1
|
Liu C, Liu X, Duan J. Artemisinin and Its Derivatives: Promising Therapeutic Agents for Age-Related Macular Degeneration. Pharmaceuticals (Basel) 2025; 18:535. [PMID: 40283970 PMCID: PMC12030120 DOI: 10.3390/ph18040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of visual impairment and blindness in older adults. Its pathogenesis involves multiple factors, including aging, environmental influences, genetic predisposition, oxidative stress, metabolic dysfunction, and immune dysregulation. Currently, AMD treatment focuses primarily on wet AMD, managed through repeated intravitreal injections of anti-vascular endothelial growth factor (VEGF) therapies. While anti-VEGF agents represent a major breakthrough in wet AMD care, repeated injections may lead to incomplete responses or resistance in some patients, and carry a risk of progressive fibrosis. Artemisinin (ART) and its derivatives, originally developed as antimalarial drugs, exhibit a broad spectrum of pleiotropic activities beyond their established use, including anti-inflammatory, anti-angiogenic, antioxidant, anti-fibrotic, mitochondrial regulatory, lipid metabolic, and immunosuppressive effects. These properties position ART as a promising therapeutic candidate for AMD. A growing interest in ART-based therapies for AMD has emerged in recent years, with numerous studies demonstrating their potential benefits. However, no comprehensive review has systematically summarized the specific roles of ART and its derivatives in AMD pathogenesis and treatment. This paper aims to fill the knowledge gap by synthesizing the therapeutic efficacy and molecular mechanisms of ART and its derivatives in AMD, thereby providing a foundation for future investigations.
Collapse
Affiliation(s)
- Chun Liu
- Eye School, Chengdu University of TCM, Chengdu 610075, China
| | - Xiaoqin Liu
- Clinical Medical School, Chengdu University of TCM, Chengdu 610075, China
| | - Junguo Duan
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu 610075, China
| |
Collapse
|
2
|
Jin Q, Liu T, Chen D, Yang L, Mao H, Ma F, Wang Y, Li P, Zhan Y. Therapeutic potential of artemisinin and its derivatives in managing kidney diseases. Front Pharmacol 2023; 14:1097206. [PMID: 36874000 PMCID: PMC9974673 DOI: 10.3389/fphar.2023.1097206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Artemisinin, an antimalarial traditional Chinese herb, is isolated from Artemisia annua. L, and has shown fewer side effects. Several pieces of evidence have demonstrated that artemisinin and its derivatives exhibited therapeutic effects on diseases like malaria, cancer, immune disorders, and inflammatory diseases. Additionally, the antimalarial drugs demonstrated antioxidant and anti-inflammatory activities, regulating the immune system and autophagy and modulating glycolipid metabolism properties, suggesting an alternative for managing kidney disease. This review assessed the pharmacological activities of artemisinin. It summarized the critical outcomes and probable mechanism of artemisinins in treating kidney diseases, including inflammatory, oxidative stress, autophagy, mitochondrial homeostasis, endoplasmic reticulum stress, glycolipid metabolism, insulin resistance, diabetic nephropathy, lupus nephritis, membranous nephropathy, IgA nephropathy, and acute kidney injury, suggesting the therapeutic potential of artemisinin and its derivatives in managing kidney diseases, especially the podocyte-associated kidney diseases.
