-resistant cells. Compared to osimertinib-resistant cells, sensitive cells had less ERBB2 Y1248 phosphorylation. In osimertinib resistant H1975 cells, the drug combination was less capable of inactivating AKT, mTOR, STAT3, STAT5, ERK1/2 whereas it gained the ability to inactivate ERBB3. In resistant H1650 cells, the drug combination was less capable of inactivating JAK2 and STAT5. Sensitive cells exhibited elevated basal phosphorylation of YAP and TAZ. In resistant cells, portions of YAP and TAZ were localized in the nucleus. [Neratinib + pemetrexed] increased phosphorylation of YAP and TAZ, caused their nuclear exit, and enhanced ERBB2 degradation. Thus, neratinib targets an unidentified protein whose functional inhibition directly results in RAS inactivation and tumor cell killing. Our data prove that, albeit indirectly, oncogenic RAS proteins are druggable by neratinib.
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry and Molecular Biology, Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, United States; Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, United States; Inflammation & Autoimmunity Group, National Institute of Environmental Health Sciences, Triangle Park, NC 27709, United States.
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, United States; Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, United States; Inflammation & Autoimmunity Group, National Institute of Environmental Health Sciences, Triangle Park, NC 27709, United States
| | - Andrew Poklepovic
- Department of Biochemistry and Molecular Biology, Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, United States; Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, United States; Inflammation & Autoimmunity Group, National Institute of Environmental Health Sciences, Triangle Park, NC 27709, United States
| | - Daniel Von Hoff
- Department of Biochemistry and Molecular Biology, Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, United States; Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, United States; Inflammation & Autoimmunity Group, National Institute of Environmental Health Sciences, Triangle Park, NC 27709, United States
| | - Jennifer Martinez
- Department of Biochemistry and Molecular Biology, Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, United States; Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, United States; Inflammation & Autoimmunity Group, National Institute of Environmental Health Sciences, Triangle Park, NC 27709, United States
| | - Yong Zhou
- Department of Biochemistry and Molecular Biology, Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, United States; Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, United States; Inflammation & Autoimmunity Group, National Institute of Environmental Health Sciences, Triangle Park, NC 27709, United States
| | - John F Hancock
- Department of Biochemistry and Molecular Biology, Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, United States; Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, United States; Inflammation & Autoimmunity Group, National Institute of Environmental Health Sciences, Triangle Park, NC 27709, United States
| |
Collapse
|
2
|
Sexton RE, Mpilla G, Kim S, Philip PA, Azmi AS. Ras and exosome signaling. Semin Cancer Biol 2019; 54:131-137. [PMID: 30769101 PMCID: PMC6857536 DOI: 10.1016/j.semcancer.2019.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 01/25/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Ras gene (HRAS, NRAS, and KRAS) has been observed to be mutated and hyper-activated in a significant proportion of cancers. However, mutant Ras remains a challenging therapeutic target. Similarly, inhibition of targets upstream and downstream of Ras has shown limited clinical utility. There have been attempts to develop and deliver mutant K-Ras silencing RNAs either through their encapsulation in liposomes or nanoparticles. However, these approaches show very limited success due to the lack of stability of such carrier molecules alongside associated toxicity. There is a pressing need for the identification of better therapeutic targets for Ras or its associated pathways as well as improvements in the design of superior RNAi delivery systems to suppress mutant K-Ras. More than a decade ago, it was shown that aggregates of palmitoylated Ras isoforms (H-Ras and N-Ras) passage through the cytosol on rapidly moving nanosized particles ("rasosomes"). Fast forward a decade, considerable new knowledge has emerged in the area of small vesicles, microparticles, and exosomes. Exosomes are tiny vesicles and play a significant role in regulating cancer-related signaling pathways. Exosomes have also been studied as delivery vehicles to transport drugs, proteins, and microRNAs of choice for therapeutic purposes. K-Ras pathway proteins have been implicated in exosome biogenesis and extravasation processes. This review provides an update on the current knowledge related to K-Ras signaling and exosomes and also discusses how these tiny vesicles can be harnessed to successfully deliver the K-Ras silencing moieties.
