1
|
Eldeeb MH, Camacho Lopez LJ, Fontanesi F. Mitochondrial respiratory supercomplexes of the yeast Saccharomyces cerevisiae. IUBMB Life 2024; 76:485-504. [PMID: 38529880 DOI: 10.1002/iub.2817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
The functional and structural relationship among the individual components of the mitochondrial respiratory chain constitutes a central aspect of our understanding of aerobic catabolism. This interplay has been a subject of intense debate for over 50 years. It is well established that individual respiratory enzymes associate into higher-order structures known as respiratory supercomplexes, which represent the evolutionarily conserved organizing principle of the mitochondrial respiratory chain. In the yeast Saccharomyces cerevisiae, supercomplexes are formed by a complex III homodimer flanked by one or two complex IV monomers, and their high-resolution structures have been recently elucidated. Despite the wealth of structural information, several proposed supercomplex functions remain speculative and our understanding of their physiological relevance is still limited. Recent advances in the field were made possible by the construction of yeast strains where the association of complex III and IV into supercomplexes is impeded, leading to diminished respiratory capacity and compromised cellular competitive fitness. Here, we discuss the experimental evidence and hypotheses relative to the functional roles of yeast respiratory supercomplexes. Moreover, we review the current models of yeast complex III and IV assembly in the context of supercomplex formation and highlight the data scattered throughout the literature suggesting the existence of cross talk between their biogenetic processes.
Collapse
Affiliation(s)
- Mazzen H Eldeeb
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Lizeth J Camacho Lopez
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
2
|
Zara V, De Blasi G, Ferramosca A. Assembly of the Multi-Subunit Cytochrome bc1 Complex in the Yeast Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:ijms231810537. [PMID: 36142449 PMCID: PMC9502982 DOI: 10.3390/ijms231810537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
The cytochrome bc1 complex is an essential component of the mitochondrial respiratory chain of the yeast Saccharomyces cerevisiae. It is composed of ten protein subunits, three of them playing an important role in electron transfer and proton pumping across the inner mitochondrial membrane. Cytochrome b, the central component of this respiratory complex, is encoded by the mitochondrial genome, whereas all the other subunits are of nuclear origin. The assembly of all these subunits into the mature and functional cytochrome bc1 complex is therefore a complicated process which requires the participation of several chaperone proteins. It has been found that the assembly process of the mitochondrial bc1 complex proceeds through the formation of distinct sub-complexes in an ordered sequence. Most of these sub-complexes have been thoroughly characterized, and their molecular compositions have also been defined. This study critically analyses the results obtained so far and highlights new possible areas of investigation.
Collapse
|
3
|
Laleve A, Panozzo C, Kühl I, Bourand-Plantefol A, Ostojic J, Sissoko A, Tribouillard-Tanvier D, Cornu D, Burg A, Meunier B, Blondel M, Clain J, Bonnefoy N, Duval R, Dujardin G. Artemisinin and its derivatives target mitochondrial c-type cytochromes in yeast and human cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118661. [PMID: 31987792 DOI: 10.1016/j.bbamcr.2020.118661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/27/2022]
Abstract
Artemisinin and its derivatives kill malaria parasites and inhibit the proliferation of cancer cells. In both processes, heme was shown to play a key role in artemisinin bioactivation. We found that artemisinin and clinical artemisinin derivatives are able to compensate for a mutation in the yeast Bcs1 protein, a key chaperon involved in biogenesis of the mitochondrial respiratory complex III. The equivalent Bcs1 variant causes an encephalopathy in human by affecting complex III assembly. We show that artemisinin derivatives decrease the content of mitochondrial cytochromes and disturb the maturation of the complex III cytochrome c1. This last effect is likely responsible for the compensation by decreasing the detrimental over-accumulation of the inactive pre-complex III observed in the bcs1 mutant. We further show that a fluorescent dihydroartemisinin probe rapidly accumulates in the mitochondrial network and targets cytochromes c and c1 in yeast, human cells and isolated mitochondria. In vitro this probe interacts with purified cytochrome c only under reducing conditions and we detect cytochrome c-dihydroartemisinin covalent adducts by mass spectrometry analyses. We propose that reduced mitochondrial c-type cytochromes act as both targets and mediators of artemisinin bioactivation in yeast and human cells.
