1
|
Kong L, Gong Y, Wang Y, Yuan M, Liu W, Zhou H, Meng X, Guo X, Liu Y, Zhou Y, Zhang T. Multi-omics revealed that DCP1A and SPDL1 determine embryogenesis defects in postovulatory ageing oocytes. Cell Prolif 2025; 58:e13766. [PMID: 39629683 PMCID: PMC11882766 DOI: 10.1111/cpr.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/28/2024] [Accepted: 10/14/2024] [Indexed: 03/08/2025] Open
Abstract
Growing evidence indicates that the deterioration of egg quality caused by postovulatory ageing significantly hampers embryonic development. However, the molecular mechanisms by which postovulatory ageing leads to a decline in oocyte quality have not been fully characterized. In this study, we observed an accelerated decay of maternal mRNAs through RNA-seq analyses in postovulatory-aged (PostOA) oocytes. We noted that these downregulated mRNAs should be degraded during the 2-cell stage. Proteomic analyses revealed that the degradation of maternal mRNAs is associated with the accumulation of DCP1A. The injection of exogenous Dcp1a mRNA or siRNA into MII stage oocytes proved that DCP1A could accelerate the degradation of maternal mRNAs. Additionally, we also found that SPDL1 is crucial for maintaining spindle/chromosome structure and chromosome euploidy in PostOA oocytes. Spdl1-mRNA injection remarkably recovered the meiotic defects in PostOA oocytes. Collectively, our findings provide valuable insights into the molecular mechanisms underlying postovulatory ageing.
Collapse
Affiliation(s)
- Li Kong
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life SciencesInner Mongolia UniversityHohhotChina
| | - Yutian Gong
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life SciencesInner Mongolia UniversityHohhotChina
| | - Yongyong Wang
- Department of Reproductive Medicine, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Mengjiao Yuan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life SciencesInner Mongolia UniversityHohhotChina
| | - Wenxiang Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life SciencesInner Mongolia UniversityHohhotChina
| | - Heyang Zhou
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life SciencesInner Mongolia UniversityHohhotChina
| | - Xiangyue Meng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life SciencesInner Mongolia UniversityHohhotChina
| | - Xinru Guo
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life SciencesInner Mongolia UniversityHohhotChina
| | - Yongbin Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life SciencesInner Mongolia UniversityHohhotChina
| | - Yang Zhou
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life SciencesInner Mongolia UniversityHohhotChina
| | - Teng Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life SciencesInner Mongolia UniversityHohhotChina
| |
Collapse
|
2
|
Konar ESM, Mai K, Brachs S, Waghmare SG, Samarin AM, Policar T, Samarin AM. Evaluation of viability, developmental competence, and apoptosis-related transcripts during in vivo post-ovulatory oocyte aging in zebrafish Danio rerio (Hamilton, 1822). Front Vet Sci 2024; 11:1389070. [PMID: 38952806 PMCID: PMC11216024 DOI: 10.3389/fvets.2024.1389070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Post-ovulatory aging is a time-dependent deterioration of ovulated oocytes and a major limiting factor reducing the fitness of offspring. This process may lead to the activation of cell death pathways like apoptosis in oocytes. Methodology We evaluated oocyte membrane integrity, egg developmental competency, and mRNA abundance of apoptosis-related genes by RT-qPCR. Oocytes from zebrafish Danio rerio were retained in vivo at 28.5°C for 24 h post-ovulation (HPO). Viability was assessed using trypan blue (TB) staining. The consequences of in vivo oocyte aging on the developmental competence of progeny were determined by the embryo survival at 24 h post fertilization, hatching, and larval malformation rates. Results The fertilization, oocyte viability, and hatching rates were 91, 97, and 65% at 0 HPO and dropped to 62, 90, and 22% at 4 HPO, respectively. The fertilizing ability was reduced to 2% at 8 HPO, while 72% of oocytes had still intact plasma membranes. Among the apoptotic genes bcl-2 (b-cell lymphoma 2), bada (bcl2-associated agonist of cell death a), cathepsin D, cathepsin Z, caspase 6a, caspase 7, caspase 8, caspase 9, apaf1, tp53 (tumor protein p53), cdk1 (cyclin-dependent kinase 1) studied, mRNA abundance of anti-apoptotic bcl-2 decreased and pro-apoptotic cathepsin D increased at 24 HPO. Furthermore, tp53 and cdk1 mRNA transcripts decreased at 24 HPO compared to 0 HPO. Discussion Thus, TB staining did not detect the loss of oocyte competency if caused by aging. TB staining, however, could be used as a simple and rapid method to evaluate the quality of zebrafish oocytes before fertilization. Taken together, our results indicate the activation of cell death pathways in the advanced stages of oocyte aging in zebrafish.
