1
|
Shen J, Jiang Y, Bu W, Yu M, Huang R, Tang C, Yang Z, Gao H, Su L, Cheng D, Zhao X. Protein Ubiquitination Modification in Pulmonary Fibrosis. Compr Physiol 2025; 15:e70013. [PMID: 40312137 DOI: 10.1002/cph4.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/31/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive fibrotic interstitial lung disease characterized by a high incidence and mortality rate, which encompasses features, such as diffuse alveolar inflammation, invasive fibroblast activation, and uncontrolled extracellular matrix (ECM) deposition. Beyond the local pathological processes, PF can be better understood in light of interorgan communication networks that are involved in its progression. Notably, pulmonary inflammation can affect cardiovascular, renal, hepatic, and neural functions, highlighting the importance of understanding these systemic interactions. Posttranslational modifications play a crucial role in regulating protein function, localization, stability, and activity. Specifically, protein ubiquitination modifications are involved in PF induced by various stimuli, involving a range of ubiquitin-modifying enzymes and substrates. In this review, we provide an overview of how E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) modulate PF through several signaling pathways, such as TGF-β, Wnt, metabolic activity, aging, ferroptosis, endoplasmic reticulum stress, and inflammatory responses. This perspective includes the role of ubiquitin-proteasome systems in interorgan communication, affecting the progression of PF and related systemic conditions. Additionally, we also summarize the currently available therapeutic compounds targeting protein ubiquitination-related enzymes or ubiquitination substrates for the treatment of PF. Understanding the interplay between ubiquitination and interorgan communication may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Jinping Shen
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Yuling Jiang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Wenxia Bu
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Mengjiao Yu
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Ruiyao Huang
- Department of Clinical Medicine, Nantong University Xinglin College, Nantong, China
| | - Can Tang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Zeyun Yang
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Haiping Gao
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Liling Su
- Department of Clinical Medicine, Jiangxi Medical College, Shangrao, China
| | - Demin Cheng
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xinyuan Zhao
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
2
|
Wang B, Zhou R, Wu J, Kim H, Kim K. Inhibition of δ-catenin palmitoylation slows the progression of prostate cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119741. [PMID: 38697304 DOI: 10.1016/j.bbamcr.2024.119741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/04/2024]
Abstract
Prostate cancer (PCa) is the second leading cause of death in males. It has been reported that δ-catenin expression is upregulated during the late stage of prostate cancer. Palmitoylation promotes protein transport to the cytomembrane and regulates protein localization and function. However, the effect of δ-catenin palmitoylation on the regulation of cancer remains unknown. In this study, we utilized prostate cancer cells overexpressing mutant δ-catenin (J6A cells) to induce a depalmitoylation phenotype and investigate its effect on prostate cancer. Our results indicated that depalmitoylation of δ-catenin not only reduced its membrane expression but also promoted its degradation in the cytoplasm, resulting in a decrease in the effect of EGFR and E-cadherin signaling. Consequently, depalmitoylation of δ-catenin reduced the proliferation and metastasis of prostate cancer cells. Our findings provide novel insights into potential therapeutic strategies for controlling the progression of prostate cancer through palmitoylation-based targeting of δ-catenin.
Collapse
Affiliation(s)
- Beini Wang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Rui Zhou
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Jin Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea.
| | - Kwonseop Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
3
|
Samaržija I. Post-Translational Modifications That Drive Prostate Cancer Progression. Biomolecules 2021; 11:247. [PMID: 33572160 PMCID: PMC7915076 DOI: 10.3390/biom11020247] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
While a protein primary structure is determined by genetic code, its specific functional form is mostly achieved in a dynamic interplay that includes actions of many enzymes involved in post-translational modifications. This versatile repertoire is widely used by cells to direct their response to external stimuli, regulate transcription and protein localization and to keep proteostasis. Herein, post-translational modifications with evident potency to drive prostate cancer are explored. A comprehensive list of proteome-wide and single protein post-translational modifications and their involvement in phenotypic outcomes is presented. Specifically, the data on phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and lipidation in prostate cancer and the enzymes involved are collected. This type of knowledge is especially valuable in cases when cancer cells do not differ in the expression or mutational status of a protein, but its differential activity is regulated on the level of post-translational modifications. Since their driving roles in prostate cancer, post-translational modifications are widely studied in attempts to advance prostate cancer treatment. Current strategies that exploit the potential of post-translational modifications in prostate cancer therapy are presented.