1
|
Tu H, Zhou X, Zhou H, Luo Z, Yan Y, Luo Z, Qi Q. Anti-tumor effect and mechanisms of Timosaponin AIII across diverse cancer progression. Biochem Pharmacol 2024; 228:116080. [PMID: 38402911 DOI: 10.1016/j.bcp.2024.116080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Timosaponin AIII (TAIII), a steroidal saponin derived from Anemarrhena asphodeloides Bunge, has gained attention for its versatile therapeutic properties. While well-established for its anti-inflammatory, antidepressant, and anticoagulant properties, emerging research highlights its potent anti-tumor capabilities. This review synthesizes recent findings on the intricate mechanisms and diverse functions of TAIII in cancer therapy, elucidating its impact on various tumor cells, encompassing the effects of TAIII on critical aspects of cancer progression, including metastasis, apoptosis, and autophagy. Additionally, the shared features of TAIII-induced anti-tumor activities, the factors contributing to the multifaceted anti-cancer activities of TAIII, and an exploration of the advantages and disadvantages associated with the regulation of multiple anti-tumor pathways by TAIII are discussed. Furthermore, the detailed regulation of signaling pathways is delineated and tailored to specific cancer types, providing a comprehensive overview of the potential development of TAIII as a promising anti-tumor agent.
Collapse
Affiliation(s)
- Hanyun Tu
- State Key Laboratory of Bioactive Molecules and Drug Ability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Department of Pharmacology, Jinan University, Guangzhou 510632, China
| | - Xiaofeng Zhou
- State Key Laboratory of Bioactive Molecules and Drug Ability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Department of Pharmacology, Jinan University, Guangzhou 510632, China
| | - Haixia Zhou
- State Key Laboratory of Bioactive Molecules and Drug Ability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Department of Pharmacology, Jinan University, Guangzhou 510632, China
| | - Zepeng Luo
- Neurosurgery, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou 423000, China
| | - Yu Yan
- Functional Experimental Teaching Center, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhongping Luo
- Neurosurgery, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou 423000, China.
| | - Qi Qi
- State Key Laboratory of Bioactive Molecules and Drug Ability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Department of Pharmacology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Wang F, Liang L, Yu M, Wang W, Badar IH, Bao Y, Zhu K, Li Y, Shafi S, Li D, Diao Y, Efferth T, Xue Z, Hua X. Advances in antitumor activity and mechanism of natural steroidal saponins: A review of advances, challenges, and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155432. [PMID: 38518645 DOI: 10.1016/j.phymed.2024.155432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Cancer, the second leading cause of death worldwide following cardiovascular diseases, presents a formidable challenge in clinical settings due to the extensive toxic side effects associated with primary chemotherapy drugs employed for cancer treatment. Furthermore, the emergence of drug resistance against specific chemotherapeutic agents has further complicated the situation. Consequently, there exists an urgent imperative to investigate novel anticancer drugs. Steroidal saponins, a class of natural compounds, have demonstrated notable antitumor efficacy. Nonetheless, their translation into clinical applications has remained unrealized thus far. In light of this, we conducted a comprehensive systematic review elucidating the antitumor activity, underlying mechanisms, and inherent limitations of steroidal saponins. Additionally, we propose a series of strategic approaches and recommendations to augment the antitumor potential of steroidal saponin compounds, thereby offering prospective insights for their eventual clinical implementation. PURPOSE This review summarizes steroidal saponins' antitumor activity, mechanisms, and limitations. METHODS The data included in this review are sourced from authoritative databases such as PubMed, Web of Science, ScienceDirect, and others. RESULTS A comprehensive summary of over 40 steroidal saponin compounds with proven antitumor activity, including their applicable tumor types and structural characteristics, has been compiled. These steroidal saponins can be primarily classified into five categories: spirostanol, isospirostanol, furostanol, steroidal alkaloids, and cholestanol. The isospirostanol and cholestanol saponins are found to have more potent antitumor activity. The primary antitumor mechanisms of these saponins include tumor cell apoptosis, autophagy induction, inhibition of tumor migration, overcoming drug resistance, and cell cycle arrest. However, steroidal saponins have limitations, such as higher cytotoxicity and lower bioavailability. Furthermore, strategies to address these drawbacks have been proposed. CONCLUSION In summary, isospirostanol and cholestanol steroidal saponins demonstrate notable antitumor activity and different structural categories of steroidal saponins exhibit variations in their antitumor signaling pathways. However, the clinical application of steroidal saponins in cancer treatment still faces limitations, and further research and development are necessary to advance their potential in tumor therapy.
Collapse
Affiliation(s)
- Fengge Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR, PR China
| | - Ma Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, PR China
| | - Wenjie Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Kai Zhu
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yanlin Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Saba Shafi
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yongchao Diao
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany.
| | - Zheyong Xue
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| | - Xin Hua
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| |
Collapse
|
3
|
Stefanowicz-Hajduk J, Graczyk P, Hering A, Gucwa M, Nowak A, Hałasa R. An In Vitro Study on the Cytotoxic, Antioxidant, and Antimicrobial Properties of Yamogenin-A Plant Steroidal Saponin and Evaluation of Its Mechanism of Action in Gastric Cancer Cells. Int J Mol Sci 2024; 25:4627. [PMID: 38731847 PMCID: PMC11083171 DOI: 10.3390/ijms25094627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Yamogenin is a steroidal saponin occurring in plant species such as Asparagus officinalis, Dioscorea collettii, Trigonella foenum-graecum, and Agave sp. In this study, we evaluated in vitro cytotoxic, antioxidant, and antimicrobial properties of yamogenin. The cytotoxic activity was estimated on human colon cancer HCT116, gastric cancer AGS, squamous carcinoma UM-SCC-6 cells, and human normal fibroblasts with MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The amount of apoptotic and dead AGS cells after treatment with yamogenin was estimated with flow cytometry. Also, in yamogenin-treated AGS cells we investigated the reactive oxygen species (ROS) production, mitochondrial membrane depolarization, activity level of caspase-8 and -9, and gene expression at mRNA level with flow cytometry, luminometry, and RT-PCR, respectively. The antioxidant properties of yamogenin were assessed with DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays. The antimicrobial potential of the compound was estimated on Staphylococcus aureus, Bacillus cereus, Klebsiella pneumoniae, Escherichia coli, Salmonella enterica, Helicobacter pylori, Campylobacter coli, Campylobacter jejuni, Listeria monocytogenes, Lactobacillus paracasei, and Lactobacillus acidophilus bacteria strains. Yamogenin showed the strongest cytotoxic effect on AGS cells (IC50 18.50 ± 1.24 µg/mL) among the tested cell lines. This effect was significantly stronger in combinations of yamogenin with oxaliplatin or capecitabine than for the single compounds. Furthermore, yamogenin induced ROS production, depolarized mitochondrial membrane, and increased the activity level of caspase-8 and -9 in AGS cells. RT-PCR analysis revealed that this sapogenin strongly up-regulated TNFRSF25 expression at the mRNA level. These results indicate that yamogenin induced cell death via the extrinsic and intrinsic way of apoptosis. Antioxidant study showed that yamogenin had moderate in vitro potential (IC50 704.7 ± 5.9 µg/mL in DPPH and 631.09 ± 3.51 µg/mL in ABTS assay) as well as the inhibition of protein denaturation properties (with IC50 1421.92 ± 6.06 µg/mL). Antimicrobial test revealed a weak effect of yamogenin on bacteria strains, the strongest one being against S. aureus (with MIC value of 350 µg/mL). In conclusion, yamogenin may be a potential candidate for the treatment and prevention of gastric cancers.
Collapse
Affiliation(s)
- Justyna Stefanowicz-Hajduk
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (P.G.); (A.H.); (M.G.)
| | - Piotr Graczyk
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (P.G.); (A.H.); (M.G.)
| | - Anna Hering
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (P.G.); (A.H.); (M.G.)
| | - Magdalena Gucwa
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (P.G.); (A.H.); (M.G.)