Collapse
Affiliation(s)
- Anais Laleve
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Cristina Panozzo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Inge Kühl
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Alexa Bourand-Plantefol
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Jelena Ostojic
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Abdoulaye Sissoko
- Université de Paris, MERIT, IRD, 4 Avenue de l'Observatoire, 75006 Paris, France
| | - Déborah Tribouillard-Tanvier
- Inserm UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, 29200 Brest, France
| | - David Cornu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Angélique Burg
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Brigitte Meunier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marc Blondel
- Inserm UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, 29200 Brest, France
| | - Jerome Clain
- Université de Paris, MERIT, IRD, 4 Avenue de l'Observatoire, 75006 Paris, France
| | - Nathalie Bonnefoy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Romain Duval
- Université de Paris, MERIT, IRD, 4 Avenue de l'Observatoire, 75006 Paris, France
| | - Geneviève Dujardin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
4
|
Panozzo C, Laleve A, Tribouillard-Tanvier D, Ostojić J, Sellem CH, Friocourt G, Bourand-Plantefol A, Burg A, Delahodde A, Blondel M, Dujardin G. Chemicals or mutations that target mitochondrial translation can rescue the respiratory deficiency of yeast bcs1 mutants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2297-2307. [PMID: 28888990 DOI: 10.1016/j.bbamcr.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 11/28/2022]
Abstract
Bcs1p is a chaperone that is required for the incorporation of the Rieske subunit within complex III of the mitochondrial respiratory chain. Mutations in the human gene BCS1L (BCS1-like) are the most frequent nuclear mutations resulting in complex III-related pathologies. In yeast, the mimicking of some pathogenic mutations causes a respiratory deficiency. We have screened chemical libraries and found that two antibiotics, pentamidine and clarithromycin, can compensate two bcs1 point mutations in yeast, one of which is the equivalent of a mutation found in a human patient. As both antibiotics target the large mtrRNA of the mitoribosome, we focused our analysis on mitochondrial translation. We found that the absence of non-essential translation factors Rrf1 or Mif3, which act at the recycling/initiation steps, also compensates for the respiratory deficiency of yeast bcs1 mutations. At compensating concentrations, both antibiotics, as well as the absence of Rrf1, cause an imbalanced synthesis of respiratory subunits which impairs the assembly of the respiratory complexes and especially that of complex IV. Finally, we show that pentamidine also decreases the assembly of complex I in nematode mitochondria. It is well known that complexes III and IV exist within the mitochondrial inner membrane as supramolecular complexes III2/IV in yeast or I/III2/IV in higher eukaryotes. Therefore, we propose that the changes in mitochondrial translation caused by the drugs or by the absence of translation factors, can compensate for bcs1 mutations by modifying the equilibrium between illegitimate, and thus inactive, and active supercomplexes.
Collapse
Affiliation(s)
- C Panozzo
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - A Laleve
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - D Tribouillard-Tanvier
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - J Ostojić
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - C H Sellem
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - G Friocourt
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - A Bourand-Plantefol
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - A Burg
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - A Delahodde
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - M Blondel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - G Dujardin
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Evry-Val d'Essonne, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France.
| |
Collapse
|
5
|
Abstract
Cyclic electron flow (CEF) around photosystem I is thought to balance the ATP/NADPH energy budget of photosynthesis, requiring that its rate be finely regulated. The mechanisms of this regulation are not well understood. We observed that mutants that exhibited constitutively high rates of CEF also showed elevated production of H2O2. We thus tested the hypothesis that CEF can be activated by H2O2 in vivo. CEF was strongly increased by H2O2 both by infiltration or in situ production by chloroplast-localized glycolate oxidase, implying that H2O2 can activate CEF either directly by redox modulation of key enzymes, or indirectly by affecting other photosynthetic processes. CEF appeared with a half time of about 20 min after exposure to H2O2, suggesting activation of previously expressed CEF-related machinery. H2O2-dependent CEF was not sensitive to antimycin A or loss of PGR5, indicating that increased CEF probably does not involve the PGR5-PGRL1 associated pathway. In contrast, the rise in CEF was not observed in a mutant deficient in the chloroplast NADPH:PQ reductase (NDH), supporting the involvement of this complex in CEF activated by H2O2. We propose that H2O2 is a missing link between environmental stress, metabolism, and redox regulation of CEF in higher plants.