Collapse
Affiliation(s)
- Rachel E Sexton
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gabriel Mpilla
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Steve Kim
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
3
|
Michaeli L, Gottfried I, Bykhovskaia M, Ashery U. Phosphatidylinositol (4, 5)-bisphosphate targets double C2 domain protein B to the plasma membrane. Traffic 2017; 18:825-839. [PMID: 28941037 DOI: 10.1111/tra.12528] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 01/05/2023]
Abstract
Double C2 domain protein B (DOC2B) is a high-affinity Ca2+ sensor that translocates from the cytosol to the plasma membrane (PM) and promotes vesicle priming and fusion. However, the molecular mechanism underlying its translocation and targeting to the PM in living cells is not completely understood. DOC2B interacts in vitro with the PM components phosphatidylserine, phosphatidylinositol (4, 5)-bisphosphate [PI(4, 5)P2 ] and target SNAREs (t-SNAREs). Here, we show that PI(4, 5)P2 hydrolysis at the PM of living cells abolishes DOC2B translocation, whereas manipulations of t-SNAREs and other phosphoinositides have no effect. Moreover, we were able to redirect DOC2B to intracellular membranes by synthesizing PI(4, 5)P2 in those membranes. Molecular dynamics simulations and mutagenesis in the calcium and PI(4, 5)P2 -binding sites strengthened our findings, demonstrating that both calcium and PI(4, 5)P2 are required for the DOC2B-PM association and revealing multiple PI(4, 5)P2 -C2B interactions. In addition, we show that DOC2B translocation to the PM is ATP-independent and occurs in a diffusion-like manner. Our data suggest that the Ca2+ -triggered translocation of DOC2B is diffusion-driven and aimed at PI(4, 5)P2 -containing membranes.
Collapse
Affiliation(s)
- Lirin Michaeli
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Irit Gottfried
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | | | - Uri Ashery
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Nussinov R, Jang H, Tsai CJ, Liao TJ, Li S, Fushman D, Zhang J. Intrinsic protein disorder in oncogenic KRAS signaling. Cell Mol Life Sci 2017; 74:3245-3261. [PMID: 28597297 PMCID: PMC11107717 DOI: 10.1007/s00018-017-2564-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022]
Abstract
How Ras, and in particular its most abundant oncogenic isoform K-Ras4B, is activated and signals in proliferating cells, poses some of the most challenging questions in cancer cell biology. In this paper, we ask how intrinsically disordered regions in K-Ras4B and its effectors help promote proliferative signaling. Conformational disorder allows spanning long distances, supports hinge motions, promotes anchoring in membranes, permits segments to fulfil multiple roles, and broadly is crucial for activation mechanisms and intensified oncogenic signaling. Here, we provide an overview illustrating some of the key mechanisms through which conformational disorder can promote oncogenesis, with K-Ras4B signaling serving as an example. We discuss (1) GTP-bound KRas4B activation through membrane attachment; (2) how farnesylation and palmitoylation can promote isoform functional specificity; (3) calmodulin binding and PI3K activation; (4) how Ras activates its RASSF5 cofactor, thereby stimulating signaling of the Hippo pathway and repressing proliferation; and (5) how intrinsically disordered segments in Raf help its attachment to the membrane and activation. Collectively, we provide the first inclusive review of the roles of intrinsic protein disorder in oncogenic Ras-driven signaling. We believe that a broad picture helps to grasp and formulate key mechanisms in Ras cancer biology and assists in therapeutic intervention.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Tsung-Jen Liao
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - Shuai Li
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - Jian Zhang
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| |
Collapse
|
5
|
Iversen L, Tu HL, Lin WC, Christensen SM, Abel SM, Iwig J, Wu HJ, Gureasko J, Rhodes C, Petit RS, Hansen SD, Thill P, Yu CH, Stamou D, Chakraborty AK, Kuriyan J, Groves JT. Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics. Science 2014; 345:50-4. [PMID: 24994643 DOI: 10.1126/science.1250373] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras-guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average.
Collapse
Affiliation(s)
- Lars Iversen
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hsiung-Lin Tu
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wan-Chen Lin
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sune M Christensen
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Steven M Abel
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Jeff Iwig
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hung-Jen Wu
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jodi Gureasko
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher Rhodes
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rebecca S Petit
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Scott D Hansen
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peter Thill
- Department of Chemistry, MIT, Cambridge, MA 02139, USA
| | - Cheng-Han Yu
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Dimitrios Stamou
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Copenhagen, Denmark
| | - Arup K Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Department of Chemistry, MIT, Cambridge, MA 02139, USA. Department of Biological Engineering, MIT, Cambridge, MA 02139, USA. Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA 02139, USA. Department of Physics, MIT, Cambridge, MA 02139, USA. Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA
| | - John Kuriyan
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA. Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. Physical Biosciences and Materials Sciences Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jay T Groves
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA. Mechanobiology Institute, National University of Singapore, Singapore. Physical Biosciences and Materials Sciences Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Berkeley Education Alliance for Research in Singapore, 1 Create Way, CREATE tower level 11, University Town, Singapore 138602.