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Rafał Hałasa
- Department of Pharmaceutical Microbiology, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| |
Collapse
|
4
|
Qin L, Zhong Y, Li Y, Yang Y. TCM targets ferroptosis: potential treatments for cancer. Front Pharmacol 2024; 15:1360030. [PMID: 38738174 PMCID: PMC11082647 DOI: 10.3389/fphar.2024.1360030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Ferroptosis is caused by the accumulation of cellular reactive oxygen species that exceed the antioxidant load that glutathione (GSH) and phospholipid hydroperoxidases with GSH-based substrates can carry When the antioxidant capacity of cells is reduced, lipid reactive oxygen species accumulate, which can cause oxidative death. Ferroptosis, an iron-dependent regulatory necrosis pathway, has emerged as a new modality of cell death that is strongly associated with cancer. Surgery, chemotherapy and radiotherapy are the main methods of cancer treatment. However, resistance to these mainstream anticancer drugs and strong toxic side effects have forced the development of alternative treatments with high efficiency and low toxicity. In recent years, an increasing number of studies have shown that traditional Chinese medicines (TCMs), especially herbs or herbal extracts, can inhibit tumor cell growth and metastasis by inducing ferroptosis, suggesting that they could be promising agents for cancer treatment. This article reviews the current research progress on the antitumor effects of TCMs through the induction of ferroptosis. The aim of these studies was to elucidate the potential mechanisms of targeting ferroptosis in cancer, and the findings could lead to new directions and reference values for developing better cancer treatment strategies.
Collapse
Affiliation(s)
- Liwen Qin
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Yuhan Zhong
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Li
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Precision Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yongfeng Yang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Precision Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Terabayashi T, Takezaki D, Hanada K, Matsuoka S, Sasaki T, Akamine T, Katoh A, Ishizaki T. Timosaponin AIII Disrupts Cell-Extracellular Matrix Interactions through the Inhibition of Endocytic Pathways. Biol Pharm Bull 2024; 47:1648-1656. [PMID: 39401908 DOI: 10.1248/bpb.b24-00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2024]
Abstract
Timosaponin AIII (TAIII), a steroidal saponin isolated from the root of Anemarrhena asphodeloides Bunge, exhibits various pharmacological activities, including anti-cancer properties. TAIII inhibits the migration and invasion of various cancer cell types. However, the mechanism underlying how TAIII regulates the motility of cancer cells remains incompletely understood. In this study, we demonstrate that TAIII disrupted cell-extracellular matrix (ECM) interactions by inhibiting internalization of cell surface proteins, such as integrins. We found that TAIII inhibited cell adhesion on various ECMs. Structure-activity relationship analysis demonstrated that TAIII exhibited unique activity among the saponins from Anemarrhena asphodeloides Bunge and that the number and position of saccharide moieties were important for TAIII to exert its activity. Time lapse imaging revealed that TAIII also suppressed cell spreading on the ECM, membrane ruffling, and lamellipodia formation. Furthermore, we examined integrin β1 behaviors in response to TAIII treatment and found that TAIII blocked its internalization. These findings contribute to delineating the potential molecular mechanisms by which TAIII exerts anti-metastatic activity.
Collapse
Affiliation(s)
| | - Daisuke Takezaki
- Department of Pharmacology, Faculty of Medicine, Oita University
| | - Katsuhiro Hanada
- Clinical Engineering Research Center, Faculty of Medicine, Oita University
| | - Shigeru Matsuoka
- Department of Clinical Pharmacology & Therapeutics, Faculty of Medicine, Oita University
| | - Takako Sasaki
- Department of Pharmacology, Faculty of Medicine, Oita University
| | - Takahiro Akamine
- Department of Pharmacology, Faculty of Medicine, Oita University
| | - Akira Katoh
- Department of Clinical Pharmacology & Therapeutics, Faculty of Medicine, Oita University
| | | |
Collapse
|
6
|
Liu Z, Cao Y, Guo X, Chen Z. The Potential Role of Timosaponin-AIII in Cancer Prevention and Treatment. Molecules 2023; 28:5500. [PMID: 37513375 PMCID: PMC10386027 DOI: 10.3390/molecules28145500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer, as one of the leading causes of death worldwide, has challenged current chemotherapy drugs. Considering that treatments are expensive, alongside the resistance of tumor cells to anticancer drugs, the development of alternative medicines is necessary. Anemarrhena asphodeloides Bunge, a recognized and well-known medicinal plant for more than two thousand years, has demonstrated its effectiveness against cancer. Timosaponin-AIII (TSAIII), as a bioactive steroid saponin isolated from A. asphodeloides, has shown multiple pharmacological activities and has been developed as an anticancer agent. However, the molecular mechanisms of TSAIII in protecting against cancer development are still unclear. In this review article, we provide a comprehensive discussion on the anticancer effects of TSAIII, including proliferation inhibition, cell cycle arrest, apoptosis induction, autophagy mediation, migration and invasion suppression, anti-angiogenesis, anti-inflammation, and antioxidant effects. The pharmacokinetic profiles of TSAII are also discussed. TSAIII exhibits efficacy against cancer development. However, hydrophobicity and low bioavailability may limit the application of TSAIII. Effective delivery systems, particularly those with tissue/cell-targeted properties, can also significantly improve the anticancer effects of TSAIII.
Collapse
Affiliation(s)
- Zhaowen Liu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yifan Cao
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Xiaohua Guo
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
7
|
Huang X, He Y, Zhang M, Lu Z, Zhang T, Wang B. GPP-TSAIII nanocomposite hydrogel-based photothermal ablation facilitates melanoma therapy. Expert Opin Drug Deliv 2023; 20:1277-1295. [PMID: 37039332 DOI: 10.1080/17425247.2023.2200997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/01/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Photothermal therapy (PTT) is a promising cancer treatment, but its application is limited by low photoconversion efficiency. In this study, we aimed to develop a novel graphene oxide (GO)-based nanocomposite hydrogel to improve the bioavailability of timosaponin AIII (TSAIII) while maximizing PTT efficacy and enhancing the antitumor effect. METHODS GO was modified via physical cross-linking with polyvinyl alcohol. The pore structure of the gel was adjusted by repeated freeze-thawing and the addition of polyethylene glycol 2000 to obtain a nanocomposite hydrogel (GPP). The GPP loaded with TSAIII constituted a GPP-TSAIII drug delivery system, and its efficacy was evaluated by in vitro cytotoxicity, apoptosis, migration, and uptake analyses, and in vivo antitumor studies. RESULTS The encapsulation rate of GPP-TSAIII was 66.36 ± 3.97%, with slower in vitro release and higher tumor cell uptake (6.4-fold) compared to TSAIII. GPP-TSAIII in combination with PTT showed better bioavailability and antitumor effects in vivo than did TSAIII, with a 1.9-fold higher tumor suppression rate than the TSAIII group. CONCLUSIONS GPP is a potential vehicle for delivery of TSAIII-like poor water-soluble anticancer drugs. The innovative PTT co-delivery system may serve as a safe and effective melanoma treatment platform for further anticancer translational purposes.
Collapse
Affiliation(s)
- Xing Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yihao He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenhui Lu
- Institute of Respiratory Disease, Long hua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
Blockage of Autophagy Increases Timosaponin AIII-Induced Apoptosis of Glioma Cells In Vitro and In Vivo. Cells 2022; 12:cells12010168. [PMID: 36611961 PMCID: PMC9818637 DOI: 10.3390/cells12010168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Timosaponin AIII (TSAIII), a saponin isolated from Anemarrhena asphodeloides and used in traditional Chinese medicine, exerts antitumor, anti-inflammatory, anti-angiogenesis, and pro-apoptotic activity on a variety of tumor cells. This study investigated the antitumor effects of TSAIII and the underlying mechanisms in human glioma cells in vitro and in vivo. TSAIII significantly inhibited glioma cell viability in a dose- and time-dependent manner but did not affect the growth of normal astrocytes. We also observed that in both glioma cell lines, TSAIII induces cell death and mitochondrial dysfunction, consistent with observed increases in the protein expression of cleaved-caspase-3, cleaved-caspase-9, cleaved-PARP, cytochrome c, and Mcl-1. TSAIII also activated autophagy, as indicated by increased accumulation of the autophagosome markers p62 and LC3-II and the autolysosome marker LAMP1. LC3 silencing, as well as TSAIII combined with the autophagy inhibitor 3-methyladenine (3MA), increased apoptosis in GBM8401 cells. TSAIII inhibited tumor growth in xenografts and in an orthotopic GBM8401 mice model in vivo. These results demonstrate that TSAIII exhibits antitumor effects and may hold potential as a therapy for glioma.
