1
|
Yin Z, Kang J, Cheng X, Gao H, Huo S, Xu H. Investigating Müller glia reprogramming in mice: a retrospective of the last decade, and a look to the future. Neural Regen Res 2025; 20:946-959. [PMID: 38989930 PMCID: PMC11438324 DOI: 10.4103/nrr.nrr-d-23-01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 07/12/2024] Open
Abstract
Müller glia, as prominent glial cells within the retina, plays a significant role in maintaining retinal homeostasis in both healthy and diseased states. In lower vertebrates like zebrafish, these cells assume responsibility for spontaneous retinal regeneration, wherein endogenous Müller glia undergo proliferation, transform into Müller glia-derived progenitor cells, and subsequently regenerate the entire retina with restored functionality. Conversely, Müller glia in the mouse and human retina exhibit limited neural reprogramming. Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders. Müller glia reprogramming in mice has been accomplished with remarkable success, through various technologies. Advancements in molecular, genetic, epigenetic, morphological, and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice. Nevertheless, there remain issues that hinder improving reprogramming efficiency and maturity. Thus, understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency, and for developing novel Müller glia reprogramming strategies. This review describes recent progress in relatively successful Müller glia reprogramming strategies. It also provides a basis for developing new Müller glia reprogramming strategies in mice, including epigenetic remodeling, metabolic modulation, immune regulation, chemical small-molecules regulation, extracellular matrix remodeling, and cell-cell fusion, to achieve Müller glia reprogramming in mice.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | | | | | | | | | | |
Collapse
|
2
|
Skelton LA, Ramachandra Rao S, Allen RS, Motz CT, Pardue MT, Fliesler SJ. Retinal gliosis and phenotypic diversity of intermediate filament induction and remodeling upon acoustic blast overpressure (ABO) exposure to the rat eye. Exp Eye Res 2023; 234:109585. [PMID: 37481225 PMCID: PMC10730083 DOI: 10.1016/j.exer.2023.109585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/22/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Traumatic brain injury (TBI) caused by acoustic blast overpressure (ABO) is frequently associated with chronic visual deficits in military personnel and civilians. In this study, we characterized retinal gliotic response in adult male rats following a single ABO exposure directed to one side of the head. Expression of gliosis markers and intermediate filaments was assessed at 48 h and 1 wk post-ABO exposure, in comparison to age-matched non-exposed control retina. In response to a single ABO exposure, type III IF, glial fibrillary acidic protein (GFAP) was variably induced in a subpopulation of retinal Müller glia in ipsilateral eyes. ABO-exposed eyes exhibited radial Müller glial GFAP filament extension through the inner plexiform layer (IPL) and the inner nuclear layer (INL) through the retina in both the nasal quadrant and juxta-optic nerve head (jONH) eye regions at 1 wk post-ABO. We observed an ∼6-fold increase (p ≤ 0.05) in radial glial GFAP immunolabeling in the IPL in both eye regions, in comparison to regionally matched controls. Similarly, GFAP extension through the INL into the outer retina was elevated ∼3-fold, p ≤ 0.05 in the nasal retina, but exhibited wider variability in the jONH retina. In contrast, constitutive type III IF vimentin exhibited greater remodeling in retinal Müller glia through the jONH retina compared to the nasal retina in response to ABO. We observed areas of lateral vimentin remodeling through the Müller glial end-feet, and greater mid-outer retinal radial vimentin IF extension in a subpopulation of glia at 1 wk post-ABO. We also observed a significant increase in total retinal levels of the type III IF desmin in ABO-exposed retina vs. controls (∼1.6-fold, p ≤ 0.01). In addition, ABO-exposure elicited varied glial induction of developmentally regulated type VI family IFs (nestin and synemin) in subpopulations of Müller cells at 48 h and 1 wk post-ABO. We demonstrate that multiple glial phenotypes emerge in the rat retina following a single ABO exposure, rather than a global homogeneous retinal glial response, involving less well characterized IF protein forms which warrant further investigation in the context of ABO-induced retinal gliosis.