Collapse
Affiliation(s)
- Essaikiammal Sodalai Muthu Konar
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| | - Knut Mai
- Department of Endocrinology and Metabolism, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Sebastian Brachs
- Department of Endocrinology and Metabolism, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Swapnil Gorakh Waghmare
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| | - Azadeh Mohagheghi Samarin
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| | - Tomas Policar
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| | - Azin Mohagheghi Samarin
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| |
Collapse
|
3
|
Wen X, Yang Q, Sun D, Jiang ZY, Wang T, Liu HR, Han Z, Wang L, Liang CG. Cumulus Cells Accelerate Postovulatory Oocyte Aging through IL1-IL1R1 Interaction in Mice. Int J Mol Sci 2023; 24:ijms24043530. [PMID: 36834943 PMCID: PMC9959314 DOI: 10.3390/ijms24043530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The oocytes of female mammals will undergo aging after ovulation, also known as postovulatory oocyte aging (POA). Until now, the mechanisms of POA have not been fully understood. Although studies have shown that cumulus cells accelerate POA over time, the exact relationship between the two is still unclear. In the study, by employing the methods of mouse cumulus cells and oocytes transcriptome sequencing and experimental verification, we revealed the unique characteristics of cumulus cells and oocytes through ligand-receptor interactions. The results indicate that cumulus cells activated NF-κB signaling in oocytes through the IL1-IL1R1 interaction. Furthermore, it promoted mitochondrial dysfunction, excessive ROS accumulation, and increased early apoptosis, ultimately leading to a decline in the oocyte quality and the appearance of POA. Our results indicate that cumulus cells have a role in accelerating POA, and this result lays a foundation for an in-depth understanding of the molecular mechanism of POA. Moreover, it provides clues for exploring the relationship between cumulus cells and oocytes.
Collapse
|
4
|
Maeng J, Lee K. Protein transduction domain of translationally controlled tumor protein: characterization and application in drug delivery. Drug Deliv 2022; 29:3009-3021. [PMID: 36104954 PMCID: PMC9481085 DOI: 10.1080/10717544.2022.2122636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our research group reported in 2011 the discovery of a novel cell-penetrating moiety in the N-terminus of the human translationally controlled tumor protein (TCTP). This moiety was responsible for the previously noted membrane translocating ability of purified full-length TCTP. The hydrophobic nature of TCTP-derived protein transduction domain (TCTP-PTD) endowed it with unique characteristics compared to other well-known cationic PTDs, such as TAT-PTD. TCTP-PTD internalizes partly through lipid-raft/caveolae-dependent endocytosis and partly by macropinocytosis. After cell entry, caveosome-laden TCTP-PTD appears to move to the cytoplasm and cytoskeleton except for the nucleus possibly through the movement to endoplasmic reticulum (ER). TCTP-PTD efficiently facilitates delivery of various types of cargos, such as peptides, proteins, and nucleic acids in vitro and in vivo. It is noteworthy that TCTP-PTD and its variants promote intranasal delivery of antidiabetics including, insulin and exendin-4 and of antigens for immunization in vivo, suggesting its potential for drug delivery. In this review, we attempted to describe recent advances in the understanding regarding the identification of TCTP-PTD, the characteristics of its cellular uptake, and the usefulness as a vehicle for delivery into cells of a variety of drugs and macromolecules. Our investigative efforts are continuing further to delineate the details of the functions and the regulatory mechanisms of TCTP-PTD-mediated cellular penetration and posttranslational modification of TCTP in physiologic and pathological processes. This is a review of what we currently know regarding TCTP-PTD and its use as a vehicle for the transduction of drugs and other molecules.