Collapse
|
9
|
Chien HJ, Liu CJ, Ying TH, Wu PJ, Wang JW, Ting YH, Hsieh YH, Wang SC. Timosaponin AIII Inhibits Migration and Invasion Abilities in Human Cervical Cancer Cells through Inactivation of p38 MAPK-Mediated uPA Expression In Vitro and In Vivo. Cancers (Basel) 2022; 15:cancers15010037. [PMID: 36612038 PMCID: PMC9817900 DOI: 10.3390/cancers15010037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is one of the most common gynecologic cancers globally that require novel approaches. Timosaponin AIII (TSAIII) is a steroidal saponin that displays beneficial effects in antitumor activities. However, the effect of TSAIII on human cervical cancer remains unknown. In this study, we found that TSAIII showed no influence on cell viability, cytotoxicity, cell cycle distribution and apoptosis induction in human cervical cancer cells. TSAIII was revealed to have a significant inhibitory effect on cell migration and invasion through the downregulation of invasion-related uPA expression and p38 MAPK activation in both human cervical cancer cells and cervical cancer stem cells (CCSCs), indicating that the p38 MAPK-uPA axis mediated the TSAIII-inhibited capacity of cellular migration and invasion. In a synergistic inhibition assay, a TSAIII plus p38 siRNA cotreatment revealed a greater inhibition of uPA expression, migration and invasion in human cervical cancer cells. In an immunodeficient mouse model, TSAIII significantly inhibited lung metastases from human cervical cancer SiHa cells without TSAIII-induced toxicity. These findings first revealed the inhibitory effects of TSAIII on the progression of human cervical cancer through its downregulation of p38 MAPK-uPA axis activation. Therefore, TSAIII might provide a potential strategy for auxiliary therapy in human cervical cancer.
Collapse
Affiliation(s)
- Hung-Ju Chien
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
- Regenetative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Tsung-Ho Ying
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Pei-Ju Wu
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Jiunn-Wei Wang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
- Regenetative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Yi-Hsuan Ting
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (Y.-H.H.); (S.-C.W.)
| | - Shih-Chiang Wang
- Department of Obstetrics and Gynecology, Chung-Kang Branch, Cheng Ching Hospital, Taichung 40764, Taiwan
- Correspondence: (Y.-H.H.); (S.-C.W.)
| |
Collapse
|
10
|
Ki YS, Chung KS, Lee HW, Choi JH, Tapondjou LA, Jang E, Lee KT. Pennogenin-3-O-α-L-Rhamnopyranosyl-(1→2)-[α-L-Rhamnopyranosyl-(1→3)]-β-D-Glucopyranoside (Spiroconazol A) Isolated from Dioscorea bulbifera L. var. sativa Induces Autophagic Cell Death by p38 MAPK Activation in NSCLC Cells. Pharmaceuticals (Basel) 2022; 15:ph15070893. [PMID: 35890190 PMCID: PMC9319756 DOI: 10.3390/ph15070893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
In our previous study, we reported the isolation of pennogenin-3-O-α-L-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→3)]-β-D-glucopyranoside (spiroconazol A), a steroidal saponin, from the flowers of Dioscorea bulbifera L. var. sativa. In the present study, we aimed to investigate the effects of spiroconazol A on autophagy and its underlying mechanisms in A549 and NCI-H358 human non-small cell lung cancer (NSCLC) cells. Spiroconazol A inhibited the proliferation of NSCLC cells in a concentration- and time-dependent manner. To determine the type of programmed cell death induced by spiroconazol A, we performed a characterization of apoptosis in spiroconazol A-treated A549 cells. Our results showed that spiroconazol A significantly suppressed A549 cell viability but did not influence cell apoptosis because phosphatidylserine and caspase activation were not detected. Furthermore, spiroconazol A treatment upregulated the expression of LC3-II and autophagy-related Beclin-1 protein, suggesting that spiroconazol A induces autophagy in A549 cells. Moreover, spiroconazol A activated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) but did not affect the phosphorylation of Janus kinase or ERK1/2. Notably, SB203580, a p38 MAPK inhibitor, had a significant inhibitory effect on spiroconazol A-induced autophagic cell death in A549 cells. Our results indicated that spiroconazol A-induced autophagy is dependent on p38 MAPK signaling and has potential as a therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Yo Sook Ki
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (Y.S.K.); (K.-S.C.); (H.-W.L.)
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (Y.S.K.); (K.-S.C.); (H.-W.L.)
| | - Heon-Woo Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (Y.S.K.); (K.-S.C.); (H.-W.L.)
| | - Jung-Hye Choi
- Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
| | - Léon Azefack Tapondjou
- Department of Chemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 183, Cameroon;
| | - Eungyeong Jang
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
- Department of Internal Medicine, Kyung Hee University Korean Medicine Hospital, 23, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (Y.S.K.); (K.-S.C.); (H.-W.L.)
- Correspondence: ; Tel.: +82-2-961-0860
| |
Collapse
|
11
|
An R, Zhang W, Huang X. Developments in the Antitumor Activity, Mechanisms of Action, Structural Modifications, and Structure-Activity Relationships of Steroidal Saponins. Mini Rev Med Chem 2022; 22:2188-2212. [PMID: 35176980 DOI: 10.2174/1389557522666220217113719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022]
Abstract
Steroidal saponins, a class of natural products formed by the combination of spirosteranes with sugars, are widely distributed in plants and have various biological activities, such as anti-tumor, anti-inflammatory, anti-bacterial, anti-Alzheimer's, anti-oxidation, etc. Particularly, extensive researches on the antitumor property of steroidal saponins have been received. Steroidal sapogenins, the aglycones of steroidal saponins, also have attracted much attention due to a vast range of pharmacological activities similar to steroidal saponins. In the past few years, structural modifications on the aglycones and sugar chains of steroidal saponins have been carried out and some achievements have been made. In this mini-review, the antitumor activity, action mechanisms, and structural modifications along with the structure-activity relationships of steroidal saponins and their derivatives are summarized.
Collapse
Affiliation(s)
- Renfeng An
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, P.R. China
| | - Wenjin Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, P.R. China
| | - Xuefeng Huang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, P.R. China
| |
Collapse
|
12
|
Pavel M, Tanasa R, Park SJ, Rubinsztein DC. The complexity of biological control systems: An autophagy case study. Bioessays 2022; 44:e2100224. [PMID: 35032045 DOI: 10.1002/bies.202100224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 01/18/2023]
Abstract
Autophagy and YAP1-WWTR1/TAZ signalling are tightly linked in a complex control system of forward and feedback pathways which determine different cellular outcomes in differing cell types at different time-points after perturbations. Here we extend our previous experimental and modelling approaches to consider two possibilities. First, we have performed additional mathematical modelling to explore how the autophagy-YAP1 crosstalk may be controlled by posttranslational modifications of components of the pathways. Second, since analogous contrasting results have also been reported for autophagy as a regulator of other transduction pathways engaged in tumorigenesis (Wnt/β-catenin, TGF-β/Smads, NF-kB or XIAP/cIAPs), we have considered if such discrepancies may be explicable through situations involving competing pathways and feedback loops in different cell types, analogous to the autophagy-YAP/TAZ situation. Since distinct posttranslational modifications dominate those pathways in distinct cells, these need to be understood to enable appropriate cell type-specific therapeutic strategies for cancers and other diseases.