Collapse
Affiliation(s)
- Lara A Skelton
- Research Service, VA Western NY Healthcare System - Buffalo VAMC, Buffalo, NY, USA
| | - Sriganesh Ramachandra Rao
- Research Service, VA Western NY Healthcare System - Buffalo VAMC, Buffalo, NY, USA; Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Rachael S Allen
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System - Atlanta VAMC, Decatur, GA, USA
| | - Cara T Motz
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System - Atlanta VAMC, Decatur, GA, USA
| | - Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System - Atlanta VAMC, Decatur, GA, USA; Wallace H. Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Steven J Fliesler
- Research Service, VA Western NY Healthcare System - Buffalo VAMC, Buffalo, NY, USA; Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
3
|
Si TE, Li Z, Zhang J, Su S, Liu Y, Chen S, Peng GH, Cao J, Zang W. Epigenetic mechanisms of Müller glial reprogramming mediating retinal regeneration. Front Cell Dev Biol 2023; 11:1157893. [PMID: 37397254 PMCID: PMC10309042 DOI: 10.3389/fcell.2023.1157893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023] Open
Abstract
Retinal degenerative diseases, characterized by retinal neuronal death and severe vision loss, affect millions of people worldwide. One of the most promising treatment methods for retinal degenerative diseases is to reprogram non-neuronal cells into stem or progenitor cells, which then have the potential to re-differentiate to replace the dead neurons, thereby promoting retinal regeneration. Müller glia are the major glial cell type and play an important regulatory role in retinal metabolism and retinal cell regeneration. Müller glia can serve as a source of neurogenic progenitor cells in organisms with the ability to regenerate the nervous system. Current evidence points toward the reprogramming process of Müller glia, involving changes in the expression of pluripotent factors and other key signaling molecules that may be regulated by epigenetic mechanisms. This review summarizes recent knowledge of epigenetic modifications involved in the reprogramming process of Müller glia and the subsequent changes to gene expression and the outcomes. In living organisms, epigenetic mechanisms mainly include DNA methylation, histone modification, and microRNA-mediated miRNA degradation, all of which play a crucial role in the reprogramming process of Müller glia. The information presented in this review will improve the understanding of the mechanisms underlying the Müller glial reprogramming process and provide a research basis for the development of Müller glial reprogramming therapy for retinal degenerative diseases.
Collapse
Affiliation(s)
- Tian-En Si
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Zhixiao Li
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jingjing Zhang
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Songxue Su
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Yupeng Liu
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Shiyue Chen
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Guang-Hua Peng
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Weidong Zang
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Li R, Liu J, Yi P, Yang X, Chen J, Zhao C, Liao X, Wang X, Xu Z, Lu H, Li H, Zhang Z, Liu X, Xiang J, Hu K, Qi H, Yu J, Yang P, Hou S. Integrative Single-Cell Transcriptomics and Epigenomics Mapping of the Fetal Retina Developmental Dynamics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206623. [PMID: 37017569 DOI: 10.1002/advs.202206623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/24/2023] [Indexed: 06/04/2023]
Abstract
The underlying mechanisms that determine gene expression and chromatin accessibility in retinogenesis are poorly understood. Herein, single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin sequencing are performed on human embryonic eye samples obtained 9-26 weeks after conception to explore the heterogeneity of retinal progenitor cells (RPCs) and neurogenic RPCs. The differentiation trajectory from RPCs to 7 major types of retinal cells are verified. Subsequently, diverse lineage-determining transcription factors are identified and their gene regulatory networks are refined at the transcriptomic and epigenomic levels. Treatment of retinospheres, with the inhibitor of RE1 silencing transcription factor, X5050, induces more neurogenesis with the regular arrangement, and a decrease in Müller glial cells. The signatures of major retinal cells and their correlation with pathogenic genes associated with multiple ocular diseases, including uveitis and age-related macular degeneration are also described. A framework for the integrated exploration of single-cell developmental dynamics of the human primary retina is provided.
