1
|
Xie Y, Zhang T, Ma C, Guan M, Li C, Wang L, Lin X, Li Y, Wang Z, Wang H, Fang P. The underlying neurobiological basis of gray matter volume alterations in schizophrenia with auditory verbal hallucinations: A meta-analytic investigation. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111331. [PMID: 40089004 DOI: 10.1016/j.pnpbp.2025.111331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/08/2025] [Accepted: 03/09/2025] [Indexed: 03/17/2025]
Abstract
Schizophrenia patients with auditory verbal hallucinations (AVH) frequently exhibit brain structural alterations, particularly reductions in gray matter volume (GMV).Understanding the neurobiological mechanisms underlying the changes is essential for advancing treatment strategies. To address this, a meta-analysis was conducted to identify GMV changes in schizophrenia patients with AVH and their associations with gene expression and neurotransmitter receptor profiles. The results indicated significant GMV reductions in the left and the right insula, as well as the left anterior cingulate cortex. Ontology analysis of genes associated with GMV alternations revealed enrichment in biological processes related to ion transport and synaptic transmission. Hub genes from the KCN, SCN, GN, and PRK families, along with neurotransmitter receptors such as D2, VAChT, and mGluR5, showed significant correlations with GMV changes. Furthermore, multivariate linear regression analysis demonstrated that GNB2, GNB4, PRKCG, D2, and mGluR5 significantly predicted GMV alternations. These findings suggest that GMV reductions in schizophrenia with AVH are linked to disruptions in neurobiological processes involving specific genes and neurotransmitter systems, highlighting the potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yuanjun Xie
- Medical Innovation Center, Sichuan University of Science and Engineering, Zigong, China; Military Medical Psychology School, Air Force Medical University, Xi'an, China.
| | - Tian Zhang
- Military Medical Psychology School, Air Force Medical University, Xi'an, China
| | - Chaozong Ma
- Military Medical Psychology School, Air Force Medical University, Xi'an, China
| | - Muzhen Guan
- Deparment of Mental Health, Xi'an Medical College, Xi'an, China
| | - Chenxi Li
- Military Medical Psychology School, Air Force Medical University, Xi'an, China
| | - Lingling Wang
- Military Medical Psychology School, Air Force Medical University, Xi'an, China
| | - Xinxin Lin
- Military Medical Psychology School, Air Force Medical University, Xi'an, China
| | - Yijun Li
- Military Medical Psychology School, Air Force Medical University, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Air Force Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Air Force Medical University, Xi'an, China
| | - Peng Fang
- Military Medical Psychology School, Air Force Medical University, Xi'an, China; Innovation Research Institute, Xijing Hospital, Air Force Medical University, Xi'an, China; Military Medical Innovation Center, Air Force Medical University, Xi'an, China; Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China.