Collapse
Affiliation(s)
- Mariana Pavel
- Department of Immunology, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Iasi, Romania
| | - Radu Tanasa
- Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
| | - So Jung Park
- Department of Medical Genetics, Cambridge Biomedical Campus, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge, UK.,Cambridge Biomedical Campus, Cambridge Biomedical Campus, UK Dementia Research Institute, Cambridge, UK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Biomedical Campus, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge, UK.,Cambridge Biomedical Campus, Cambridge Biomedical Campus, UK Dementia Research Institute, Cambridge, UK
| |
Collapse
|
13
|
Wu CH, Hsu FT, Chao TL, Lee YH, Kuo YC. Revealing the suppressive role of protein kinase C delta and p38 mitogen-activated protein kinase (MAPK)/NF-κB axis associates with lenvatinib-inhibited progression in hepatocellular carcinoma in vitro and in vivo. Biomed Pharmacother 2021; 145:112437. [PMID: 34864311 DOI: 10.1016/j.biopha.2021.112437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor-kappa B (NF-κB), an oncogenic transcription factor, modulates tumor formation and progression by inducing the expression of oncogenes involved in proliferation, survival, angiogenesis, and metastasis. Oral multikinase inhibitors, such as sorafenib, regorafenib, and lenvatinib have been used for the treatment of hepatocellular carcinoma (HCC). Both sorafenib and regorafenib were shown to abolish the NF-κB-mediated progression of HCC. However, the effect of lenvatinib on NF-κB-mediated progression of HCC is ambiguous. Therefore, the primary purpose of the present study was to evaluate the inhibitory effect of lenvatinib and its inhibitory mechanism on the NF-κB-mediated progression of HCC in vitro and in vivo. Here, we used two HCC cell lines to identify the cytotoxicity, apoptosis and metastasis effect of lenvatinib. We also applied a Hep3B-bearing animal model to investigate the therapeutic efficacy of lenvatinib on in vivo model. An NF-κB translocation assay, NF-κB reporter gene assay, a Western blotting assay and immunohistochemistry staining were used to investigate the underlying mechanism by which lenvatinib acts on HCC. In this study, we demonstrated that lenvatinib induced extrinsic/intrinsic apoptosis and suppressed the metastasis of HCC both in vitro and in vivo. Lenvatinib may also suppress NF-κB translocation and activation. We also found both protein kinase C delta (PKC-δ) and p38 mitogen-activated protein kinase (MAPK) inactivation participated in lenvatinib-reduced NF-κB signaling. In conclusion, this study reveals that the suppression of PKC-δ, and the p38 MAPK/NF-κB axis is associated with the lenvatinib-inhibited progression of HCC in vitro and in vivo.
Collapse
Affiliation(s)
- Ching-Hsuan Wu
- Division of Hematology and Oncology, Department of Internal Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua 505, Taiwan, ROC
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan, ROC.
| | - Tsu-Lan Chao
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan, ROC
| | - Yuan-Hao Lee
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu-Cheng Kuo
- School of Medicine, College of Medicine, China Medical University, Taichung, ROC; Department of Radiation Oncology, China Medical University Hsinchu Hospital, Hsinchu, Taiwan, ROC.
| |
Collapse
|
14
|
Zhang M, Qu J, Gao Z, Qi Q, Yin H, Zhu L, Wu Y, Liu W, Yang J, Huang X. Timosaponin AIII Induces G2/M Arrest and Apoptosis in Breast Cancer by Activating the ATM/Chk2 and p38 MAPK Signaling Pathways. Front Pharmacol 2021; 11:601468. [PMID: 33628174 PMCID: PMC7898553 DOI: 10.3389/fphar.2020.601468] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022] Open
Abstract
Timosaponin AIII (TAIII), a steroidal saponin, exerts potent anti-tumor activity in various cancers, especially breast cancer. However, the concrete molecular mechanisms of TAIII against breast cancer are still unclear. Here, we find that TAIII triggers DNA damage, leads to G2/M arrest, and ultimately induces apoptosis in breast cancer both in vitro and in vivo. TAIII induced G2/M phase arrest and apoptosis in MDA-MB-231 and MCF7 cells accompanied with down-regulation of CyclinB1, Cdc2 and Cdc25C. Further data showed that the ATM/Chk2 and p38 pathways were activated representing by up-regulated levels of p-H2A.X and p-p38, which indicated an induction of DNA damage by TAIII, leading to cell cycle arrest and apoptosis. The effects of TAIII were further confirmed by employing inhibitors of ATM and p38 pathways. In vivo, TAIII suppressed the growth of subcutaneous xenograft tumor without obvious toxicity, which indicated by Ki67 and TUNEL analysis. Data also showed that TAIII stimulated the ATM/Chk2 and p38 MAPK pathways in vivo, which in consistent with the effects in vitro. Hence, our data demonstrate that TAIII triggers DNA damage and activates ATM/Chk2 and p38 MAPK pathways, and then induces G2/M phase arrest and apoptosis in breast cancer, which provide theoretical evidence for TAIII utilized as drug against breast cancer.
Collapse
Affiliation(s)
- Minjie Zhang
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jiaxi Qu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Zhiwei Gao
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Qi Qi
- MOE Key Laboratory of Tumor Molecular Biology, Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Hong Yin
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ling Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yichen Wu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Wei Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Xuefeng Huang
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
15
|
Zhao Q, Peng C, Zheng C, He XH, Huang W, Han B. Recent Advances in Characterizing Natural Products that Regulate Autophagy. Anticancer Agents Med Chem 2020; 19:2177-2196. [PMID: 31749434 DOI: 10.2174/1871520619666191015104458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/16/2018] [Accepted: 08/26/2019] [Indexed: 02/07/2023]
Abstract
Autophagy, an intricate response to nutrient deprivation, pathogen infection, Endoplasmic Reticulum (ER)-stress and drugs, is crucial for the homeostatic maintenance in living cells. This highly regulated, multistep process has been involved in several diseases including cardiovascular and neurodegenerative diseases, especially in cancer. It can function as either a promoter or a suppressor in cancer, which underlines the potential utility as a therapeutic target. In recent years, increasing evidence has suggested that many natural products could modulate autophagy through diverse signaling pathways, either inducing or inhibiting. In this review, we briefly introduce autophagy and systematically describe several classes of natural products that implicated autophagy modulation. These compounds are of great interest for their potential activity against many types of cancer, such as ovarian, breast, cervical, pancreatic, and so on, hoping to provide valuable information for the development of cancer treatments based on autophagy.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Chuan Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China.,The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, United States
| |
Collapse
|
16
|
Liu J, Deng X, Sun X, Dong J, Huang J. Inhibition of autophagy enhances timosaponin AIII-induced lung cancer cell apoptosis and anti-tumor effect in vitro and in vivo. Life Sci 2020; 257:118040. [PMID: 32622943 DOI: 10.1016/j.lfs.2020.118040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022]
Abstract
AIMS Timosaponin AIII (TAIII), an active component with anti-tumor activity from Anemarrhena asphodeloides Bunge, can induce both autophagy and apoptosis of cancer cells. The present study aimed to reveal the promoting or inhibiting role of TAIII-induced autophagy on TAIII-induced apoptosis, to determine the respective upstream signaling pathways for TAIII-induced autophagy and apoptosis; and to observe the therapeutic potential of TAIII in human non-small cell lung cancer in vivo. METHODS AND MATERIALS WST-1 assay was used to determine the effect of TAIII on cell growth and proliferation. Apoptosis was detected by DAPI staining and flow cytometry. Autophagy was verified by immunofluorescence and transmission electron microscopy. Western blot was used to determine the levels of protein expression. Furthermore, the anti-tumor activity of TAIII was observed in nude mice. KEY FINDINGS TAIII at high concentrations from 10 μM to 30 μM induced both autophagy and apoptosis in human non-small cell lung cancer cells in a time- and concentration-dependent manner. TAIII at low concentration (1 μM) only induced autophagy. The AMP-activated protein kinase (AMPK) signaling pathway was identified to be responsible for TAIII-induced autophagy both at high or low concentrations. The MAPK/Erk1/2 signaling pathway was identified to be responsible for TAIII-induced apoptosis at the high concentration (20 μM). TAIII-induced autophagy protected cancer cells from apoptosis, and combination of TAIII and autophagy inhibitor showed higher anti-cancer activity.