Collapse
|
6
|
Conte A, Papa B, Ferramosca A, Zara V. The dimerization of the yeast cytochrome bc1 complex is an early event and is independent of Rip1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:987-95. [PMID: 25683140 DOI: 10.1016/j.bbamcr.2015.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/03/2015] [Accepted: 02/08/2015] [Indexed: 12/01/2022]
Abstract
In Saccharomyces cerevisiae the mature cytochrome bc1 complex exists as an obligate homo-dimer in which each monomer consists of ten distinct protein subunits inserted into or bound to the inner mitochondrial membrane. Among them, the Rieske iron-sulfur protein (Rip1), besides its catalytic role in electron transfer, may be implicated in the bc1 complex dimerization. Indeed, Rip1 has the globular domain containing the catalytic center in one monomer while the transmembrane helix interacts with the adjacent monomer. In addition, the lack of Rip1 leads to the accumulation of an immature bc1 intermediate, only loosely associated with cytochrome c oxidase. In this study we have investigated the biogenesis of the yeast cytochrome bc1 complex using epitope tagged proteins to purify native assembly intermediates. We showed that the dimerization process is an early event during bc1 complex biogenesis and that the presence of Rip1, differently from previous proposals, is not essential for this process. We also investigated the multi-step model of bc1 assembly thereby lending further support to the existence of bona fide subcomplexes during bc1 maturation in the inner mitochondrial membrane. Finally, a new model of cytochrome bc1 complex assembly, in which distinct intermediates sequentially interact during bc1 maturation, has been proposed.
Collapse
Affiliation(s)
- Annalea Conte
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, I-73100 Lecce, Italy
| | - Benedetta Papa
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, I-73100 Lecce, Italy
| | - Alessandra Ferramosca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, I-73100 Lecce, Italy
| | - Vincenzo Zara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, I-73100 Lecce, Italy.
| |
Collapse
|
7
|
Sawamura R, Ogura T, Esaki M. A conserved α helix of Bcs1, a mitochondrial AAA chaperone, is required for the Respiratory Complex III maturation. Biochem Biophys Res Commun 2014; 443:997-1002. [DOI: 10.1016/j.bbrc.2013.12.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/16/2013] [Indexed: 11/30/2022]
|
8
|
Ostojić J, Panozzo C, Lasserre JP, Nouet C, Courtin F, Blancard C, di Rago JP, Dujardin G. The energetic state of mitochondria modulates complex III biogenesis through the ATP-dependent activity of Bcs1. Cell Metab 2013; 18:567-77. [PMID: 24055101 DOI: 10.1016/j.cmet.2013.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/27/2013] [Accepted: 08/12/2013] [Indexed: 01/08/2023]
Abstract
Our understanding of the mechanisms involved in mitochondrial biogenesis has continuously expanded during the last decades, yet little is known about how they are modulated to optimize the functioning of mitochondria. Here, we show that mutations in the ATP binding domain of Bcs1, a chaperone involved in the assembly of complex III, can be rescued by mutations that decrease the ATP hydrolytic activity of the ATP synthase. Our results reveal a Bcs1-mediated control loop in which the biogenesis of complex III is modulated by the energy-transducing activity of mitochondria. Although ATP is well known as a regulator of a number of cellular activities, we show here that ATP can be also used to modulate the biogenesis of an enzyme by controlling a specific chaperone involved in its assembly. Our study further highlights the intramitochondrial adenine nucleotide pool as a potential target for the treatment of Bcs1-based disorders.
Collapse
Affiliation(s)
- Jelena Ostojić
- Centre de Génétique Moléculaire, Université Paris-Sud, avenue de la Terrasse, 91198 Gif sur Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes.