Collapse
Affiliation(s)
- Qi Jin
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Tongtong Liu
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Danqian Chen
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Liping Yang
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Huimin Mao
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Fang Ma
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Yuyang Wang
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Yongli Zhan
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, China
| |
Collapse
|
3
|
Sailike B, Omarova Z, Jenis J, Adilbayev A, Akbay B, Askarova S, Jin WL, Tokay T. Neuroprotective and anti-epileptic potentials of genus Artemisia L. Front Pharmacol 2022; 13:1021501. [DOI: 10.3389/fphar.2022.1021501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
The Genus Artemisia L. is one of the largest genera in the Asteraceae family growing wild over in Europe, North America, and Central Asia and has been widely used in folk medicine for the treatment of various ailments. Phytochemical and psychopharmacological studies indicated that the genus Artemisia extracts contain various antioxidant and anti-inflammatory compounds and possess antioxidant, anti-inflammatory, antimicrobial, antimalarial, and antitumor activity. Recently, increasing experimental studies demonstrated that many Artemisia extracts offer a great antiepileptic potential, which was attributed to their bioactive components via various mechanisms of action. However, detailed literature on the antiepileptic properties of the genus Artemisia and its mechanism of action is segregated. In this review, we tried to gather the detailed neuroprotective and antiepileptic properties of the genus Artemisia and its possible underlying mechanisms. In this respect, 63 articles were identified in the PubMed and Google scholars databases, from which 18 studies were examined based on the pharmacological use of the genus Artemisia species in epilepsy. The genus Artemisia extracts have been reported to possess antioxidant, anti-inflammatory, neurotransmitter-modulating, anti-apoptotic, anticonvulsant, and pro-cognitive properties by modulating oxidative stress caused by mitochondrial ROS production and an imbalance of antioxidant enzymes, by protecting mitochondrial membrane potential required for ATP production, by upregulating GABA-A receptor and nACh receptor activities, and by interfering with various anti-inflammatory and anti-apoptotic signaling pathways, such as mitochondrial apoptosis pathway, ERK/CREB/Bcl-2 pathway and Nrf2 pathway. This review provides detailed information about some species of the genus Artemisia as potential antiepileptic agents. Hence, we recommend further investigations on the purification and identification of the most biological effective compounds of Artemisia and the mechanisms of their action to cure epilepsy and other neurological diseases.
Collapse
|
4
|
Onchieku NM, Kumari S, Pandey R, Sharma V, Kumar M, Deshmukh A, Kaur I, Mohmmed A, Gupta D, Kiboi D, Gaur N, Malhotra P. Artemisinin Binds and Inhibits the Activity of Plasmodium falciparum Ddi1, a Retroviral Aspartyl Protease. Pathogens 2021; 10:pathogens10111465. [PMID: 34832620 PMCID: PMC8621276 DOI: 10.3390/pathogens10111465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023] Open
Abstract
Reduced sensitivity of the human malaria parasite, Plasmodium falciparum, to Artemisinin and its derivatives (ARTs) threatens the global efforts towards eliminating malaria. ARTs have been shown to cause ubiquitous cellular and genetic insults, which results in the activation of the unfolded protein response (UPR) pathways. The UPR restores protein homeostasis, which otherwise would be toxic to cellular survival. Here, we interrogated the role of DNA-damage inducible protein 1 (PfDdi1), a unique proteasome-interacting retropepsin in mediating the actions of the ARTs. We demonstrate that PfDdi1 is an active A2 family protease that hydrolyzes ubiquitinated proteasome substrates. Treatment of P. falciparum parasites with ARTs leads to the accumulation of ubiquitinated proteins in the parasites and blocks the destruction of ubiquitinated proteins by inhibiting the PfDdi1 protease activity. Besides, whereas the PfDdi1 is predominantly localized in the cytoplasm, exposure of the parasites to ARTs leads to DNA fragmentation and increased recruitment of the PfDdi1 into the nucleus. Furthermore, we show that Ddi1 knock-out Saccharomycescerevisiae cells are more susceptible to ARTs and the PfDdI1 protein robustly restores the corresponding functions in the knock-out cells. Together, these results show that ARTs act in multiple ways; by inducing DNA and protein damage and might be impairing the damage recovery by inhibiting the activity of PfDdi1, an essential ubiquitin-proteasome retropepsin.
Collapse
Affiliation(s)
- Noah Machuki Onchieku
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India or (N.M.O.); (V.S.); (A.D.); (I.K.)
| | - Sonam Kumari
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.K.); (M.K.); (N.G.)
| | - Rajan Pandey
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (R.P.); (D.G.)
| | - Vaibhav Sharma
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India or (N.M.O.); (V.S.); (A.D.); (I.K.)
| | - Mohit Kumar
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.K.); (M.K.); (N.G.)
| | - Arunaditya Deshmukh
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India or (N.M.O.); (V.S.); (A.D.); (I.K.)
| | - Inderjeet Kaur
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India or (N.M.O.); (V.S.); (A.D.); (I.K.)
| | - Asif Mohmmed
- Parasite Cell Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (R.P.); (D.G.)
| | - Daniel Kiboi
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya;
| | - Naseem Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.K.); (M.K.); (N.G.)
| | - Pawan Malhotra
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India or (N.M.O.); (V.S.); (A.D.); (I.K.)