Collapse
Affiliation(s)
- Jingjing Liu
- Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaohong Deng
- Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xianjun Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China.
| | - Jianhua Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China.
| |
Collapse
|
17
|
Lin Y, Zhao WR, Shi WT, Zhang J, Zhang KY, Ding Q, Chen XL, Tang JY, Zhou ZY. Pharmacological Activity, Pharmacokinetics, and Toxicity of Timosaponin AIII, a Natural Product Isolated From Anemarrhena asphodeloides Bunge: A Review. Front Pharmacol 2020; 11:764. [PMID: 32581782 PMCID: PMC7283383 DOI: 10.3389/fphar.2020.00764] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Anemarrhena asphodeloides Bunge is a famous Chinese Materia Medica and has been used in traditional Chinese medicine for more than two thousand years. Steroidal saponins are important active components isolated from A. asphodeloides Bunge. Among which, the accumulation of numerous experimental studies involved in Timosaponin AIII (Timo AIII) draws our attention in the recent decades. In this review, we searched all the scientific literatures using the key word "timosaponin AIII" in the PubMed database update to March 2020. We comprehensively summarized the pharmacological activity, pharmacokinetics, and toxicity of Timo AIII. We found that Timo AIII presents multiple-pharmacological activities, such as anti-cancer, anti-neuronal disorders, anti-inflammation, anti-coagulant, and so on. And the anti-cancer effect of Timo AIII in various cancers, especially hepatocellular cancer and breast cancer, is supposed as its most potential activity. The anti-inflammatory activity of Timo AIII is also beneficial to many diseases. Moreover, VEGFR, X-linked inhibitor of apoptosis protein (XIAP), B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1), thromboxane (Tx) A2 receptor, mTOR, NF-κB, COX-2, MMPs, acetylcholinesterase (AChE), and so on are identified as the crucial pharmacological targets of Timo AIII. Furthermore, the hepatotoxicity of Timo AIII was most concerned, and the pharmacokinetics and toxicity of Timo AIII need further studies in diverse animal models. In conclusion, Timo AIII is potent as a compound or leading compound for further drug development while still needs in-depth studies.
Collapse
Affiliation(s)
- Yan Lin
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Oncology, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wai-Rong Zhao
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Ting Shi
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhang
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai-Yu Zhang
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Ding
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xin-Lin Chen
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Yi Tang
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhong-Yan Zhou
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, Macau
| |
Collapse
|
18
|
Joshi V, Upadhyay A, Prajapati VK, Mishra A. How autophagy can restore proteostasis defects in multiple diseases? Med Res Rev 2020; 40:1385-1439. [PMID: 32043639 DOI: 10.1002/med.21662] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/03/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Cellular evolution develops several conserved mechanisms by which cells can tolerate various difficult conditions and overall maintain homeostasis. Autophagy is a well-developed and evolutionarily conserved mechanism of catabolism, which endorses the degradation of foreign and endogenous materials via autolysosome. To decrease the burden of the ubiquitin-proteasome system (UPS), autophagy also promotes the selective degradation of proteins in a tightly regulated way to improve the physiological balance of cellular proteostasis that may get perturbed due to the accumulation of misfolded proteins. However, the diverse as well as selective clearance of unwanted materials and regulations of several cellular mechanisms via autophagy is still a critical mystery. Also, the failure of autophagy causes an increase in the accumulation of harmful protein aggregates that may lead to neurodegeneration. Therefore, it is necessary to address this multifactorial threat for in-depth research and develop more effective therapeutic strategies against lethal autophagy alterations. In this paper, we discuss the most relevant and recent reports on autophagy modulations and their impact on neurodegeneration and other complex disorders. We have summarized various pharmacological findings linked with the induction and suppression of autophagy mechanism and their promising preclinical and clinical applications to provide therapeutic solutions against neurodegeneration. The conclusion, key questions, and future prospectives sections summarize fundamental challenges and their possible feasible solutions linked with autophagy mechanism to potentially design an impactful therapeutic niche to treat neurodegenerative diseases and imperfect aging.
Collapse
Affiliation(s)
- Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| | - Vijay K Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| |
Collapse
|
19
|
Zhou ZY, Zhao WR, Xiao Y, Zhou XM, Huang C, Shi WT, Zhang J, Ye Q, Chen XL, Tang JY. Antiangiogenesis effect of timosaponin AIII on HUVECs in vitro and zebrafish embryos in vivo. Acta Pharmacol Sin 2020; 41:260-269. [PMID: 31515528 PMCID: PMC7471416 DOI: 10.1038/s41401-019-0291-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022]
Abstract
Timosaponin AIII (Timo AIII) is a natural steroidal saponin isolated from the traditional Chinese herb Anemarrhena asphodeloides Bge with proved effectiveness in the treatment of numerous cancers. However, whether Timo AIII suppresses tumor angiogenesis remains unclear. In the present study, we investigated the antiangiogenesis effects of Timo AIII and the underlying mechanisms in human umbilical vein endothelial cells (HUVECs) in vitro and zebrafish embryos in vivo. We showed that treatment with Timo AIII (0.5-2 µM) partially disrupted the intersegmental vessels (ISVs) and subintestinal vessels (SIVs) growth in transgenic zebrafish Tg(fli-1a: EGFP)y1. Timo AIII (0.5-4 µM) dose-dependently inhibited VEGF-induced proliferation, migration, invasion, and tube formation of HUVECs, but these inhibitory effects were not due to its cytotoxicity. We further demonstrated that Timo AIII treatment significantly suppressed the expression of VEGF receptor (VEGFR) and the phosphorylation of Akt, MEK1/2, and ERK1/2 in HUVECs. Timo AIII treatment also significantly inhibited VEGF-triggered phosphorylation of VEGFR2, Akt, and ERK1/2 in HUVECs. Moreover, we conducted RNA-Seq and analyzed the transcriptome changes in both HUVECs and zebrafish embryos following Timo AIII treatment. The coexpression network analysis results showed that various biological processes and signaling pathways were enriched including angiogenesis, cell motility, cell adhesion, protein serine/threonine kinase activity, transmembrane signaling receptor activity, growth factor activity, etc., which was consistent with the antiangiogenesis effects of Timo AIII in HUVECs and zebrafish embryos. We conclude that the antiangiogenesis effect of Timo AIII is mediated through VEGF/PI3K/Akt/MAPK signaling cascade; Timo AIII potentially exerts antiangiogenesis effect in cancer treatment.
Collapse
Affiliation(s)
- Zhong-Yan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wai-Rong Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Cardiac rehabilitation Center of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ying Xiao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xiang-Ming Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Chen Huang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wen-Ting Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jing Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Qing Ye
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xin-Lin Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Jing-Yi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
- Cardiac rehabilitation Center of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
20
|
Jiang X, Tan HY, Teng S, Chan YT, Wang D, Wang N. The Role of AMP-Activated Protein Kinase as a Potential Target of Treatment of Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:647. [PMID: 31083406 PMCID: PMC6562911 DOI: 10.3390/cancers11050647] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the fifth most frequent cancer worldwide with a very high recurrence rate and very dismal prognosis. Diagnosis and treatment in HCC remain difficult, and the identification of new therapeutic targets is necessary for a better outcome of HCC treatment. AMP-Activated Protein Kinase (AMPK) is an essential intracellular energy sensor that plays multiple roles in cellular physiology and the pathological development of chronic diseases. Recent studies have highlighted the important regulation of AMPK in HCC. This review aims to comprehensively and critically summarize the role of AMPK in HCC. Methods: Original studies were retrieved from NCBI database with keywords including AMPK and HCC, which were analyzed with extensive reading. Results: Dysregulation of the kinase activity and expression of AMPK was observed in HCC, which was correlated with survival of the patients. Loss of AMPK in HCC cells may proceed cell cycle progression, proliferation, survival, migration, and invasion through different oncogenic molecules and pathways. Conclusions: We identified several AMPK activators which may possess potential anti-HCC function, and discussed the clinical perspective on the use of AMPK activators for HCC therapy.