Collapse
Affiliation(s)
- Ruonan Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Jiangyi Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, P. R. China
| | - Xianli Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, P. R. China
| | - Jun Chen
- Department of Obstetrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Chenyang Zhao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Xingyun Liao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, P. R. China
| | - Xiaotang Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Zongren Xu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
| | - Huiping Lu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Hongshun Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Zhi Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Xianyang Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Junjie Xiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Ke Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Hongbo Qi
- Department of Obstetrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, P. R. China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, P. R. China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, P. R. China
| |
Collapse
|
5
|
Laurinaviciute G, Simkunaite-Rizgeliene R, Zalgeviciene V, Bartuskiene V, Cepuliene R, Jakimaviciene EM, Galgauskas S, Petroska D, Besusparis J, Tutkuviene J. Maternal undernutrition model of two generations of rats: Changes in the aged retina. Histol Histopathol 2023; 38:409-422. [PMID: 36148876 DOI: 10.14670/hh-18-522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The impact of maternal undernutrition on morphological changes of the retina was assessed in two generations of aged offspring. Wistar 18 rats (9 of each generation of 20-month-old female offspring; in total - 27 eyes) were analyzed. The first generation offspring were born to mothers who: (a) were restricted to food only before pregnancy (pre-pregnancy); (b) whose food was restricted before and during pregnancy. The control group and all the offspring were fed normally. After enucleating the eyes, paraffin sections were stained with hematoxylin and eosin. The thickness of retina layers was measured. Cryosections were immunostained using glial fibrillary acidic protein, ionized calcium-binding adaptor molecule1, RNA-binding protein with multiple splicing for evaluation of macroglia, microglia and retinal ganglion cells by digital image analysis tools. Our data have shown atrophy of photoreceptor layer and degeneration of outer nuclear layer in all investigated groups, but less damage was found in the control group. Higher Müller cell activity and greater number of microglial cells was observed in the second generation offspring born from both restricted diet groups. Higher numbers of microglial and retinal ganglion cells were observed in the second generation in comparison to the first generation offspring. Malnutrition of the mother may be one of the possible causes of degeneration of the outer layers of the retina and activation of Müller cells in the second generation offspring. The effect of maternal nutritional restriction on the number of microglial and retinal ganglion cells is unclear.
Collapse
Affiliation(s)
- Guoda Laurinaviciute
- Department of Anatomy, Histology and Anthropology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - R Simkunaite-Rizgeliene
- Department of Anatomy, Histology and Anthropology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - V Zalgeviciene
- Department of Anatomy, Histology and Anthropology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - V Bartuskiene
- Department of Anatomy, Histology and Anthropology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - R Cepuliene
- Department of Anatomy, Histology and Anthropology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - E M Jakimaviciene
- Department of Anatomy, Histology and Anthropology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - S Galgauskas
- Clinic of Ear, Nose, Throat and Eye Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - D Petroska
- Department of Pathology, Forensic Medicine and Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - J Besusparis
- Department of Pathology, Forensic Medicine and Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - J Tutkuviene
- Department of Anatomy, Histology and Anthropology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.
| |
Collapse
|
6
|
Chucair-Elliott AJ, Ocañas SR, Pham K, Van Der Veldt M, Cheyney A, Stanford D, Gurley J, Elliott MH, Freeman WM. Translatomic response of retinal Müller glia to acute and chronic stress. Neurobiol Dis 2022; 175:105931. [PMID: 36423879 PMCID: PMC9875566 DOI: 10.1016/j.nbd.2022.105931] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Analysis of retina cell type-specific epigenetic and transcriptomic signatures is crucial to understanding the pathophysiology of retinal degenerations such as age-related macular degeneration (AMD) and delineating cell autonomous and cell-non-autonomous mechanisms. We have discovered that Aldh1l1 is specifically expressed in the major macroglia of the retina, Müller glia, and, unlike the brain, is not expressed in retinal astrocytes. This allows use of Aldh1l1 cre drivers and Nuclear Tagging and Translating Ribosome Affinity Purification (NuTRAP) constructs for temporally controlled labeling and paired analysis of Müller glia epigenomes and translatomes. As validated through a variety of approaches, the Aldh1l1cre/ERT2-NuTRAP model provides Müller glia specific translatomic and epigenomic profiles without the need to isolate whole cells. Application of this approach to models of acute injury (optic nerve crush) and chronic stress (aging) uncovered few common Müller glia-specific transcriptome changes in inflammatory pathways, and mostly differential signatures for each stimulus. The expression of members of the IL-6 and integrin-linked kinase signaling pathways was enhanced in Müller glia in response to optic nerve crush but not aging. Unique changes in neuroinflammation and fibrosis signaling pathways were observed in response to aging but not with optic nerve crush. The Aldh1l1cre/ERT2-NuTRAP model allows focused molecular analyses of a single, minority cell type within the retina, providing more substantial effect sizes than whole tissue analyses. The NuTRAP model, nucleic acid isolation, and validation approaches presented here can be applied to any retina cell type for which a cell type-specific cre is available.