- Correspondence: or
| |
Collapse
|
5
|
Bader S, Wilmers J, Ontikatze T, Ritter V, Jendrossek V, Rudner J. Loss of pro-apoptotic Bax and Bak increases resistance to dihydroartemisinin-mediated cytotoxicity in normoxia but not in hypoxia in HCT116 colorectal cancer cells. Free Radic Biol Med 2021; 174:157-170. [PMID: 34403740 DOI: 10.1016/j.freeradbiomed.2021.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Tumor hypoxia is a major biological factor that drives resistance to chemotherapy and radiotherapy. We previously demonstrated that the pro-oxidative drug dihydroartemisinin (DHA) efficiently targeted normoxic and hypoxic cancer cells. Although well studied in normoxia, the mechanism behind DHA-mediated cytotoxicity in hypoxia is insufficiently explored. Here, we analyzed the effect of DHA in HCT116 wild type (wt) cells and in HCT116 Bax-/-Baksh cells with a defective intrinsic apoptosis pathway. Normoxic HCT116 wt cells underwent apoptosis shortly after treatment with DHA. Autophagy-associated cell death contributes to short-term cytotoxicity of DHA in normoxia. These cells switched to an apoptosis- and autophagy-independent cell death after treatment with DHA in hypoxia and displayed similar long-term survival in response to DHA in normoxia and hypoxia. In HCT116 Bax-/-Baksh cells, DHA induced cell cycle arrest shortly after treatment irrespective of oxygen levels. Later, HCT116 Bax-/-Baksh cells induced a delayed cell death after treatment with DHA in hypoxia followed by return to normoxia, while treatment with DHA in normoxia was hardly toxic. We identified lower glutathione levels in hypoxic HCT116 cells which correlated with higher lipid peroxidation after treatment with DHA. Moreover, insufficient expression of Bax/Bak counteracted hypoxia-mediated downregulation of mitochondrial function, thereby adding to DHA-induced ROS production and lipid peroxidation in hypoxia. In summary, DHA-mediated cytotoxicity in normoxia depended on Bax/Bak expression, while cytotoxicity after treatment with DHA in hypoxia was regulated independently of Bax/Bak in HCT116 colorectal cancer cells.
Collapse
Affiliation(s)
- Sina Bader
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Julia Wilmers
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Teona Ontikatze
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Violetta Ritter
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Justine Rudner
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
6
|
Jiang YY, Shui JC, Zhang BX, Chin JW, Yue RS. The Potential Roles of Artemisinin and Its Derivatives in the Treatment of Type 2 Diabetes Mellitus. Front Pharmacol 2020; 11:585487. [PMID: 33381036 PMCID: PMC7768903 DOI: 10.3389/fphar.2020.585487] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease that has become a global public health problem. Studies on T2DM prevention and treatment mostly focus on discovering therapeutic drugs. Artemisinin and its derivatives were originally used as antimalarial treatments. In recent years, the roles of artemisinins in T2DM have attracted much attention. Artemisinin treatments not only attenuate insulin resistance and restore islet ß-cell function in T2DM but also have potential therapeutic effects on diabetic complications, including diabetic kidney disease, cognitive impairment, diabetic retinopathy, and diabetic cardiovascular disease. Many in vitro and in vivo experiments have confirmed the therapeutic utility of artemisinin and its derivatives on T2DM, but no article has systematically demonstrated the specific role artemisinin plays in the treatment of T2DM. This review summarizes the potential therapeutic effects and mechanism of artemisinin and its derivatives in T2DM and associated complications, providing a reference for subsequent related research.
Collapse
Affiliation(s)
- Ya-Yi Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Cheng Shui
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo-Xun Zhang
- Department of Endocrinology, Guang'anmen Hospital of China, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia-Wei Chin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ren-Song Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
The potential of artemisinins as anti-obesity agents via modulating the immune system. Pharmacol Ther 2020; 216:107696. [PMID: 33022301 DOI: 10.1016/j.pharmthera.2020.107696] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
Artemisinin and its derivatives are the most effective antimalarial drugs. Besides anti-malarial activity, artemisinin and its derivatives have displayed wide-spectrum bioactivities such as anti-parasite, anti-tumor, and anti-obesity effects. Obesity is an epidemic worldwide which is a big threat to human health, but there are only a few approved anti-obesity drugs in the world. Also, these drugs are efficient to limited patients partly because their safety and efficacy are questioned. Anti-inflammatory therapies may be valuable in obesity treatment since growing evidence shows chronic metabolic inflammation is implicated in metabolic disease pathogenesis. As artemisinin and its derivatives display effective anti-inflammatory and immunoregulatory properties with less toxicity, it provides an insight for novel drug development in obesity therapeutic strategies via immune-regulatory mechanisms. In this review, the potential of artemisinin and its derivatives to treat various metabolic diseases such as obesity and diabetes is discussed.