Collapse
Affiliation(s)
- Xue Jiang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Hor-Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Shanshan Teng
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
21
|
Chen X, Shi H, Bi X, Li Y, Huang Z. Targeting the deubiquitinase STAMBPL1 triggers apoptosis in prostate cancer cells by promoting XIAP degradation. Cancer Lett 2019; 456:49-58. [PMID: 31004702 DOI: 10.1016/j.canlet.2019.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
Abstract
The zinc metalloprotease STAM-binding protein-like 1 (STAMBPL1) has been identified as a deubiquitinase by specifically cleaving Lys-63-linked polyubiquitin chains, but its cellular function remains unclear. Here we described the potential role of STAMBPL1 in suppression of the intrinsic apoptosis. We observed substantially high amounts of STAMBPL1 proteins in androgen-independent prostate cancer PC3 and DU145 cell lines. STAMBPL1 RNAi depletion triggered caspase-3/-7-dependent apoptosis in PC3 and DU145 cells. STAMBPL1 knockdown-induced apoptosis was accompanied by accumulation of cellular ROS and a decrease in endogenous caspase inhibitor XIAP protein content. Treatment cells with antioxidant NAC delayed STAMBPL1 silencing-induced apoptosis, whereas ectopic expression of XIAP almost completely abrogated apoptosis. We further elucidated that STAMBPL1 knockdown diverted XIAP protein to lysosomal degradation pathway. Taken together, these studies show that STAMBPL1 depletion induces apoptosis by promoting XIAP lysosomal degradation, and suggest that targeting deubiquitinase STAMBPL1 might offer promising therapeutic strategy for prostate cancer.
Collapse
Affiliation(s)
- Xi Chen
- Department of Urology, National Cancer Center, National Clinical Research Center For Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongzhe Shi
- Department of Urology, National Cancer Center, National Clinical Research Center For Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xingang Bi
- Department of Urology, National Cancer Center, National Clinical Research Center For Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yajian Li
- Department of Urology, National Cancer Center, National Clinical Research Center For Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhenhua Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
22
|
Screening potential α-glucosidase inhibitors from Anemarrhena asphodeloides using response surface methodology coupled with grey relational analysis. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2018.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
23
|
Advances in the antitumor activities and mechanisms of action of steroidal saponins. Chin J Nat Med 2018; 16:732-748. [PMID: 30322607 DOI: 10.1016/s1875-5364(18)30113-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Indexed: 01/14/2023]
Abstract
The steroidal saponins are one of the saponin types that exist in an unbound state and have various pharmacological activities, such as anticancer, anti-inflammatory, antiviral, antibacterial and nerves-calming properties. Cancer is a growing health problem worldwide. Significant progress has been made to understand the antitumor effects of steroidal saponins in recent years. According to reported findings, steroidal saponins exert various antitumor activities, such as inhibiting proliferation, inducing apoptosis and autophagy, and regulating the tumor microenvironment, through multiple related signaling pathways. This article focuses on the advances in domestic and foreign studies on the antitumor activity and mechanism of actions of steroidal saponins in the last five years to provide a scientific basis and research ideas for further development and clinical application of steroidal saponins.
Collapse
|
24
|
He Q, Liu W, Sha S, Fan S, Yu Y, Chen L, Dong M. Adenosine 5'-monophosphate-activated protein kinase-dependent mTOR pathway is involved in flavokawain B-induced autophagy in thyroid cancer cells. Cancer Sci 2018; 109:2576-2589. [PMID: 29908094 PMCID: PMC6113436 DOI: 10.1111/cas.13699] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
Flavokawain B (FKB), a natural kava chalcone, shows potent antitumor activity in various types of cancer, although the mechanism of action remains unclear. In this study, we report that FKB has profound effects on the metabolic state of human thyroid cancer (TCa) cells, leading to high autophagy flux through upregulation of AMP‐activated protein kinase, which in turn inhibits mTOR and activates Beclin‐1 in TCa cells. We further report that the autophagy induced by FKB plays a prosurvival role in TCa cells both in vitro and in vivo. In conclusion, our findings provide evidence that combination treatment with FKB and pharmacological autophagy inhibitors will be a potential therapeutic strategy for the treatment of TCa.
Collapse
Affiliation(s)
- Qin He
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong University, Jinan, China.,Key Laboratory of Endocrinology and Metabolism, Shandong Province in Medicine and Health, Jinan, China
| | - Wenping Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong University, Jinan, China.,Key Laboratory of Endocrinology and Metabolism, Shandong Province in Medicine and Health, Jinan, China
| | - Sha Sha
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong University, Jinan, China.,Key Laboratory of Endocrinology and Metabolism, Shandong Province in Medicine and Health, Jinan, China
| | - Shanshan Fan
- Department of Endocrinology, the Fourth People's Hospital of Jinan City, Jinan, China
| | - Yajing Yu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong University, Jinan, China.,Key Laboratory of Endocrinology and Metabolism, Shandong Province in Medicine and Health, Jinan, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong University, Jinan, China.,Key Laboratory of Endocrinology and Metabolism, Shandong Province in Medicine and Health, Jinan, China
| | - Ming Dong
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong University, Jinan, China.,Key Laboratory of Endocrinology and Metabolism, Shandong Province in Medicine and Health, Jinan, China
| |
Collapse
|
25
|
Lu L, Ding Y, Zhang Y, Ho RJ, Zhao Y, Zhang T, Guo C. Antibody-modified liposomes for tumor-targeting delivery of timosaponin AIII. Int J Nanomedicine 2018; 13:1927-1944. [PMID: 29636610 PMCID: PMC5880182 DOI: 10.2147/ijn.s153107] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Introduction Timosaponin AIII (TAIII), as a steroid saponin in Anemarrhena asphodeloides, has favorable potential as an antitumor candidate. However, its hydrophobicity and low bioavailability severely limit its in vivo antitumor efficacy. Methods To overcome this drawback, TAIII-loaded liposomes (LP) were prepared to improve TAIII solubility and extend its circulation time. Furthermore, anti-CD44 antibody-modified LP (CD44-LP) was prepared to enhance the therapeutic index of TAIII. The LP and CD44-LP were also characterized through their biological activity, target selective binding and uptake, and in vivo pharmacokinetics. Results Compared with free TAIII, both LP and CD44-LP possessed a desirable sustained-release profile in vitro, with ~14.2- and 10.7-fold longer TAIII half-life, respectively, and 1.7- and 1.9-fold larger area under the curve, respectively. LP and CD44-LP enhanced TAIII antitumor activity against HepG2 cells and in a xenograft mouse model without detectable toxicity. In particular, CD44-LP exhibited notably higher cytotoxicity than did LP, with a lower half-maximal inhibitory concentration (48 h). CD44-LP exhibited stronger tumor inhibition, and the tumor inhibitory effect was 1.3-fold that of LP. Furthermore, confocal laser scanning microscopy and in vivo near-infrared imaging of a xenograft mouse model revealed that compared with LP, CD44-LP could effectively enhance tumor accumulation. Conclusion Taken together, the results indicate that both CD44-LP and LP can considerably extend TAIII circulation time, increase tumor-targeted accumulation, and enhance antitumor activity. Thus, the anti-CD44 antibody-modified liposome is a promising candidate for treating CD44-positive cancer with considerable antitumor effects.