Collapse
Affiliation(s)
- Jeehye Maeng
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Di Nisio V, Antonouli S, Damdimopoulou P, Salumets A, Cecconi S. In vivo and in vitro postovulatory aging: when time works against oocyte quality? J Assist Reprod Genet 2022; 39:905-918. [PMID: 35312936 PMCID: PMC9050976 DOI: 10.1007/s10815-022-02418-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/27/2022] [Indexed: 12/26/2022] Open
Abstract
In mammalian species an optimal fertilization window during which successful fertilization occurs. In the majority of mammals estrus marks ovulation time and coincident with mating, thereby allowing the synchronized meeting in the fallopian tubes, between freshly ejaculated sperm and freshly ovulated oocytes. Conversely, women do not show natural visual signs of ovulation such that fertilization can occur hours later involving an aged oocyte and freshly ejaculated spermatozoa. During this time, the oocyte undergoes a rapid degradation known as “postovulatory aging” (POA). POA may become particularly important in the human-assisted reproductive technologies, as the fertilization of retrieved mature oocytes can be delayed due to increased laboratory workload or because of unforeseeable circumstances, like the delayed availability of semen samples. This paper is an updated review of the consequences of POA, either in vivo or in vitro, on oocyte quality with particular attention to modifications caused by POA on oocyte nuclear, cytoplasmic, genomic, and epigenetic maturation, and embryo development.
Collapse
Affiliation(s)
- Valentina Di Nisio
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, 14186, Huddinge, Stockholm, Sweden.
| | - Sevastiani Antonouli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, 14186, Huddinge, Stockholm, Sweden
| | - Andres Salumets
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, 14186, Huddinge, Stockholm, Sweden.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, 50406, Tartu, Estonia.,Competence Centre On Health Technologies, 50411, Tartu, Estonia
| | - Sandra Cecconi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy.
| | | |
Collapse
|
6
|
Jeon HJ, Kang M, Kim JS, Oh JS. TCTP overexpression reverses age-associated telomere attrition by upregulating telomerase activity in mouse oocytes. J Cell Physiol 2021; 237:833-845. [PMID: 34407217 DOI: 10.1002/jcp.30557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/09/2022]
Abstract
A prolonged time span between ovulation and fertilization can cause postovulatory aging of oocytes, which impairs oocyte quality and subsequent embryo development. Telomere attrition has long been considered as the primary hallmark of aging or the cause of age-associated diseases. However, the status of telomere and its regulation during postovulatory oocyte aging are poorly understood. Here we found that oocytes experience telomere shortening during postovulatory aging, although they have the capacity to maintain telomere length. However, translationally controlled tumor protein (TCTP) overexpression could reverse age-associated telomere shortening by upregulating telomerase activity in mouse oocytes. Telomere length in mature oocytes gradually decreased with postovulatory aging, which was associated with a marked reduction in TRF1 expression, decreased telomerase activity, and decreased homologous combination (HR)-based alternative lengthening of telomeres (ALT) with a concomitant increase in oxidative stress. Surprisingly, however, overexpression of TCTP led to a remarkable increase in telomere length during postovulatory aging. Notably, neither TRF1 nor BRCA1 level was altered by TCTP overexpression. Moreover, TCTP-mediated telomere lengthening was not blocked by HR inhibition. In striking contrast, telomerase activity, as well as TERT and TERC levels, increased after TCTP overexpression. Importantly, unlike the chromosome-wide distribution of endogenous TCTP, overexpressed TCTP was ectopically localized at telomeres, implying that TCTP overexpression is required to increase telomerase activity. Collectively, our results demonstrate that TCTP prevents telomere attrition during postovulatory aging by upregulating telomerase activity in mouse oocytes.