Collapse
|
8
|
Mounkoro P, Michel T, Blandin S, Golinelli-Cohen MP, Davioud-Charvet E, Meunier B. Investigating the mode of action of the redox-active antimalarial drug plasmodione using the yeast model. Free Radic Biol Med 2019; 141:269-278. [PMID: 31238126 DOI: 10.1016/j.freeradbiomed.2019.06.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022]
Abstract
Malaria is caused by protozoan parasites and remains a major public health issue in subtropical areas. Plasmodione (3-[4-(trifluoromethyl)benzyl]-menadione) is a novel early lead compound displaying fast-acting antimalarial activity. Treatment with this redox active compound disrupts the redox balance of parasite-infected red blood cells. In vitro, the benzoyl analogue of plasmodione can act as a subversive substrate of the parasite flavoprotein NADPH-dependent glutathione reductase, initiating a redox cycling process producing ROS. Whether this is also true in vivo remains to be investigated. Here, we used the yeast model to investigate the mode of action of plasmodione and uncover enzymes and pathways involved in its activity. We showed that plasmodione is a potent inhibitor of yeast respiratory growth, that in drug-treated cells, the ROS-sensitive aconitase was impaired and that cells with a lower oxidative stress defence were highly sensitive to the drug, indicating that plasmodione may act via an oxidative stress. We found that the mitochondrial respiratory chain flavoprotein NADH-dehydrogenases play a key role in plasmodione activity. Plasmodione and metabolites act as substrates of these enzymes, the reaction resulting in ROS production. This in turn would damage ROS-sensitive enzymes leading to growth arrest. Our data further suggest that plasmodione is a pro-drug whose activity is mainly mediated by its benzhydrol and benzoyl metabolites. Our results in yeast are coherent with existing data obtained in vitro and in Plasmodium falciparum, and provide additional hypotheses that should be investigated in parasites.
Collapse
Affiliation(s)
- Pierre Mounkoro
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Thomas Michel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Stéphanie Blandin
- Université de Strasbourg, CNRS, Inserm, UPR9022/U1257, Mosquito Immune Responses (MIR), F-67000, Strasbourg, France
| | - Marie-Pierre Golinelli-Cohen
- Institut de Chimie des Substances Naturelles (ICSN), CNRS, UPR 2301, Univ. Paris-Sud Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Elisabeth Davioud-Charvet
- Université de Strasbourg, Université de Haute-Alsace, Centre National de la Recherche Scientifique (CNRS), LIMA-UMR 7042, Team Bioorganic and Medicinal Chemistry, ECPM 25 Rue Becquerel, 67087, Strasbourg, France
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
9
|
Lu BW, Baum L, So KF, Chiu K, Xie LK. More than anti-malarial agents: therapeutic potential of artemisinins in neurodegeneration. Neural Regen Res 2019; 14:1494-1498. [PMID: 31089038 PMCID: PMC6557089 DOI: 10.4103/1673-5374.255960] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 02/13/2019] [Indexed: 01/09/2023] Open
Abstract
Artemisinin, also called qinghaosu, is originally derived from the sweet wormwood plant (Artemisia annua), which is used in traditional Chinese medicine. Artemisinin and its derivatives (artemisinins) have been widely used for many years as anti-malarial agents, with few adverse side effects. Interestingly, evidence has recently shown that artemisinins might have a therapeutic value for several other diseases beyond malaria, including cancers, inflammatory diseases, and autoimmune disorders. Neurodegeneration is a challenging age-associated neurological disorder characterized by deterioration of neuronal structures as well as functions, whereas neuroinflammation has been considered to be an underlying factor in the development of various neurodegenerative disorders, including Alzheimer's disease. Recently discovered properties of artemisinins suggested that they might be used to treat neurodegenerative disorders by decreasing oxidation, inflammation, and amyloid beta protein (Aβ). In this review, we will introduce artemisinins and highlight the possible mechanisms of their neuroprotective activities, suggesting that artemisinins might have therapeutic potential in neurodegenerative disorders.