Collapse
|
10
|
Berry EA, De Bari H, Huang LS. Unanswered questions about the structure of cytochrome bc1 complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1258-77. [PMID: 23624176 DOI: 10.1016/j.bbabio.2013.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/13/2013] [Accepted: 04/16/2013] [Indexed: 11/25/2022]
Abstract
X-ray crystal structures of bc1 complexes obtained over the last 15 years have provided a firm structural basis for our understanding of the complex. For the most part there is good agreement between structures from different species, different crystal forms, and with different inhibitors bound. In this review we focus on some of the remaining unexplained differences, either between the structures themselves or the interpretations of the structural observations. These include the structural basis for the motion of the Rieske iron-sulfur protein in response to inhibitors, a possible conformational change involving tyrosine132 of cytochrome (cyt) b, the presence of cis-peptides at the beginnings of transmembrane helices C, E, and H, the structural insight into the function of the so-called "Core proteins", different modelings of the retained signal peptide, orientation of the low-potential heme b, and chirality of the Met ligand to heme c1. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- Edward A Berry
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | | | |
Collapse
|
11
|
Meunier B, Fisher N, Ransac S, Mazat JP, Brasseur G. Respiratory complex III dysfunction in humans and the use of yeast as a model organism to study mitochondrial myopathy and associated diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:1346-61. [PMID: 23220121 DOI: 10.1016/j.bbabio.2012.11.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/21/2012] [Accepted: 11/28/2012] [Indexed: 11/25/2022]
Abstract
The bc1 complex or complex III is a central component of the aerobic respiratory chain in prokaryotic and eukaryotic organisms. It catalyzes the oxidation of quinols and the reduction of cytochrome c, establishing a proton motive force used to synthesize adenosine triphosphate (ATP) by the F1Fo ATP synthase. In eukaryotes, the complex III is located in the inner mitochondrial membrane. The genes coding for the complex III have a dual origin. While cytochrome b is encoded by the mitochondrial genome, all the other subunits are encoded by the nuclear genome. In this review, we compile an exhaustive list of the known human mutations and associated pathologies found in the mitochondrially-encoded cytochrome b gene as well as the fewer mutations in the nuclear genes coding for the complex III structural subunits and accessory proteins such as BCS1L involved in the assembly of the complex III. Due to the inherent difficulties of studying human biopsy material associated with complex III dysfunction, we also review the work that has been conducted to study the pathologies with the easy to handle eukaryotic microorganism, the yeast Saccharomyces cerevisiae. Phenotypes, biochemical data and possible effects due to the mutations are also discussed in the context of the known three-dimensional structure of the eukaryotic complex III. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- B Meunier
- CNRS, Centre de Génétique Moléculaire, UPR 3404, Gif-sur-Yvette, F-91198, France
| | | | | | | | | |
Collapse
|
12
|
Wagener N, Neupert W. Bcs1, a AAA protein of the mitochondria with a role in the biogenesis of the respiratory chain. J Struct Biol 2012; 179:121-5. [PMID: 22575765 DOI: 10.1016/j.jsb.2012.04.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 11/19/2022]
Abstract
The family of AAA+ proteins in eukaryotes has many members in various cellular compartments with a broad spectrum of functions in protein unfolding and degradation. The mitochondrial AAA protein Bcs1 plays an unusual role in protein translocation. It is involved in the topogenesis of the Rieske protein, Rip1, and thereby in the biogenesis of the cytochrome bc(1) complex of the mitochondrial respiratory chain. Bcs1 mediates the export of the folded FeS domain of Rip1 across the mitochondrial inner membrane and the insertion of its transmembrane segment into an assembly intermediate of the cytochrome bc(1) complex. We discuss structural elements of the Bcs1 protein compared to other AAA proteins in an attempt to understand the mechanism of its function. In this context, we discuss human diseases caused by mutations in Bcs1 that lead to different properties of the protein and subsequently to different symptoms.
Collapse
Affiliation(s)
- Nikola Wagener
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | | |
Collapse
|
13
|
The Rieske Iron-Sulfur Protein: Import and Assembly into the Cytochrome bc(1) Complex of Yeast Mitochondria. Bioinorg Chem Appl 2011; 2011:363941. [PMID: 21716720 PMCID: PMC3119413 DOI: 10.1155/2011/363941] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/12/2011] [Indexed: 11/17/2022] Open
Abstract
The Rieske iron-sulfur protein, one of the catalytic subunits of the cytochrome bc1 complex, is involved in electron transfer at the level of the inner membrane of yeast mitochondria. The Rieske iron-sulfur protein is encoded by nuclear DNA and, after being synthesized in the cytosol, is imported into mitochondria with the help of a cleavable N-terminal presequence. The imported protein, besides incorporating the 2Fe-2S cluster, also interacts with other catalytic and non-catalytic subunits of the cytochrome bc1 complex, thereby assembling into the mature and functional respiratory complex. In this paper, we summarize the most recent findings on the import and assembly of the Rieske iron-sulfur protein into Saccharomyces cerevisiae mitochondria, also discussing a possible role of this protein both in the dimerization of the cytochrome bc1 complex and in the interaction of this homodimer with other complexes of the mitochondrial respiratory chain.
Collapse
|