| |
Collapse
|
2
|
Miyazaki Y, Otsuka T, Yamagata Y, Endo T, Sanbo M, Sano H, Kobayashi K, Inahashi H, Kornau HC, Schmitz D, Prüss H, Meijer D, Hirabayashi M, Fukata Y, Fukata M. Oligodendrocyte-derived LGI3 and its receptor ADAM23 organize juxtaparanodal Kv1 channel clustering for short-term synaptic plasticity. Cell Rep 2024; 43:113634. [PMID: 38194969 PMCID: PMC10828548 DOI: 10.1016/j.celrep.2023.113634] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Neurodevelopmental disorders, such as intellectual disability (ID), epilepsy, and autism, involve altered synaptic transmission and plasticity. Functional characterization of their associated genes is vital for understanding physio-pathological brain functions. LGI3 is a recently recognized ID-associated gene encoding a secretory protein related to an epilepsy-gene product, LGI1. Here, we find that LGI3 is uniquely secreted from oligodendrocytes in the brain and enriched at juxtaparanodes of myelinated axons, forming nanoscale subclusters. Proteomic analysis using epitope-tagged Lgi3 knockin mice shows that LGI3 uses ADAM23 as a receptor and selectively co-assembles with Kv1 channels. A lack of Lgi3 in mice disrupts juxtaparanodal clustering of ADAM23 and Kv1 channels and suppresses Kv1-channel-mediated short-term synaptic plasticity. Collectively, this study identifies an extracellular organizer of juxtaparanodal Kv1 channel clustering for finely tuned synaptic transmission. Given the defective secretion of the LGI3 missense variant, we propose a molecular pathway, the juxtaparanodal LGI3-ADAM23-Kv1 channel, for understanding neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yuri Miyazaki
- Division of Neuropharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Takeshi Otsuka
- Section of Cellular Electrophysiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Yoko Yamagata
- Section of Multilayer Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | | | - Makoto Sanbo
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hiromi Sano
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Kenta Kobayashi
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan; Section of Viral Vector Development, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Hiroki Inahashi
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hans-Christian Kornau
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany; Neuroscience Research Center (NWFZ), Cluster NeuroCure, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany; Neuroscience Research Center (NWFZ), Cluster NeuroCure, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dies Meijer
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
| | - Masumi Hirabayashi
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan; Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Division of Molecular and Cellular Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Masaki Fukata
- Division of Neuropharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
3
|
Bonnin EA, Golmohammadi A, Rehm R, Tetzlaff C, Rizzoli SO. High-resolution analysis of bound Ca 2+ in neurons and synapses. Life Sci Alliance 2024; 7:e202302030. [PMID: 37833073 PMCID: PMC10575792 DOI: 10.26508/lsa.202302030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Calcium (Ca2+) is a well-known second messenger in all cells, and is especially relevant for neuronal activity. Neuronal Ca2+ is found in different forms, with a minority being freely soluble in the cell and more than 99% being bound to proteins. Free Ca2+ has received much attention over the last few decades, but protein-bound Ca2+ has been difficult to analyze. Here, we introduce correlative fluorescence and nanoscale secondary ion mass spectrometry imaging as a tool to describe bound Ca2+ As expected, bound Ca2+ is ubiquitous. It does not correlate to free Ca2+ dynamics at the whole-neuron level, but does correlate significantly to the intensity of markers for GABAergic pre-synapse and glutamatergic post-synapses. In contrast, a negative correlation to pre-synaptic activity was observed, with lower levels of bound Ca2+ observed in the more active synapses. We conclude that bound Ca2+ may regulate neuronal activity and should receive more attention in the future.
Collapse
Affiliation(s)
- Elisa A Bonnin
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Excellence Cluster Multiscale Bioimaging (MBExC), Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| | - Arash Golmohammadi
- Group of Computational Synaptic Physiology, Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Ronja Rehm
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Tetzlaff
- Group of Computational Synaptic Physiology, Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Excellence Cluster Multiscale Bioimaging (MBExC), Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Kourosh-Arami M, Kaeidi A, Semnanian S. Extracellular Calcium Contributes to Orexin-Induced Postsynaptic Excitation of the Rat Locus Coeruleus Neurons. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Zbili M, Rama S, Benitez MJ, Fronzaroli-Molinieres L, Bialowas A, Boumedine-Guignon N, Garrido JJ, Debanne D. Homeostatic regulation of axonal Kv1.1 channels accounts for both synaptic and intrinsic modifications in the hippocampal CA3 circuit. Proc Natl Acad Sci U S A 2021; 118:e2110601118. [PMID: 34799447 PMCID: PMC8617510 DOI: 10.1073/pnas.2110601118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
Homeostatic plasticity of intrinsic excitability goes hand in hand with homeostatic plasticity of synaptic transmission. However, the mechanisms linking the two forms of homeostatic regulation have not been identified so far. Using electrophysiological, imaging, and immunohistochemical techniques, we show here that blockade of excitatory synaptic receptors for 2 to 3 d induces an up-regulation of both synaptic transmission at CA3-CA3 connections and intrinsic excitability of CA3 pyramidal neurons. Intrinsic plasticity was found to be mediated by a reduction of Kv1.1 channel density at the axon initial segment. In activity-deprived circuits, CA3-CA3 synapses were found to express a high release probability, an insensitivity to dendrotoxin, and a lack of depolarization-induced presynaptic facilitation, indicating a reduction in presynaptic Kv1.1 function. Further support for the down-regulation of axonal Kv1.1 channels in activity-deprived neurons was the broadening of action potentials measured in the axon. We conclude that regulation of the axonal Kv1.1 channel constitutes a major mechanism linking intrinsic excitability and synaptic strength that accounts for the functional synergy existing between homeostatic regulation of intrinsic excitability and synaptic transmission.