Collapse
Affiliation(s)
- Bing-Wen Lu
- Department of Ophthalmology, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administration Region, China
| | - Larry Baum
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administration Region, China
- Center for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong Special Administration Region, China
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong Special Administration Region, China
| | - Kwok-Fai So
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administration Region, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administration Region, China
- Center for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong Special Administration Region, China
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Kin Chiu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administration Region, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administration Region, China
| | - Li-Ke Xie
- Department of Ophthalmology, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Maintenance of Mitochondrial Morphology in Cryptococcus neoformans Is Critical for Stress Resistance and Virulence. mBio 2018; 9:mBio.01375-18. [PMID: 30401774 PMCID: PMC6222134 DOI: 10.1128/mbio.01375-18] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
C. neoformans is a yeast that causes fatal brain infection in close to 200,000 people worldwide every year, mainly afflicting individuals with AIDS or others who are severely immunocompromised. One feature of this microbe that helps it cause disease is that it is able to withstand toxic molecules it encounters when host cells engulf it in their efforts to control the infection. Mitochondria are important organelles responsible for energy production and other key cellular processes. They typically exist in a complex network that changes morphology by fusing and dividing; these alterations also influence mitochondrial function. Using genetic approaches, we found that changes in mitochondrial morphology dramatically influence cryptococcal virulence. We showed that this occurs because the altered mitochondria are less able to eliminate the harmful molecules that host cells produce to kill invading microbes. These findings are important because they elucidate fundamental biology and virulence and may suggest avenues for therapy. Mitochondria are essential organelles that act in pathways including ATP production, β-oxidation, and clearance of reactive oxygen species. They occur as a complex reticular network that constantly undergoes fusion and fission, mediated by dynamin-related proteins (DRPs). DRPs include Fzo1, which mediates fusion, and Dnm1, Mdv1, and Fis1, which mediate fission. Mitochondrial morphology has been implicated in virulence in multiple fungi, as with the association between virulence and increased mitochondrial fusion in Cryptococcus gattii. This relationship, however, has not been studied in Cryptococcus neoformans, a related opportunistic pathogen. C. neoformans is an environmental yeast that can adapt to the human host environment, overcome the innate immune system, and eventually disseminate and cause lethal meningoencephalitis. We used gene deletion of key DRPs to study their role in mitochondrial morphology and pathogenesis of this yeast. Interestingly, increasing mitochondrial fusion did not increase resistance to oxidative stress, unlike in model yeast. Blocking mitochondrial fusion, however, yielded increased susceptibility to oxidative and nitrosative stresses as well as complete avirulence. This lack of virulence was not mediated by any effects of altered mitochondrial function on two major virulence factors, capsule and melanin. Instead, it was due to decreased survival within macrophages, which in turn was a consequence of increased susceptibility to oxidative and nitrosative stress. Supporting this conclusion, reactive oxygen species (ROS) scavengers rescued the ability of fusion mutants to survive intracellularly. These findings increase our understanding of cryptococcal biology and virulence and shed light on an important group of proteins and cellular processes in this pathogen.
Collapse
|
11
|
Resolving neuroinflammation, the therapeutic potential of the anti-malaria drug family of artemisinin. Pharmacol Res 2018; 136:172-180. [DOI: 10.1016/j.phrs.2018.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
|
12
|
Yuan DS, Chen YP, Tan LL, Huang SQ, Li CQ, Wang Q, Zeng QP. Artemisinin: A Panacea Eligible for Unrestrictive Use? Front Pharmacol 2017; 8:737. [PMID: 29089893 PMCID: PMC5651041 DOI: 10.3389/fphar.2017.00737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022] Open
Abstract
Although artemisinin has been used as anti-malarial drug, accumulating evidence on the extended therapeutic potential of artemisinin emerges. Apart from anti-malaria and anti-tumor, artemisinin can also exert beneficial effects on some metabolic disorders, such as obesity, diabetes, and aging-related diseases. However, whether artemisinin should be applied to treatment of the wide-spectrum diseases is debating. Here, we discuss the predisposition of a raised risk of malarial resistance to artemisinin from consideration of the multi-target and non-specific features of artemisinin.
Collapse
Affiliation(s)
- Dong-Sheng Yuan
- Clinical Pharmacology Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-Ping Chen
- Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Li Tan
- Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shui-Qing Huang
- Basic Medical Science College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chang-Qing Li
- Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Clinical Pharmacology Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing-Ping Zeng
- Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|