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Ballar Kirmizibayrak P, Erbaykent-Tepedelen B, Gozen O, Erzurumlu Y. Divergent Modulation of Proteostasis in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:117-151. [PMID: 32274755 DOI: 10.1007/978-3-030-38266-7_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteostasis regulates key cellular processes such as cell proliferation, differentiation, transcription, and apoptosis. The mechanisms by which proteostasis is regulated are crucial and the deterioration of cellular proteostasis has been significantly associated with tumorigenesis since it specifically targets key oncoproteins and tumor suppressors. Prostate cancer (PCa) is the second most common cause of cancer death in men worldwide. Androgens mediate one of the most central signaling pathways in all stages of PCa via the androgen receptor (AR). In addition to their regulation by hormones, PCa cells are also known to be highly secretory and are particularly prone to ER stress as proper ER function is essential. Alterations in various complex signaling pathways and cellular processes including cell cycle control, transcription, DNA repair, apoptosis, cell adhesion, epithelial-mesenchymal transition (EMT), and angiogenesis are critical factors influencing PCa development through key molecular changes mainly by posttranslational modifications in PCa-related proteins, including AR, NKX3.1, PTEN, p53, cyclin D1, and p27. Several ubiquitin ligases like MDM2, Siah2, RNF6, CHIP, and substrate-binding adaptor SPOP; deubiquitinases such as USP7, USP10, USP26, and USP12 are just some of the modifiers involved in the regulation of these key proteins via ubiquitin-proteasome system (UPS). Some ubiquitin-like modifiers, especially SUMOs, have been also closely associated with PCa. On the other hand, the proteotoxicity resulting from misfolded proteins and failure of ER adaptive capacity induce unfolded protein response (UPR) that is an indispensable signaling mechanism for PCa development. Lastly, ER-associated degradation (ERAD) also plays a crucial role in prostate tumorigenesis. In this section, the relationship between prostate cancer and proteostasis will be discussed in terms of UPS, UPR, SUMOylation, ERAD, and autophagy.
Collapse
Affiliation(s)
| | | | - Oguz Gozen
- Faculty of Medicine, Department of Physiology, Ege University, Izmir, Turkey
| | - Yalcin Erzurumlu
- Faculty of Pharmacy, Department of Biochemistry, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
5
|
Zhou R, Yang Y, Park SY, Seo YW, Jung SC, Kim KK, Kim K, Kim H. p300/CBP-associated factor promotes autophagic degradation of δ-catenin through acetylation and decreases prostate cancer tumorigenicity. Sci Rep 2019; 9:3351. [PMID: 30833716 PMCID: PMC6399259 DOI: 10.1038/s41598-019-40238-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 02/12/2019] [Indexed: 01/21/2023] Open
Abstract
δ-Catenin shares common binding partners with β-catenin. As acetylation and deacetylation regulate β-catenin stability, we searched for histone acetyltransferases (HATs) or histone deacetylases (HDACs) affecting δ-catenin acetylation status and protein levels. We showed that p300/CBP-associated factor (PCAF) directly bound to and acetylated δ-catenin, whereas several class I and class II HDACs reversed this effect. Unlike β-catenin, δ-catenin was downregulated by PCAF-mediated acetylation and upregulated by HDAC-mediated deacetylation. The HDAC inhibitor trichostatin A attenuated HDAC1-mediated δ-catenin upregulation, whereas HAT or autophagy inhibitors, but not proteasome inhibitors, abolished PCAF-mediated δ-catenin downregulation. The results suggested that PCAF-mediated δ-catenin acetylation promotes its autophagic degradation in an Atg5/LC3-dependent manner. Deletions or point mutations identified several lysine residues in different δ-catenin domains involved in PCAF-mediated δ-catenin downregulation. PCAF overexpression in prostate cancer cells markedly reduced δ-catenin levels and suppressed cell growth and motility. PCAF-mediated δ-catenin downregulation inhibited E-cadherin processing and decreased the nuclear distribution of β-catenin, resulting in the suppression of β-catenin/LEF-1-mediated downstream effectors. These data demonstrate that PCAF downregulates δ-catenin by promoting its autophagic degradation and suppresses δ-catenin-mediated oncogenic signals.
Collapse
Affiliation(s)
- Rui Zhou
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Yi Yang
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - So-Yeon Park
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Young-Woo Seo
- Korea Basic Science Institute, Gwangju Center, Gwangju, Republic of Korea
| | - Sang-Chul Jung
- Department of Environmental Engineering, Sunchon National University, Sunchon, Republic of Korea
| | - Kyung Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kwonseop Kim
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea.