Collapse
Affiliation(s)
- Mickaël Zbili
- Unité de Neurobiologie des canaux Ioniques et de la Synapse (UNIS), UMR_S 1072, INSERM, Aix-Marseille Université, Marseille 13015, France
| | - Sylvain Rama
- Unité de Neurobiologie des canaux Ioniques et de la Synapse (UNIS), UMR_S 1072, INSERM, Aix-Marseille Université, Marseille 13015, France
| | - Maria-José Benitez
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid 28002, Spain
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Laure Fronzaroli-Molinieres
- Unité de Neurobiologie des canaux Ioniques et de la Synapse (UNIS), UMR_S 1072, INSERM, Aix-Marseille Université, Marseille 13015, France
| | - Andrzej Bialowas
- Unité de Neurobiologie des canaux Ioniques et de la Synapse (UNIS), UMR_S 1072, INSERM, Aix-Marseille Université, Marseille 13015, France
| | - Norah Boumedine-Guignon
- Unité de Neurobiologie des canaux Ioniques et de la Synapse (UNIS), UMR_S 1072, INSERM, Aix-Marseille Université, Marseille 13015, France
| | - Juan José Garrido
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid 28002, Spain
| | - Dominique Debanne
- Unité de Neurobiologie des canaux Ioniques et de la Synapse (UNIS), UMR_S 1072, INSERM, Aix-Marseille Université, Marseille 13015, France;
| |
Collapse
|
6
|
The potassium channel subunit K vβ1 serves as a major control point for synaptic facilitation. Proc Natl Acad Sci U S A 2020; 117:29937-29947. [PMID: 33168717 PMCID: PMC7703594 DOI: 10.1073/pnas.2000790117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nerve terminals generally engage in two opposite and essential forms of synaptic plasticity (facilitation or depression) that play critical roles in learning and memory. While the molecular components of both types of terminals are similar with regards to vesicle fusion, much less is known about their molecular control of electrical signaling. Measurements of the electrical impulses (action potentials) underlying these two forms of plasticity have been difficult in small nerve terminals due to their size. In this study we deployed optical physiology measurements to overcome this size barrier. Here, we identify a unique mechanism (Kvβ1 subunit) that enables broadening of the presynaptic action potentials that selectively supports synaptic facilitation, but does not alter any other aspects of nerve terminal function. Analysis of the presynaptic action potential’s (APsyn) role in synaptic facilitation in hippocampal pyramidal neurons has been difficult due to size limitations of axons. We overcame these size barriers by combining high-resolution optical recordings of membrane potential, exocytosis, and Ca2+ in cultured hippocampal neurons. These recordings revealed a critical and selective role for Kv1 channel inactivation in synaptic facilitation of excitatory hippocampal neurons. Presynaptic Kv1 channel inactivation was mediated by the Kvβ1 subunit and had a surprisingly rapid onset that was readily apparent even in brief physiological stimulation paradigms including paired-pulse stimulation. Genetic depletion of Kvβ1 blocked all broadening of the APsyn during high-frequency stimulation and eliminated synaptic facilitation without altering the initial probability of vesicle release. Thus, using all quantitative optical measurements of presynaptic physiology, we reveal a critical role for presynaptic Kv channels in synaptic facilitation at presynaptic terminals of the hippocampus upstream of the exocytic machinery.