Collapse
Affiliation(s)
- Hyuk-Joon Jeon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Minsung Kang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Jae-Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Jeong Su Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
7
|
Gremski LH, Matsubara FH, Polli NLC, Antunes BC, Schluga PHDC, da Justa HC, Minozzo JC, Wille ACM, Senff-Ribeiro A, Veiga SS. Prospective Use of Brown Spider Venom Toxins as Therapeutic and Biotechnological Inputs. Front Mol Biosci 2021; 8:706704. [PMID: 34222343 PMCID: PMC8247472 DOI: 10.3389/fmolb.2021.706704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
Brown spider (genus Loxosceles) venoms are mainly composed of protein toxins used for predation and defense. Bites of these spiders most commonly produce a local dermonecrotic lesion with gravitational spread, edema and hemorrhage, which together are defined as cutaneous loxoscelism. Systemic loxoscelism, such as hematological abnormalities and renal injury, are less frequent but more lethal. Some Loxosceles venom toxins have already been isolated and extensively studied, such as phospholipases D (PLDs), which have been recombinantly expressed and were proven to reproduce toxic activities associated to the whole venom. PLDs have a notable potential to be engineered and converted in non-toxic antigens to produce a new generation of antivenoms or vaccines. PLDs also can serve as tools to discover inhibitors to be used as therapeutic agents. Other Loxosceles toxins have been identified and functionally characterized, such as hyaluronidases, allergen factor, serpin, TCTP and knottins (ICK peptides). All these toxins were produced as recombinant molecules and are biologically active molecules that can be used as tools for the potential development of chemical candidates to tackle many medical and biological threats, acting, for instance, as antitumoral, insecticides, analgesic, antigens for allergy tests and biochemical reagents for cell studies. In addition, these recombinant toxins may be useful to develop a rational therapy for loxoscelism. This review summarizes the main candidates for the development of drugs and biotechnological inputs that have been described in Brown spider venoms.
Collapse
Affiliation(s)
| | | | | | - Bruno Cesar Antunes
- Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil.,Production and Research Center of Immunobiological Products, State Department of Health, Piraquara, Brazil
| | | | | | - João Carlos Minozzo
- Production and Research Center of Immunobiological Products, State Department of Health, Piraquara, Brazil
| | - Ana Carolina Martins Wille
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | | | | |
Collapse
|
8
|
Xing X, Zhang J, Zhang J, Wang Y, Wang J, Kang J, Quan F, Su J, Zhang Y. Coenzyme Q10 supplement rescues postovulatory oocyte aging by regulating SIRT4 expression. Curr Mol Pharmacol 2021; 15:190-203. [PMID: 33881976 DOI: 10.2174/1874467214666210420112819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND High-quality of the oocyte is crucial for embryo development and the success of human assisted reproduction. The postovulatory aged oocytes lose the developmental competence with mitochondrial dysfunction and oxidative stress. Coenzyme Q10 (CoQ10) is widely distributed in the membranes of cells, and has an important role in the mitochondrial respiration chain, against oxidative stress and modulation of gene expression. OBJECTIVE To investigate the functions and mechanisms of CoQ10 on delaying postovulatory oocyte aging. METHODS Quantitative real-time PCR and Immunofluorescence staining were used to determine the expression patterns of the biogenesis genes of CoQ10 in postovulatory aged oocytes compared with fresh oocytes. The mitochondrial function, apoptosis, reactive oxygen species (ROS) accumulation and spindle abnormalities were investigated after treatment with 10 μM CoQ10 in aged groups. SIRT4 siRNA or capped RNA was injected into oocytes to investigate the function of SIRT4 on postovulatory oocyte aging and the relationship between CoQ10 and SIRT4. RESULTS Multiple CoQ10 biosynthesis enzymes are insufficient, and supplement of CoQ10 can improve oocyte quality and elevate the development competency of postovulatory aged oocytes. CoQ10 can attenuate the aging-induced abnormalities including mitochondrial dysfunction, ROS accumulation, spindle abnormalities, and apoptosis in postovulatory aged oocytes. Furthermore, SIRT4, which was first found to be up-regulated in postovulatory aged oocytes, decreased following CoQ10 treatment. Finally, knockdown of SIRT4 can rescue aging-induced dysfunction of mitochondria, and the efficiency of CoQ10 rescuing dysfunction of mitochondria can be weakened by SIRT4 overexpression. CONCLUSION Supplement of CoQ10 protects oocytes from postovulatory aging by inhibiting SIRT4increase.
