1
|
Chan E, Dirk BS, Honda T, Stathopulos PB, Dikeakos JD, Di Guglielmo GM. Acetylenic tricyclic bis-(cyano enone) interacts with Cys 374 of actin, a residue necessary for stress fiber formation and cell migration. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119629. [PMID: 37981034 DOI: 10.1016/j.bbamcr.2023.119629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
The migratory and invasive potential of tumour cells relies on the actin cytoskeleton. We previously demonstrated that the tricyclic compound, TBE-31, inhibits actin polymerization and here we further examine the precise interaction between TBE-31 and actin. We demonstrate that iodoacetamide, a cysteine (Cys) alkylating agent, interferes with the ability of TBE-31 to interact with actin. In addition, in silico analysis identified Cys 217, Cys 272, Cys 285 and Cys 374 as potential binding sites for TBE-31. Using mass spectrometry analysis, we determined that TBE-31 associates with actin with a stoichiometric ratio of 1:1. We mutated the identified cysteines of actin to alanine and performed a pull-down analysis with a biotin labeled TBE-31 and demonstrated that by mutating Cys 374 to alanine the association between TBE-31 and actin was significantly reduced, suggesting that TBE-31 binds to Cys 374. A characterization of the NIH3T3 cells overexpressing eGFP-actin-C374A showed reduced stress fiber formation, suggesting Cys 374 is necessary for efficient incorporation into filamentous actin. Furthermore, migration of eGFP-Actin-WT expressing cells were observed to be inhibited by TBE-31, however fewer eGFP-Actin-C374A expressing cells were observed to migrate compared to the cells expressing eGFP-Actin-WT in the presence or absence of TBE-31. Taken together, our results suggest that TBE-31 binds to Cys 374 of actin to inhibit actin stress fiber formation and may potentially be a mechanism through which TBE-31 inhibits cell migration.
Collapse
Affiliation(s)
- Eddie Chan
- Western University, Department of Physiology and Pharmacology, London N6A5C1, Canada
| | - Brennan S Dirk
- Western University, Department of Microbiology and Immunology, London N6A5C1, Canada
| | - Tadashi Honda
- Stony Brook University, Department of Chemistry, Institute of Chemical Biology & Drug Discovery, Stony Brook 11790-3400, USA
| | - Peter B Stathopulos
- Western University, Department of Physiology and Pharmacology, London N6A5C1, Canada
| | - Jimmy D Dikeakos
- Western University, Department of Microbiology and Immunology, London N6A5C1, Canada
| | - Gianni M Di Guglielmo
- Western University, Department of Physiology and Pharmacology, London N6A5C1, Canada.
| |
Collapse
|
2
|
Soares IN, Viana R, Trelford CB, Chan E, Thai B, Cino EA, Di Guglielmo GM. The synthetic oleanane triterpenoid CDDO-Me binds and inhibits pyruvate kinase M2. Pharmacol Rep 2020; 72:631-640. [PMID: 32040844 DOI: 10.1007/s43440-019-00045-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The M2 isoform of the glycolytic enzyme pyruvate kinase (PKM2) is one of the key components in the Warburg effect, and an important regulator of cancer cell metabolism. Elevated PKM2 expression is a hallmark of numerous tumor types, making it a promising target for cancer therapy. METHODS Migration of H1299 lung tumor cells treated with synthetic oleanane triterpenoid derivatives CDDO-Me and CDDO-Im was monitored using scratch and transwell assays. Direct binding and inhibition of PKM2 activity by CDDO-Me was demonstrated by pull-down and activity assays. PKM2 localization in the absence and presence of CDDO-Me or CDDO-Im was determined by subcellular fractionation and immunofluorescence microscopy. Involvement of PKM2 in tumor cell migration was assessed using a stable PKM2 knockdown cell line. RESULTS We demonstrate that migration of H1299 lung tumor cells is inhibited by CDDO-Me and CDDO-Im in scratch and transwell assays. CDDO-Me binds directly and specifically to recombinant PKM2, leading to a reduction of its catalytic activity. PKM2 knockdown cells exhibit significantly lower migration compared to control cells when subjected to glucose and oxygen deprivation, but not under regular conditions. CONCLUSIONS The results suggest that PKM2 expression in a tumor-like environment contributes to cell migration, and that PKM2 activity can be down regulated by synthetic triterpenoid derivatives.