Collapse
|
7
|
Robles-Gómez AA, Vega AV, Florán B, Barral J. Differential calcium channel-mediated dopaminergic modulation in the subthalamonigral synapse. Synapse 2020; 74:e22149. [PMID: 31975491 DOI: 10.1002/syn.22149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/09/2019] [Accepted: 01/18/2020] [Indexed: 11/09/2022]
Abstract
Dopamine (DA) modulates basal ganglia (BG) activity for initiation and execution of goal-directed movements and habits. While most studies are aimed to striatal function, the cellular and molecular mechanisms underlying dopaminergic regulation in other nuclei of the BG are not well understood. Therefore, we set to analyze the dopaminergic modulation occurring in subthalamo-nigral synapse, in both pars compacta (SNc) and pars reticulata (SNr) neurons, because these synapses are important for the integration of information previously processed in striatum and globus pallidus. In this study, electrophysiological and pharmacological evidence of dopaminergic modulation on glutamate release through calcium channels is presented. Using paired pulse ratio (PPR) measurements and selective blockers of these ionic channels, together with agonists and antagonists of DA D2 -like receptors, we found that blockade of the CaV 3 family occludes the presynaptic inhibition produced by the activation of DA receptors pharmacologically profiled as D3 -type in the STh-SNc synapses. On the contrast, the blockade of CaV 2 channels, but not CaV 3, occlude with the effect of the D3 agonist, PD 128907, in the STh-SNr synapse. The functional role of this differential distribution of calcium channels that modulate the release of glutamate in the SN implies a fine adjustment of firing for both classes of neurons. Dopaminergic neurons of the SNc establish a DA tone within the SN based on the excitatory/inhibitory inputs; such tone may contribute to processing information from subthalamic nucleus and could also be involved in pathological DA depletion that drives hyperexcitation of SNr neurons.
Collapse
Affiliation(s)
| | - Ana V Vega
- Carrera de Médico Cirujano, FES Iztacala, UNAM, Mexico City, Mexico
| | - Benjamín Florán
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City, Mexico
| | - Jaime Barral
- Neurociencias, FES Iztacala, UNAM, Tlalnepantla de Baz, Mexico
| |
Collapse
|
8
|
Emmenegger V, Obien MEJ, Franke F, Hierlemann A. Technologies to Study Action Potential Propagation With a Focus on HD-MEAs. Front Cell Neurosci 2019; 13:159. [PMID: 31118887 PMCID: PMC6504789 DOI: 10.3389/fncel.2019.00159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/08/2019] [Indexed: 12/26/2022] Open
Abstract
Axons convey information in neuronal circuits via reliable conduction of action potentials (APs) from the axon initial segment (AIS) to the presynaptic terminals. Recent experimental findings increasingly evidence that the axonal function is not limited to the simple transmission of APs. Advances in subcellular-resolution recording techniques have shown that axons display activity-dependent modulation in spike shape and conduction velocity, which influence synaptic strength and latency. We briefly review here, how recent methodological developments facilitate the understanding of the axon physiology. We included the three most common methods, i.e., genetically encoded voltage imaging (GEVI), subcellular patch-clamp and high-density microelectrode arrays (HD-MEAs). We then describe the potential of using HD-MEAs in studying axonal physiology in more detail. Due to their robustness, amenability to high-throughput and high spatiotemporal resolution, HD-MEAs can provide a direct functional electrical readout of single cells and cellular ensembles at subcellular resolution. HD-MEAs can, therefore, be employed in investigating axonal pathologies, the effects of large-scale genomic interventions (e.g., with RNAi or CRISPR) or in compound screenings. A combination of extracellular microelectrode arrays (MEAs), intracellular microelectrodes and optical imaging may potentially reveal yet unexplored repertoires of axonal functions.