| |
Collapse
|
6
|
Grunwald A, Gottfried I, Cox AD, Haklai R, Kloog Y, Ashery U. Rasosomes originate from the Golgi to dispense Ras signals. Cell Death Dis 2013; 4:e496. [PMID: 23412389 PMCID: PMC3734827 DOI: 10.1038/cddis.2013.16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ras proteins undergo an incompletely understood trafficking process in the cell. Rasosomes are protein nanoparticles of 80–100 nm diameter that carry lipidated Ras isoforms (H-Ras and N-Ras) as well as their effectors through the cytoplasm and near the plasma membrane (PM). In this study, we identified the subcellular origin of rasosomes and how they spread Ras proteins through the cell. We found no dependency of rasosome formation on galectins, or on the GDP-/GTP-bound state of Ras. We found that significantly more rasosomes are associated with forms of Ras that are localized to the Golgi, namely N-Ras or the singly palmitoylated H-Ras mutant (C181S). To explore the possibility that rasosome originate from the Golgi, we used photoactivatable (PA)-GFP-H-Ras mutants and showed that rasosomes bud from the Golgi in a two-step mechanism. Newly released rasosomes first move in an energy-dependent directed fashion and then convert to randomly diffusing rasosomes. Dual fluorescence time-lapse imaging revealed the appearance of dually labeled rasosomes, indicating a dynamic exchange of cytoplasmic and PM-associated Ras with rasosome-associated Ras. Finally, higher levels of rasosomes correlate with higher levels of ERK phosphorylation, a key marker of Ras downstream signaling. We suggest that H-Ras and N-Ras proteins exchange with rasosomes that can function as carriers of palmitoylated Ras and its signals.
Collapse
Affiliation(s)
- A Grunwald
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
7
|
Demory Beckler M, Higginbotham JN, Franklin JL, Ham AJ, Halvey PJ, Imasuen IE, Whitwell C, Li M, Liebler DC, Coffey RJ. Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol Cell Proteomics 2012; 12:343-55. [PMID: 23161513 DOI: 10.1074/mcp.m112.022806] [Citation(s) in RCA: 393] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activating mutations in KRAS occur in 30% to 40% of colorectal cancers. How mutant KRAS alters cancer cell behavior has been studied intensively, but non-cell autonomous effects of mutant KRAS are less understood. We recently reported that exosomes isolated from mutant KRAS-expressing colon cancer cells enhanced the invasiveness of recipient cells relative to exosomes purified from wild-type KRAS-expressing cells, leading us to hypothesize mutant KRAS might affect neighboring and distant cells by regulating exosome composition and behavior. Herein, we show the results of a comprehensive proteomic analysis of exosomes from parental DLD-1 cells that contain both wild-type and G13D mutant KRAS alleles and isogenically matched derivative cell lines, DKO-1 (mutant KRAS allele only) and DKs-8 (wild-type KRAS allele only). Mutant KRAS status dramatically affects the composition of the exosome proteome. Exosomes from mutant KRAS cells contain many tumor-promoting proteins, including KRAS, EGFR, SRC family kinases, and integrins. DKs-8 cells internalize DKO-1 exosomes, and, notably, DKO-1 exosomes transfer mutant KRAS to DKs-8 cells, leading to enhanced three-dimensional growth of these wild-type KRAS-expressing non-transformed cells. These results have important implications for non-cell autonomous effects of mutant KRAS, such as field effect and tumor progression.
Collapse
|
8
|
Castellano E, Santos E. Functional specificity of ras isoforms: so similar but so different. Genes Cancer 2011; 2:216-31. [PMID: 21779495 DOI: 10.1177/1947601911408081] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
H-ras, N-ras, and K-ras are canonical ras gene family members frequently activated by point mutation in human cancers and coding for 4 different, highly related protein isoforms (H-Ras, N-Ras, K-Ras4A, and K-Ras4B). Their expression is nearly ubiquitous and broadly conserved across eukaryotic species, although there are quantitative and qualitative differences of expression depending on the tissue and/or developmental stage under consideration. Extensive functional studies have determined during the last quarter century that these Ras gene products are critical components of signaling pathways that control eukaryotic cell proliferation, survival, and differentiation. However, because of their homology and frequent coexpression in various cellular contexts, it remained unclear whether the different Ras proteins play specific or overlapping functional roles in physiological and pathological processes. Initially, their high degree of sequence homology and the observation that all Ras isoforms share common sets of downstream effectors and upstream activators suggested that they were mostly redundant functionally. In contrast, the notion of functional specificity for each of the different Ras isoforms is supported at present by an increasing body of experimental observations, including 1) the fact that different ras isoforms are preferentially mutated in specific types of tumors or developmental disorders; 2) the different transforming potential of transfected ras genes in different cell contexts; 3) the distinct sensitivities exhibited by the various Ras family members for modulation by different GAPs or GEFs; 4) the demonstration that different Ras isoforms follow distinct intracellular processing pathways and localize to different membrane microdomains or subcellular compartments; 5) the different phenotypes displayed by genetically modified animal strains for each of the 3 ras loci; and 6) the specific transcriptional networks controlled by each isoform in different cellular settings.
Collapse
Affiliation(s)
- Esther Castellano
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, UK
| | | |
Collapse
|