Collapse
Affiliation(s)
| | - Yue Ding
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rodney Jy Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Yuan Zhao
- Center of Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | - Chunrong Guo
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Zhang S, Pang H, Sun M, Li H. Timosaponin AIII inhibits the growth of human leukaemia cells HL-60 by down-regulation of PI3K/AKT and Wnt/β-catenin pathways. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1389304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Sai Zhang
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, P. R. China
| | - Haifeng Pang
- Department of Pediatrics, First Hospital of Jilin University, Changchun, P. R. China
| | - Meihua Sun
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, P. R. China
| | - Haibo Li
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, P. R. China
| |
Collapse
|
27
|
Ono H, Iizumi Y, Goi W, Sowa Y, Taguchi T, Sakai T. Ribosomal protein S3 regulates XIAP expression independently of the NF-κB pathway in breast cancer cells. Oncol Rep 2017; 38:3205-3210. [DOI: 10.3892/or.2017.6008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/15/2017] [Indexed: 11/06/2022] Open
|
28
|
Two new steroidal saponins isolated from Anemarrhena asphodeloides. Chin J Nat Med 2017; 15:220-224. [DOI: 10.1016/s1875-5364(17)30038-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Indexed: 11/22/2022]
|
29
|
Timosaponin AIII induces antiplatelet and antithrombotic activity via Gq-mediated signaling by the thromboxane A2 receptor. Sci Rep 2016; 6:38757. [PMID: 27934923 PMCID: PMC5146924 DOI: 10.1038/srep38757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/14/2016] [Indexed: 12/02/2022] Open
Abstract
The thromboxane (Tx) A2 pathway is a major contributor to the amplification of initial platelet activation and is therefore a key drug target. To identify potent small-molecule inhibitors of the thromboxane prostaglandin (TP) receptor, we screened a small steroidal saponin library using U46619-induced rat platelet aggregation assays. Timosaponin AIII (TAIII) was identified as a potent inhibitor of U46619-induced rat platelet aggregation and exhibited superior selectivity for the TP receptor versus other G protein-coupled receptors and a PKC activator. TAIII inhibited U46619-induced rat platelet aggregation independent of increases in cAMP and cGMP and the inhibition of TxA2 production. Both PKC and PLC activators restored TAIII-inhibited platelet aggregation, whereas TAIII did not inhibit platelet aggregation induced by co-activation of the G12/13 and Gz pathways. Furthermore, TAIII did not affect the platelet shape change or ROCK2 phosphorylation evoked by low-dose U46619. In vivo, TAIII prolonged tail bleeding time, reduced the mortality of animals with acute pulmonary thromboembolism and significantly reduced venous thrombus weight. Our study suggests that TAIII, by preferentially targeting Gq-mediated PLC/PKC signaling from the TP receptor, induces stronger in vitro antiplatelet activity and in vivo antithrombotic effects and may be an excellent candidate for the treatment of thrombotic disorders.
Collapse
|
30
|
Wang DW, Peng ZJ, Ren GF, Wang GX. The different roles of selective autophagic protein degradation in mammalian cells. Oncotarget 2016; 6:37098-116. [PMID: 26415220 PMCID: PMC4741918 DOI: 10.18632/oncotarget.5776] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023] Open
Abstract
Autophagy is an intracellular pathway for bulk protein degradation and the removal of damaged organelles by lysosomes. Autophagy was previously thought to be unselective; however, studies have increasingly confirmed that autophagy-mediated protein degradation is highly regulated. Abnormal autophagic protein degradation has been associated with multiple human diseases such as cancer, neurological disability and cardiovascular disease; therefore, further elucidation of protein degradation by autophagy may be beneficial for protein-based clinical therapies. Macroautophagy and chaperone-mediated autophagy (CMA) can both participate in selective protein degradation in mammalian cells, but the process is quite different in each case. Here, we summarize the various types of macroautophagy and CMA involved in determining protein degradation. For this summary, we divide the autophagic protein degradation pathways into four categories: the post-translational modification dependent and independent CMA pathways and the ubiquitin dependent and independent macroautophagy pathways, and describe how some non-canonical pathways and modifications such as phosphorylation, acetylation and arginylation can influence protein degradation by the autophagy lysosome system (ALS). Finally, we comment on why autophagy can serve as either diagnostics or therapeutic targets in different human diseases.
Collapse
Affiliation(s)
- Da-wei Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhen-ju Peng
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Guang-fang Ren
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Guang-xin Wang
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
31
|
Jung O, Lee J, Lee YJ, Yun JM, Son YJ, Cho JY, Ryou C, Lee SY. Timosaponin AIII inhibits migration and invasion of A549 human non-small-cell lung cancer cells via attenuations of MMP-2 and MMP-9 by inhibitions of ERK1/2, Src/FAK and β-catenin signaling pathways. Bioorg Med Chem Lett 2016; 26:3963-7. [PMID: 27422337 DOI: 10.1016/j.bmcl.2016.07.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/15/2016] [Accepted: 07/02/2016] [Indexed: 01/17/2023]
Abstract
Timosaponin AIII (TAIII) is a type of steroidal saponins isolated from Anemarrhena asphodeloides. It was known to improve learning and memory deficits through anti-inflammatory effects. TAIII was also reported to induce autophagy preceding mitochondria-mediated apoptosis in HeLa cancer cells and inhibit the growth of human colorectal cancer cells, thus regarded as a potential candidate for anti-cancer agent. In this study, we verified apoptosis-inducing and cell-cycle-arresting effects of TAIII in A549 human non-small-cell lung cancer (NSCLC) cells. Then, we report that TAIII suppresses migration and invasion of A549 human NSCLC cells. We propose that two matrix metalloproteinases (MMPs), MMP-2 and MMP-9, which are well known to be involved in cancer-metastasis, are attenuated by the treatment of TAIII. TAIII exerts its suppressive effects on MMP-2 and MMP-9 via inhibitions of ERK1/2, Src/FAK and β-catenin signalings which are closely related with the regulations of MMP-2 and MMP-9.
Collapse
Affiliation(s)
- Okkeun Jung
- Department of Life Science, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam, Gyeonggi 461-701, Republic of Korea
| | - Jongsung Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Gyeonggi 440-746, Republic of Korea
| | - Yu Jin Lee
- Department of Life Science, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam, Gyeonggi 461-701, Republic of Korea
| | - Jung-Mi Yun
- Department of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, Suncheon, Jeonnam 530-742, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Gyeonggi 440-746, Republic of Korea
| | - Chongsuk Ryou
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-Do 426-791, Republic of Korea
| | - Sang Yeol Lee
- Department of Life Science, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam, Gyeonggi 461-701, Republic of Korea.
| |
Collapse
|
32
|
Lu L, Liu Y, Ding Y, Hou J, Zhang Y, Xue H, Zhang T. Preparation of highly purified timosaponin AIII from rhizoma anemarrhenae through an enzymatic method combined with preparative liquid chromatography. Nat Prod Res 2016; 30:2364-7. [PMID: 27055070 DOI: 10.1080/14786419.2016.1169416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Lu Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanping Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Ding
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianwei Hou
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiping Xue
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
33
|
CHEN JIERU, JIA XIUHONG, WANG HONG, YI YINGJIE, WANG JIANYONG, LI YOUJIE. Timosaponin A-III reverses multi-drug resistance in human chronic myelogenous leukemia K562/ADM cells via downregulation of MDR1 and MRP1 expression by inhibiting PI3K/Akt signaling pathway. Int J Oncol 2016; 48:2063-70. [DOI: 10.3892/ijo.2016.3423] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/14/2016] [Indexed: 11/06/2022] Open
|
34
|
Zhuang P, Zhang J, Wang Y, Zhang M, Song L, Lu Z, Zhang L, Zhang F, Wang J, Zhang Y, Wei H, Li H. Reversal of muscle atrophy by Zhimu and Huangbai herb pair via activation of IGF-1/Akt and autophagy signal in cancer cachexia. Support Care Cancer 2015; 24:1189-98. [DOI: 10.1007/s00520-015-2892-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 08/09/2015] [Indexed: 12/23/2022]
|
35
|
Metabolites characterization of timosaponin AIII in vivo and in vitro by using liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 997:236-43. [DOI: 10.1016/j.jchromb.2015.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 11/20/2022]
|
36
|
Liu Z, Qin W, Zhu Z, Liu Y, Sun F, Chai Y, Xia P. Development and validation of liquid chromatography-tandem mass spectrometry method for simultaneous determination of six steroidal saponins in rat plasma and its application to a pharmacokinetics study. Steroids 2015; 96:21-9. [PMID: 25617741 DOI: 10.1016/j.steroids.2015.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 11/16/2022]
Abstract
A specific and reliable liquid chromatography-electrospray ionization-tandem mass spectrometry method was developed for the simultaneous determination of timosaponin H1 (TH1), timosaponin E1 (TE1), timosaponin E (TE), timosaponin B-II (TB-II), timosaponin B-III (TB-III) and anemarrhenasaponin I (AS-I) in rat plasma. After addition of internal standard (IS) ginsenoside Rh1, plasma samples were pretreated by protein precipitation with acetonitrile. Chromatographic separation was performed on a reverse phase ACQUITY™ BEH C18 column (100mm×2.1mm i.d., 1.7μm) using a gradient mobile phase system of acetonitrile-water containing 0.05% formic acid and 5mM ammonium formate. The triple quadruple mass spectrometer was set in negative electrospray ionization mode and multiple reaction monitoring (MRM) was used for six steroidal saponins quantification. The precursors to produce ion transitions monitored for TH1, TE1, TE, TB-II, TB-III, AS-I and IS were m/z 1211.5>1079.6, 935.5>773.4, 935.4>773.5, 919.6>757.4, 901.5>739.3, 757.4>595.3 and 637.3>475.3, respectively. The method validation was conducted over the curve range of 0.5-400ng/mL for the six saponins. The intra- and inter-day precisions (RSD%) were less than 9.4% and the average extraction recoveries ranged from 82.5% to 97.8% for each analyte. Six steroidal saponins were proved to be stable during sample storage, preparation and analytical procedures. The validated method was successfully applied for the first time to determine the concentrations of six main steroidal saponins in incurred rat plasma samples, after intragastric administration of the extract of Anemarrhena asphodeloides Bge. for a rat pharmacokinetic study.