Collapse
Affiliation(s)
- Vishalini Emmenegger
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Marie Engelene J. Obien
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- MaxWell Biosystems AG, Basel, Switzerland
| | - Felix Franke
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
9
|
Zbili M, Debanne D. Past and Future of Analog-Digital Modulation of Synaptic Transmission. Front Cell Neurosci 2019; 13:160. [PMID: 31105529 PMCID: PMC6492051 DOI: 10.3389/fncel.2019.00160] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/08/2019] [Indexed: 01/12/2023] Open
Abstract
Action potentials (APs) are generally produced in response to complex summation of excitatory and inhibitory synaptic inputs. While it is usually considered as a digital event, both the amplitude and width of the AP are significantly impacted by the context of its emission. In particular, the analog variations in subthreshold membrane potential determine the spike waveform and subsequently affect synaptic strength, leading to the so-called analog-digital modulation of synaptic transmission. We review here the numerous evidence suggesting context-dependent modulation of spike waveform, the discovery analog-digital modulation of synaptic transmission in invertebrates and its recent validation in mammals. We discuss the potential roles of analog-digital transmission in the physiology of neural networks.
Collapse
Affiliation(s)
- Mickael Zbili
- UNIS, UMR 1072, INSERM AMU, Marseille, France.,CRNL, INSERM U1028-CNRS UMR5292-Université Claude Bernard Lyon1, Lyon, France
| | | |
Collapse
|
10
|
Abstract
Axons link distant brain regions and are usually considered as simple transmission cables in which reliable propagation occurs once an action potential has been generated. Safe propagation of action potentials relies on specific ion channel expression at strategic points of the axon such as nodes of Ranvier or axonal branch points. However, while action potentials are generally considered as the quantum of neuronal information, their signaling is not entirely digital. In fact, both their shape and their conduction speed have been shown to be modulated by activity, leading to regulations of synaptic latency and synaptic strength. We report here newly identified mechanisms of (1) safe spike propagation along the axon, (2) compartmentalization of action potential shape in the axon, (3) analog modulation of spike-evoked synaptic transmission and (4) alteration in conduction time after persistent regulation of axon morphology in central neurons. We discuss the contribution of these regulations in information processing.
Collapse
Affiliation(s)
- Sylvain Rama
- UNIS, UMR_S 1072, INSERM, Aix-Marseille Université, 13015 Marseille, France; Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Mickaël Zbili
- UNIS, UMR_S 1072, INSERM, Aix-Marseille Université, 13015 Marseille, France
| | - Dominique Debanne
- UNIS, UMR_S 1072, INSERM, Aix-Marseille Université, 13015 Marseille, France.
| |
Collapse
|
11
|
Rowan MJM, Christie JM. Rapid State-Dependent Alteration in K v3 Channel Availability Drives Flexible Synaptic Signaling Dependent on Somatic Subthreshold Depolarization. Cell Rep 2017; 18:2018-2029. [PMID: 28228266 DOI: 10.1016/j.celrep.2017.01.068] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/16/2016] [Accepted: 01/25/2017] [Indexed: 10/20/2022] Open
Abstract
In many neurons, subthreshold depolarization in the soma can transiently increase action-potential (AP)-evoked neurotransmission via analog-to-digital facilitation. The mechanisms underlying this form of short-term synaptic plasticity are unclear, in part, due to the relative inaccessibility of the axon to direct physiological interrogation. Using voltage imaging and patch-clamp recording from presynaptic boutons of cerebellar stellate interneurons, we observed that depolarizing somatic potentials readily spread into the axon, resulting in AP broadening, increased spike-evoked Ca2+ entry, and enhanced neurotransmission strength. Kv3 channels, which drive AP repolarization, rapidly inactivated upon incorporation of Kv3.4 subunits. This leads to fast susceptibility to depolarization-induced spike broadening and analog facilitation independent of Ca2+-dependent protein kinase C signaling. The spread of depolarization into the axon was attenuated by hyperpolarization-activated currents (Ih currents) in the maturing cerebellum, precluding analog facilitation. These results suggest that analog-to-digital facilitation is tempered by development or experience in stellate cells.