Collapse
Affiliation(s)
- Iaci N Soares
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Raiane Viana
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Charles B Trelford
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Eddie Chan
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Boun Thai
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Elio A Cino
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Gianni M Di Guglielmo
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
3
|
Brandes MS, Gray NE. NRF2 as a Therapeutic Target in Neurodegenerative Diseases. ASN Neuro 2020; 12:1759091419899782. [PMID: 31964153 PMCID: PMC6977098 DOI: 10.1177/1759091419899782] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Increased reactive oxygen species production and oxidative stress have been implicated in the pathogenesis of numerous neurodegenerative conditions including among others Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Friedrich’s ataxia, multiple sclerosis, and stroke. The endogenous antioxidant response pathway protects cells from oxidative stress by increasing the expression of cytoprotective enzymes and is regulated by the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2). In addition to regulating the expression of antioxidant genes, NRF2 has also been shown to exert anti-inflammatory effects and modulate both mitochondrial function and biogenesis. This is because mitochondrial dysfunction and neuroinflammation are features of many neurodegenerative diseases as well NRF2 has emerged as a promising therapeutic target. Here, we review evidence for a beneficial role of NRF2 in neurodegenerative conditions and the potential of specific NRF2 activators as therapeutic agents.
Collapse
Affiliation(s)
- Mikah S. Brandes
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Nora E. Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
4
|
Dayalan Naidu S, Muramatsu A, Saito R, Asami S, Honda T, Hosoya T, Itoh K, Yamamoto M, Suzuki T, Dinkova-Kostova AT. C151 in KEAP1 is the main cysteine sensor for the cyanoenone class of NRF2 activators, irrespective of molecular size or shape. Sci Rep 2018; 8:8037. [PMID: 29795117 PMCID: PMC5966396 DOI: 10.1038/s41598-018-26269-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023] Open
Abstract
Numerous small molecules (termed inducers), many of which are electrophiles, upregulate cytoprotective responses and inhibit pro-inflammatory pathways by activating nuclear factor-erythroid 2 p45-related factor 2 (NRF2). Key to NRF2 activation is the ability to chemically modifying critical sensor cysteines in the main negative regulator of NRF2, Kelch-like ECH-associated protein 1 (KEAP1), of which C151, C273 and C288 are best characterized. This study aimed to establish the requirement for these cysteine sensor(s) for the biological activities of the most potent NRF2 activators known to date, the cyclic cyanoenones, some of which are in clinical trials. It was found that C151 in KEAP1 is the main cysteine sensor for this class of inducers, irrespective of molecular size or shape. Furthermore, in primary macrophage cells expressing C151S mutant KEAP1, at low concentrations, the tricyclic cyanoenone TBE-31 is inactive as an activator of NRF2 as well as an inhibitor of lipopolysaccharide-stimulated gene expression of the pro-inflammatory cytokines IL6 and IL1β. However, at high inducer concentrations, NRF2 activation proceeds in the absence of C151, albeit at a lower magnitude. Our findings highlight the intrinsic flexibility of KEAP1 and emphasize the critical importance of establishing the precise dose of NRF2 activators for maintaining on-target selectivity.
Collapse
Affiliation(s)
- Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, Scotland, United Kingdom
| | - Aki Muramatsu
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Ryota Saito
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Soichiro Asami
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Tadashi Honda
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | - Tomonori Hosoya
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan.
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, Scotland, United Kingdom.
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
To C, Roy A, Chan E, Prado MAM, Di Guglielmo GM. Synthetic triterpenoids inhibit GSK3β activity and localization and affect focal adhesions and cell migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1274-1284. [PMID: 28366661 DOI: 10.1016/j.bbamcr.2017.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/26/2017] [Accepted: 03/24/2017] [Indexed: 01/11/2023]
Abstract
Synthetic triterpenoids are a class of anti-cancer compounds that target many cellular functions, including apoptosis and cell growth in both cell culture and animal models. We have shown that triterpenoids inhibit cell migration in part by interfering with Arp2/3-dependent branched actin polymerization in lamellipodia (To et al., 2010). Our current studies reveal that Glycogen Synthase Kinase 3 beta (GSK3β), a kinase that regulates many cellular processes, including cell adhesion dynamics, is a triterpenoid-binding protein. Furthermore, triterpenoids were observed to inhibit GSK3β activity and increase cellular focal adhesion size. To further examine whether these effects on focal adhesions in triterpenoid-treated cells were GSK3β-dependent, GSK3β inhibitors (lithium chloride and SB216763) were used to examine cell adhesion and morphology as well as cell migration. Our results showed that GSK3β inhibitors also altered cell adhesion sizes. Moreover, these inhibitors blocked cell migration and displaced proteins at the leading edge of migrating cells, consistent with what was observed in triterpenoid-treated cells. Therefore, the triterpenoids may affect cell migration via a mechanism that targets and alters the activity and localization of GSK3β.
Collapse
Affiliation(s)
- Ciric To
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Ashbeel Roy
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada; Robarts Research Institute, Western University, London, ON, Canada
| | - Eddie Chan
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Marco A M Prado
- Department of Physiology and Pharmacology, Western University, London, ON, Canada; Department of Anatomy and Cell Biology, Western University, London, ON, Canada; Robarts Research Institute, Western University, London, ON, Canada
| | | |
Collapse
|