Collapse
Affiliation(s)
- Xupeng Xing
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinjing Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingcheng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingyi Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jian Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianmin Su
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
9
|
Dysregulation of TCTP in Biological Processes and Diseases. Cells 2020; 9:cells9071632. [PMID: 32645936 PMCID: PMC7407922 DOI: 10.3390/cells9071632] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
Translationally controlled tumor protein (TCTP), also called histamine releasing factor (HRF) or fortilin, is a multifunctional protein present in almost all eukaryotic organisms. TCTP is involved in a range of basic cell biological processes, such as promotion of growth and development, or cellular defense in response to biological stresses. Cellular TCTP levels are highly regulated in response to a variety of physiological signals, and regulatory mechanism at various levels have been elucidated. Given the importance of TCTP in maintaining cellular homeostasis, it is not surprising that dysregulation of this protein is associated with a range of disease processes. Here, we review recent progress that has been made in the characterisation of the basic biological functions of TCTP, in the description of mechanisms involved in regulating its cellular levels and in the understanding of dysregulation of TCTP, as it occurs in disease processes such as cancer.
Collapse
|
10
|
Xu W, Li L, Sun J, Zhu S, Yan Z, Gao L, Gao C, Cui Y, Mao C. Putrescine delays postovulatory aging of mouse oocytes by upregulating PDK4 expression and improving mitochondrial activity. Aging (Albany NY) 2019; 10:4093-4106. [PMID: 30554191 PMCID: PMC6326651 DOI: 10.18632/aging.101699] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Abstract
If fertilization does not occur for a prolonged period in vivo or in vitro, the postovulatory oocytes will deteriorate, which called the postovulatory aging. This process disrupts the developmental competence. In the present study, we showed that the reactive oxygen species (ROS) was accumulated in oocytes during the postovulatory aging. ROS inhibited Sirt1 expression, and then increased oxidative stress by downregulating the intracellular Sirt1-FOXO3a-SOD2 axis. Moreover, the inhibited Sirt1 expression was related to the decreased mitochondrial function and the lowered level of autophagy. The mitochondrial-related apoptosis was increased by inhibiting the AKT and ERK1/2 pathways, due to the accumulation of ROS in the postovulatory oocytes. The mitochondrial pyruvate dehydrogenase kinase-4 (PDK4) can reduce ROS by inhibiting the tricarboxylic acid (TAC) cycle. We found that PDK4 was significantly decreased in the postovulatory aging oocytes. Putrescine, one of the abundant biogenic amines, ameliorated the effects of ROS and therefore improved the quality of the postovulatory aging oocytes by increasing the expression of PDK4. When PDK4 was downregulated using siRNAs, the effects of putrescine were significantly receded. We concluded that putrescine delayed the aging process of postovulatory oocytes by upregulating PDK4 expression and improving mitochondrial activity.
Collapse
Affiliation(s)
- Wendan Xu
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Jiangsu Sheng, China.,State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lingjun Li
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jingwen Sun
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Jiangsu Sheng, China
| | - Songyue Zhu
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Jiangsu Sheng, China
| | - Zhengjie Yan
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Li Gao
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Gao
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Caiping Mao
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Jiangsu Sheng, China
| |
Collapse
|
11
|
Zhou J, Xue Z, He HN, Liu X, Yin SY, Wu DY, Zhang X, Schatten H, Miao YL. Resveratrol delays postovulatory aging of mouse oocytes through activating mitophagy. Aging (Albany NY) 2019; 11:11504-11519. [PMID: 31834867 PMCID: PMC6932885 DOI: 10.18632/aging.102551] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
Resveratrol (3,5,4'-trihydroxystilbene, RSV) is a natural potential anti-aging polyphenolic compound frequently used as a nutritional supplement against several diseases. However, the underlying mechanisms by which resveratrol regulates postovulatory aging of oocytes are still insufficiently known. In this study, we found that resveratrol could delay postovulatory aging and improve developmental competence of oocytes through activating selective mitophagy in the mouse. Resveratrol could maintain spindle morphology but it disturbed cortical granule (CG) distribution during oocyte aging. This might be due to upregulated mitophagy, since blocking mitophagy by cyclosporin A (CsA) treatment affected oocyte quality by damaging mitochondrial function and it decreased embryonic development. In addition, we also observed an involvement of FoxO3a in regulating mitophagy in aging oocytes following resveratrol treatment. Taken together, our results provide evidence that mitophagy induced by resveratrol is a potential mechanism to protect against postovulatory oocyte aging.