Collapse
Affiliation(s)
- Matthew J M Rowan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Jason M Christie
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.
| |
Collapse
|
12
|
Robles Gómez AA, Vega AV, Gónzalez-Sandoval C, Barral J. The role of Ca 2+ -dependent K + - channels at the rat corticostriatal synapses revealed by paired pulse stimulation. Synapse 2017; 72. [PMID: 29136290 DOI: 10.1002/syn.22017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 01/23/2023]
Abstract
Potassium channels play an important role in modulating synaptic activity both at presynaptic and postsynaptic levels. We have shown before that presynaptically located KV and KIR channels modulate the strength of corticostriatal synapses in rat brain, but the role of other types of potassium channels at these synapses remains largely unknown. Here, we show that calcium-dependent potassium channels BK-type but not SK-type channels are located presynaptically in corticostriatal synapses. We stimulated cortical neurons in rat brain slices and recorded postsynaptic excitatory potentials (EPSP) in medium spiny neurons (MSN) in dorsal neostriatum. By using a paired pulse protocol, we induced synaptic facilitation before applying either BK- or SK-specific toxins. Thus, we found that blockage of BKCa with iberiotoxin (10 nM) reduces synaptic facilitation and increases the amplitude of the EPSP, while exposure to SK-blocker apamin (100 nM) has no effect. Additionally, we induced train action potentials on striatal MSN by current injection before and after the exposure to KCa toxins. We found that the action potential becomes broader when the MSN is exposed to iberiotoxin, although it has no impact on frequency. In contrast, exposure to apamin results in loss of afterhyperpolarization phase and an increase of spike frequency. Therefore, we concluded that postsynaptic SK channels are involved in afterhyperpolarization and modulation of spike frequency while the BK channels are involved on the late repolarization phase of the action potential. Altogether, our results show that calcium-dependent potassium channels modulate both input towards and output from the striatum.
Collapse
Affiliation(s)
| | - Ana V Vega
- Carrera de Médico Cirujano, UBIMED, FES Iztacala UNAM, México
| | | | - Jaime Barral
- Neurociencias, UIICSE, FES Iztacala, UNAM, México
| |
Collapse
|
13
|
|
14
|
Pinatel D, Hivert B, Saint-Martin M, Noraz N, Savvaki M, Karagogeos D, Faivre-Sarrailh C. The Kv1-associated molecules TAG-1 and Caspr2 are selectively targeted to the axon initial segment in hippocampal neurons. J Cell Sci 2017; 130:2209-2220. [PMID: 28533267 DOI: 10.1242/jcs.202267] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/18/2017] [Indexed: 12/28/2022] Open
Abstract
Caspr2 and TAG-1 (also known as CNTNAP2 and CNTN2, respectively) are cell adhesion molecules (CAMs) associated with the voltage-gated potassium channels Kv1.1 and Kv1.2 (also known as KCNA1 and KCNA2, respectively) at regions controlling axonal excitability, namely, the axon initial segment (AIS) and juxtaparanodes of myelinated axons. The distribution of Kv1 at juxtaparanodes requires axo-glial contacts mediated by Caspr2 and TAG-1. In the present study, we found that TAG-1 strongly colocalizes with Kv1.2 at the AIS of cultured hippocampal neurons, whereas Caspr2 is uniformly expressed along the axolemma. Live-cell imaging revealed that Caspr2 and TAG-1 are sorted together in axonal transport vesicles. Therefore, their differential distribution may result from diffusion and trapping mechanisms induced by selective partnerships. By using deletion constructs, we identified two molecular determinants of Caspr2 that regulate its axonal positioning. First, the LNG2-EGF1 modules in the ectodomain of Caspr2, which are involved in its axonal distribution. Deletion of these modules promotes AIS localization and association with TAG-1. Second, the cytoplasmic PDZ-binding site of Caspr2, which could elicit AIS enrichment and recruitment of the membrane-associated guanylate kinase (MAGuK) protein MPP2. Hence, the selective distribution of Caspr2 and TAG-1 may be regulated, allowing them to modulate the strategic function of the Kv1 complex along axons.