Collapse
Affiliation(s)
- Zhirui Liu
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Wenxing Qin
- Department of Medical Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200070, PR China
| | - Zhenyu Zhu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Yao Liu
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China.
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
37
|
Wang N, Feng Y. Elaborating the role of natural products-induced autophagy in cancer treatment: achievements and artifacts in the state of the art. BIOMED RESEARCH INTERNATIONAL 2015; 2015:934207. [PMID: 25821829 PMCID: PMC4363717 DOI: 10.1155/2015/934207] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 12/12/2022]
Abstract
Autophagy is a homeostatic process that is highly conserved across different types of mammalian cells. Autophagy is able to relieve tumor cell from nutrient and oxidative stress during the rapid expansion of cancer. Excessive and sustained autophagy may lead to cell death and tumor shrinkage. It was shown in literature that many anticancer natural compounds and extracts could initiate autophagy in tumor cells. As summarized in this review, the tumor suppressive action of natural products-induced autophagy may lead to cell senescence, provoke apoptosis-independent cell death, and complement apoptotic cell death by robust or target-specific mechanisms. In some cases, natural products-induced autophagy could protect tumor cells from apoptotic death. Technical variations in detecting autophagy affect data quality, and study focus should be made on elaborating the role of autophagy in deciding cell fate. In vivo study monitoring of autophagy in cancer treatment is expected to be the future direction. The clinical-relevant action of autophagy-inducing natural products should be highlighted in future study. As natural products are an important resource in discovery of lead compound of anticancer drug, study on the role of autophagy in tumor suppressive effect of natural products continues to be necessary and emerging.
Collapse
Affiliation(s)
- Ning Wang
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen 518057, China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen 518057, China
| |
Collapse
|
38
|
Huang HL, Chiang WL, Hsiao PC, Chien MH, Chen HY, Weng WC, Hsieh MJ, Yang SF. Timosaponin AIII mediates caspase activation and induces apoptosis through JNK1/2 pathway in human promyelocytic leukemia cells. Tumour Biol 2014; 36:3489-97. [PMID: 25542232 DOI: 10.1007/s13277-014-2985-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/16/2014] [Indexed: 01/07/2023] Open
Abstract
Timosaponin AIII (TAIII) is a steroidal saponin isolated from Anemarrhena asphodeloides that has been shown to inhibit cell growth and induce apoptosis in cancer. However, the effect of TAIII on acute myeloid leukemia (AML) remains unclear. Here, the molecular mechanism by which TAIII-induced apoptosis affects human AML cells was investigated. The results showed that TAIII significantly inhibited cell proliferation of four AML cell lines (MV4-11, U937, THP-1, and HL-60). Furthermore, TAIII induced apoptosis of HL-60 cells through caspase-3, caspase-8, and caspase-9 activations and PARP cleavage in a dose- and time-dependent manner. Moreover, Western blot analysis also showed that TAIII increased phosphorylation of JNK1/2 and p38 MAPK in a dose-dependent manner. Inhibition of JNK1/2 by specific inhibitors significantly abolished the TAIII-induced activation of the caspase-8. Taken together, our results suggest that TAIII induces HL-60 cell apoptosis through JNK1/2 pathways and could serve as a potential additional chemotherapeutic agent for treating AML.
Collapse
Affiliation(s)
- Hsin-Lien Huang
- Institute of Medicine, Chung Shan Medical University, 110, Section 1, Chien-Kuo N. Road, Taichung, 40201, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Jiang SH, Shang L, Xue LX, Ding W, Chen S, Ma RF, Huang JF, Xiong K. The effect and underlying mechanism of Timosaponin B-II on RGC-5 necroptosis induced by hydrogen peroxide. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:459. [PMID: 25439561 PMCID: PMC4258277 DOI: 10.1186/1472-6882-14-459] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/26/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Necroptosis is an important mode of cell death, which is due to oxidant stress accumulation. Our previous study indicated that oxidant stresses could be reduced by Timosaponin B-II (TBII), a kind of Chinese herb RhizomaAnemarrhenae monomer extraction. We wonder the possible effect of Timosaponin B-II, whether it can protect cells from necroptosis via reducing the oxidant stress, in RGC-5 following hydrogen peroxide (H2O2) insult. METHODS RGC-5 cells were grown in DMEM, the model group was exposed in H2O2 with the concentration of 300 μM, and the experimental group was pre-treated with Timosaponin B-II at different concentrations (1 μM, 10 μM, 100 μM and 1000 μM) for 24 hrs. MTT assay was carried out to measure the cytotoxicity of H2O2, MDA concentration assay was executed to evaluate the degree of oxidative stress, TNF-α ELISA Assay was used to measure the concentration of TNF-α, finally, the degree of necrosis were analyzed using flow cytometry. RESULTS We first constructed the cell injury model of necroptosis in RGC-5 upon H2O2 exposure. Morphological observation and MTT assay were used to evaluate the degree of RGC-5 death. MDA assay were carried out to describe the degree of oxidant stress. Annexin V/PI staining was used to detect necroptotic cells pre-treated with or without Timosaponin B-II following H2O2 injury. TNF-α ELISA was carried out to detect the TNF-α accumulation in RGC-5. Upon using Timosaponin B-II with concentration of 100 μM, the percentage of cell viability was increased from 50% to 75%, and the necrosis of cells was reduced from 35% to 20% comparing with H2O2 injury group. Oxidant stress and TNF-α was reduced upon injury which decreased the ratio of RGC-5 necroptosis. CONCLUSION Our study found out that Timosaponin B-II might reduce necroptosis via inhibition of ROS and TNF-α accumulation in RGC-5 following H2O2 injury.
Collapse
Affiliation(s)
- San-Hong Jiang
- />Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013 China
| | - Lei Shang
- />Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013 China
| | - Li-Xiang Xue
- />Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, 100191 China
| | - Wei Ding
- />Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013 China
| | - Shuang Chen
- />Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013 China
| | - Ruo-Fei Ma
- />Xiangya School of Medicine, Central South University, Changsha, Hunan 410013 China
| | - Ju-Fang Huang
- />Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013 China
| | - Kun Xiong
- />Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013 China
| |
Collapse
|
40
|
Clinical significance of autophagic protein LC3 levels and its correlation with XIAP expression in hepatocellular carcinoma. Med Oncol 2014; 31:108. [DOI: 10.1007/s12032-014-0108-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/30/2014] [Indexed: 12/11/2022]
|