Collapse
Affiliation(s)
- Jilong Zhou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Zhouyiyuan Xue
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Hai-Nan He
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Xin Liu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Shu-Yuan Yin
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Dan-Ya Wu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Xia Zhang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Experimental Veterinary Medicine Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
12
|
Jeon HJ, Bai GY, Park Y, Kim JS, Oh JS. Prevention of quality decline and delivery of siRNA using exogenous TCTP translocation across the zona pellucida in mouse oocytes. Sci Rep 2019; 9:18845. [PMID: 31827205 PMCID: PMC6906282 DOI: 10.1038/s41598-019-55449-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 11/28/2019] [Indexed: 11/09/2022] Open
Abstract
The delivery of exogenous molecules into mammalian oocytes or embryos has been a challenge because of the existence of the protective zona pellucida (ZP) surrounding the oocyte membrane. Here we show that exogenous translationally controlled tumor protein (TCTP) is able to translocate into oocytes across the ZP and prevents quality deterioration during in vitro culture. Recombinant TCTP-mCherry added to culture media were incorporated into oocytes after passing through the ZP. After internalization, recombinant TCTP-mCherry were enriched at the cortex with wide distribution within the cytoplasm. This translocation capacity of TCTP is dependent on its N-terminal protein transduction domain (PTD). Moreover, translocated recombinant TCTP-mCherry reduced quality deterioration of oocytes during prolonged in vitro culture, which in turn improved fertilization and early embryo development. Furthermore, conjugates between PTD of TCTP and cyclin B1 siRNAs internalized into the cytoplasm of oocytes and downregulated cyclin B1 level. Therefore, our results are the first to show that TCTP has the ability to translocate into oocyte cytoplasm penetrating through the ZP, providing the possibility for preserving oocyte quality during extended in vitro culture and for delivering siRNAs into mouse oocytes.
Collapse
Affiliation(s)
- Hyuk-Joon Jeon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Guang-Yu Bai
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Korea
| | - Yuram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Jae-Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.
| | - Jeong Su Oh
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea. .,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
13
|
Petri T, Dankert D, Demond H, Wennemuth G, Horsthemke B, Grümmer R. In vitro postovulatory oocyte aging affects H3K9 trimethylation in two-cell embryos after IVF. Ann Anat 2019; 227:151424. [PMID: 31610252 DOI: 10.1016/j.aanat.2019.151424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The physiological time axis of oocyte maturation comprises highly sensitive processes. A prolonged time span between ovulation and fertilization may impair oocyte developmental competence and subsequent embryo development, possibly due to epigenetic modifications. Since post-translational histone modifications can modify chromatin activity, and trimethylation of H3K9 (H3K9me3) has been shown to increase in the murine oocyte during maturation, here the effect of postovulatory oocyte aging on H3K9me3 was analyzed. METHODS The competence of murine oocytes which were aged for 2, 4, 6 and 8 h in vitro after oocyte retrieval to develop to the two-cell and blastocyst stage was determined. Degree of H3K9me3 was analyzed in the postovulatory aged oocytes as well as in the resulting two-cell embryos after IVF. RESULTS The current study shows that postovulatory aging of oocytes for up to eight hours after oocyte retrieval exhibited no effect on two-cell embryo and blastocyst rate; however, changes in H3K9me3 in the resulting two-cell embryos were observed. CONCLUSION Prolonged postovulatory oocyte aging leads to epigenetic modifications of H3K9. Such modifications may affect the developmental capacity of embryos at post-implantation developmental stages.
Collapse
Affiliation(s)
- Theresa Petri
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Debora Dankert
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Hannah Demond
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Gunther Wennemuth
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ruth Grümmer
- Institute of Anatomy, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
14
|
An Q, Peng W, Cheng Y, Lu Z, Zhou C, Zhang Y, Su J. Melatonin supplementation during in vitro maturation of oocyte enhances subsequent development of bovine cloned embryos. J Cell Physiol 2019; 234:17370-17381. [DOI: 10.1002/jcp.28357] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Quanli An
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Wei Peng
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Yuyao Cheng
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Zhenzhen Lu
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Chuan Zhou
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Yong Zhang
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| | - Jianmin Su
- Department of Basic Veterinary Sciences Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Ministry of Agriculture Yangling Shaanxi China
| |
Collapse
|