Collapse
Affiliation(s)
- Delphine Pinatel
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, UMR7286, Marseille, France
| | - Bruno Hivert
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, UMR7286, Marseille, France
| | - Margaux Saint-Martin
- Institut Neuromyogène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Nelly Noraz
- Institut Neuromyogène, CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Maria Savvaki
- Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, University of Crete, Heraklion, Greece
| | - Domna Karagogeos
- Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, University of Crete, Heraklion, Greece
| | - Catherine Faivre-Sarrailh
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, UMR7286, Marseille, France
| |
Collapse
|
15
|
Zbili M, Rama S, Debanne D. Dynamic Control of Neurotransmitter Release by Presynaptic Potential. Front Cell Neurosci 2016; 10:278. [PMID: 27994539 PMCID: PMC5136543 DOI: 10.3389/fncel.2016.00278] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/21/2016] [Indexed: 12/30/2022] Open
Abstract
Action potentials (APs) in the mammalian brain are thought to represent the smallest unit of information transmitted by neurons to their postsynaptic targets. According to this view, neuronal signaling is all-or-none or digital. Increasing evidence suggests, however, that subthreshold changes in presynaptic membrane potential before triggering the spike also determines spike-evoked release of neurotransmitter. We discuss here how analog changes in presynaptic voltage may regulate spike-evoked release of neurotransmitter through the modulation of biophysical state of voltage-gated potassium, calcium and sodium channels in the presynaptic compartment. The contribution of this regulation has been greatly underestimated and we discuss the impact for information processing in neuronal circuits.
Collapse
Affiliation(s)
- Mickael Zbili
- UNIS, UMR_S 1072, Institut National de la Santé et de la Recherche Médicale (INSERM), Aix-Marseille Université Marseille, France
| | - Sylvain Rama
- UNIS, UMR_S 1072, Institut National de la Santé et de la Recherche Médicale (INSERM), Aix-Marseille Université Marseille, France
| | - Dominique Debanne
- UNIS, UMR_S 1072, Institut National de la Santé et de la Recherche Médicale (INSERM), Aix-Marseille Université Marseille, France
| |
Collapse
|
16
|
KV1 and KV3 Potassium Channels Identified at Presynaptic Terminals of the Corticostriatal Synapses in Rat. Neural Plast 2016; 2016:8782518. [PMID: 27379187 PMCID: PMC4917754 DOI: 10.1155/2016/8782518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/12/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022] Open
Abstract
In the last years it has been increasingly clear that KV-channel activity modulates neurotransmitter release. The subcellular localization and composition of potassium channels are crucial to understanding its influence on neurotransmitter release. To investigate the role of KV in corticostriatal synapses modulation, we combined extracellular recording of population-spike and pharmacological blockage with specific and nonspecific blockers to identify several families of KV channels. We induced paired-pulse facilitation (PPF) and studied the changes in paired-pulse ratio (PPR) before and after the addition of specific KV blockers to determine whether particular KV subtypes were located pre- or postsynaptically. Initially, the presence of KV channels was tested by exposing brain slices to tetraethylammonium or 4-aminopyridine; in both cases we observed a decrease in PPR that was dose dependent. Further experiments with tityustoxin, margatoxin, hongotoxin, agitoxin, dendrotoxin, and BDS-I toxins all rendered a reduction in PPR. In contrast heteropodatoxin and phrixotoxin had no effect. Our results reveal that corticostriatal presynaptic KV channels have a complex stoichiometry, including heterologous combinations KV1.1, KV1.2, KV1.3, and KV1.6 isoforms, as well as KV3.4, but not KV4 channels. The variety of KV channels offers a wide spectrum of possibilities to regulate neurotransmitter release, providing fine-tuning mechanisms to modulate synaptic strength.
