Breindel L, Burz DS, Shekhtman A. Active metabolism unmasks functional protein-protein interactions in real time in-cell NMR.
Commun Biol 2020;
3:249. [PMID:
32439966 PMCID:
PMC7242440 DOI:
10.1038/s42003-020-0976-3]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/29/2020] [Indexed: 01/05/2023] Open
Abstract
Protein–protein interactions, PPIs, underlie most cellular processes, but many PPIs depend on a particular metabolic state that can only be observed in live, actively metabolizing cells. Real time in-cell NMR spectroscopy, RT-NMR, utilizes a bioreactor to maintain cells in an active metabolic state. Improvement in bioreactor technology maintains ATP levels at >95% for up to 24 hours, enabling protein overexpression and a previously undetected interaction between prokaryotic ubiquitin-like protein, Pup, and mycobacterial proteasomal ATPase, Mpa, to be detected. Singular value decomposition, SVD, of the NMR spectra collected over the course of Mpa overexpression easily identified the PPIs despite the large variation in background signals due to the highly active metabolome.
Leonard Breindel et al. develop a real time in-cell NMR spectroscopy that utilizes a bioreactor to maintain cells metabolically active. This real time in-cell NMR spectroscopy enables the identification of protein–protein interactions that would not happen when cells don’t produce energy, suggesting the utility of this method.
Collapse