| |
Collapse
|
6
|
Zhang P, Schaefer-Klein J, Cheville JC, Vasmatzis G, Kovtun IV. Frequently rearranged and overexpressed δ-catenin is responsible for low sensitivity of prostate cancer cells to androgen receptor and β-catenin antagonists. Oncotarget 2018; 9:24428-24442. [PMID: 29849951 PMCID: PMC5966253 DOI: 10.18632/oncotarget.25319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 04/13/2018] [Indexed: 12/22/2022] Open
Abstract
The mechanism of prostate cancer (PCa) progression towards the hormone refractory state remains poorly understood. Treatment options for such patients are limited and present a major clinical challenge. Previously, δ-catenin was reported to promote PCa cell growth in vitro and its increased level is associated with PCa progression in vivo. In this study we show that re-arrangements at Catenin Delta 2 (CTNND2) locus, including gene duplications, are very common in clinically significant PCa and may underlie δ-catenin overexpression. We find that δ-catenin in PCa cells exists in a complex with E-cadherin, p120, and α- and β-catenin. Increased expression of δ-catenin leads to its further stabilization as well as upregulation and stabilization of its binding partners. Resistant to degradation and overexpressed δ-catenin isoform activates Wnt signaling pathway by increasing the level of nuclear β-catenin and subsequent stimulation of Tcf/Lef transcription targets. Evaluation of responses to treatments, with androgen receptor (AR) antagonist and β-catenin inhibitors revealed that cells with high levels of δ-catenin are more resistant to killing with single agent treatment than matched control cells. We show that combination treatment targeting both AR and β-catenin networks is more effective in suppressing tumor growth than targeting a single network. In conclusion, targeting clinically significant PCa with high levels of δ–catenin with anti-androgen and anti β-catenin combination therapy may prevent progression of the disease to a castration-resistant state and, thus, represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Piyan Zhang
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - John C Cheville
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - George Vasmatzis
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Molecular Medicine and Mayo Clinic, Rochester, Minnesota, USA
| | - Irina V Kovtun
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Cheng X, Zheng J, Li G, Göbel V, Zhang H. Degradation for better survival? Role of ubiquitination in epithelial morphogenesis. Biol Rev Camb Philos Soc 2018; 93:1438-1460. [PMID: 29493067 DOI: 10.1111/brv.12404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
Abstract
As a prevalent post-translational modification, ubiquitination is essential for many developmental processes. Once covalently attached to the small and conserved polypeptide ubiquitin (Ub), a substrate protein can be directed to perform specific biological functions via its Ub-modified form. Three sequential catalytic reactions contribute to this process, among which E3 ligases serve to identify target substrates and promote the activated Ub to conjugate to substrate proteins. Ubiquitination has great plasticity, with diverse numbers, topologies and modifications of Ub chains conjugated at different substrate residues adding a layer of complexity that facilitates a huge range of cellular functions. Herein, we highlight key advances in the understanding of ubiquitination in epithelial morphogenesis, with an emphasis on the latest insights into its roles in cellular events involved in polarized epithelial tissue, including cell adhesion, asymmetric localization of polarity determinants and cytoskeletal organization. In addition, the physiological roles of ubiquitination are discussed for typical examples of epithelial morphogenesis, such as lung branching, vascular development and synaptic formation and plasticity. Our increased understanding of ubiquitination in epithelial morphogenesis may provide novel insights into the molecular mechanisms underlying epithelial regeneration and maintenance.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Verena Göbel
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114,, U.S.A
| | - Hongjie Zhang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
8
|
A partnership with the proteasome; the destructive nature of GSK3. Biochem Pharmacol 2017; 147:77-92. [PMID: 29102676 PMCID: PMC5954166 DOI: 10.1016/j.bcp.2017.10.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022]
Abstract
Glycogen Synthase Kinase-3 (GSK3) was originally reported as a key enzyme of glucose homeostasis through regulation of the rate of glycogen synthesis. It has subsequently been found to influence most cellular processes, including growth, differentiation and death, as part of its role in modulating response to hormonal, nutritional and cellular stress stimuli. More than 100 protein targets for GSK3 have been proposed although only a small fraction of these have been convincingly validated in physiological cell systems. The effects of GSK3 phosphorylation on substrates include alteration of enzyme activity, protein localisation, protein:protein interaction and protein stability. This latter form of regulation of GSK3 substrates is the focus of this review. There is an ever-growing list of GSK3 substrates that upon phosphorylation are targeted to the beta-transducin repeat containing protein (β-TrCP), thereby allowing ubiquitination of bound protein by cullin-1 and so initiating destruction at the proteasome. We propose the existence of a GSK3-β-TrCP ‘destruction hit-list’ that allows co-ordinated removal (or stabilisation) of a set of proteins with a common physiological purpose, through control of GSK3. We identify 29 proteins where there is relatively strong evidence for regulation by a GSK3-β-TrCP axis and note common features of regulation and pathophysiology. Furthermore, we assess the potential of pre-phosphorylation (priming) of these targets (normally a prerequisite for GSK3 recognition) to provide a second layer of regulation delineated by the priming kinase that allows GSK3 to mark them for destruction. Finally, we discuss whether this knowledge improves options for therapeutic intervention.
Collapse
|