Collapse
|
17
|
Slow sulfide donor GYY4137 differentiates NG108-15 neuronal cells through different intracellular transporters than dbcAMP. Neuroscience 2016; 325:100-10. [PMID: 27038748 DOI: 10.1016/j.neuroscience.2016.03.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 03/07/2016] [Accepted: 03/24/2016] [Indexed: 11/20/2022]
Abstract
Cellular differentiation is the process, by which a cell changes from one cell type to another, preferentially to the more specialized one. Calcium fluxes play an important role in this action. Differentiated NG108-15 or PC12 cells serve as models for studying neuronal pathways. NG108-15 cell line is a reliable model of cholinergic neuronal cells. These cells differentiate to a neuronal phenotype due to the dibutyryl cAMP (dbcAMP) treatment. We have shown that a slow sulfide donor - GYY4137 - can also act as a differentiating factor in NG108-15 cell line. Calcium is an unavoidable ion required in NG108-15 cell differentiation by both, dbcAMP and GYY4137, since cultivation in EGTA completely prevented differentiation of these cells. In this work we focused primarily on the role of reticular calcium in the process of NG108-15 cell differentiation. We have found that dbcAMP and also GYY4137 decreased reticular calcium concentration by different mechanisms. GYY4137 caused a rapid decrease in type 2 sarco/endoplasmic calcium ATPase (SERCA2) mRNA and protein, which results in lower calcium levels in the endoplasmic reticulum compared to the control, untreated group. The dbcAMP revealed rapid increase in expression of the type 3 IP3 receptor, which participates in a calcium clearance from the endoplasmic reticulum. These results point to the important role of reticular calcium in a NG108-15 cell differentiation.
Collapse
|
18
|
Isoflurane inhibits synaptic vesicle exocytosis through reduced Ca2+ influx, not Ca2+-exocytosis coupling. Proc Natl Acad Sci U S A 2015; 112:11959-64. [PMID: 26351670 DOI: 10.1073/pnas.1500525112] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identifying presynaptic mechanisms of general anesthetics is critical to understanding their effects on synaptic transmission. We show that the volatile anesthetic isoflurane inhibits synaptic vesicle (SV) exocytosis at nerve terminals in dissociated rat hippocampal neurons through inhibition of presynaptic Ca(2+) influx without significantly altering the Ca(2+) sensitivity of SV exocytosis. A clinically relevant concentration of isoflurane (0.7 mM) inhibited changes in [Ca(2+)]i driven by single action potentials (APs) by 25 ± 3%, which in turn led to 62 ± 3% inhibition of single AP-triggered exocytosis at 4 mM extracellular Ca(2+) ([Ca(2+)]e). Lowering external Ca(2+) to match the isoflurane-induced reduction in Ca(2+) entry led to an equivalent reduction in exocytosis. These data thus indicate that anesthetic inhibition of neurotransmitter release from small SVs occurs primarily through reduced axon terminal Ca(2+) entry without significant direct effects on Ca(2+)-exocytosis coupling or on the SV fusion machinery. Isoflurane inhibition of exocytosis and Ca(2+) influx was greater in glutamatergic compared with GABAergic nerve terminals, consistent with selective inhibition of excitatory synaptic transmission. Such alteration in the balance of excitatory to inhibitory transmission could mediate reduced neuronal interactions and network-selective effects observed in the anesthetized central nervous system.
Collapse
|