Collapse
Affiliation(s)
- Ana J Chucair-Elliott
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| | - Sarah R Ocañas
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin Pham
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael Van Der Veldt
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Ashley Cheyney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - David Stanford
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jami Gurley
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael H Elliott
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
7
|
Grigoryan EN. Cell Sources for Retinal Regeneration: Implication for Data Translation in Biomedicine of the Eye. Cells 2022; 11:cells11233755. [PMID: 36497013 PMCID: PMC9738527 DOI: 10.3390/cells11233755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
The main degenerative diseases of the retina include macular degeneration, proliferative vitreoretinopathy, retinitis pigmentosa, and glaucoma. Novel approaches for treating retinal diseases are based on cell replacement therapy using a variety of exogenous stem cells. An alternative and complementary approach is the potential use of retinal regeneration cell sources (RRCSs) containing retinal pigment epithelium, ciliary body, Müller glia, and retinal ciliary region. RRCSs in lower vertebrates in vivo and in mammals mostly in vitro are able to proliferate and exhibit gene expression and epigenetic characteristics typical for neural/retinal cell progenitors. Here, we review research on the factors controlling the RRCSs' properties, such as the cell microenvironment, growth factors, cytokines, hormones, etc., that determine the regenerative responses and alterations underlying the RRCS-associated pathologies. We also discuss how the current data on molecular features and regulatory mechanisms of RRCSs could be translated in retinal biomedicine with a special focus on (1) attempts to obtain retinal neurons de novo both in vivo and in vitro to replace damaged retinal cells; and (2) investigations of the key molecular networks stimulating regenerative responses and preventing RRCS-related pathologies.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
8
|
Insm1 promotes differentiation of retinal progenitor cells toward photoreceptor cells in the developing retina through up-regulation of SHH. J Mol Histol 2022; 53:947-954. [PMID: 36260151 DOI: 10.1007/s10735-022-10103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/10/2022] [Indexed: 10/24/2022]
Abstract
This article investigated the effect of Insm1 on RPC differentiation in mice and the underlying mechanism. The retinal tissues of mouse embryo at 12.5 days (E12.5) and postnatal 14 days (P14) were collected, following by the detection of Insm1 and corresponding markers by immunofluorescent staining. RPCs isolated from retinal tissues at P1 were cultured in culture medium for 7 days. The differentiation of photoreceptor and glial cells was assessed after RPCs transferred to the differentiation medium for 20 days. Next, the effect of Insm1 overexpression on the differentiation of RPCs toward rod photoreceptor and glial cells were assessed. Insm1 was highly expressed in RPCs of retinal tissues and decline in photoreceptor cells, while hardly expressed in glial cells. Based on the results of Pax-6 positive immunofluorescent staining and flow cytometry detection, RPCs were successfully isolated from retinal tissues. After the culture in differentiation medium, RPCs showed positive staining of Rhodopsin and glial fibrillary acidic protein (GFAP). Further results showed that overexpression of Insm1 significantly increased the percentage of Rhodopsin positive cells, and up-regulated Sonic Hedgehog (SHH), hairy and enhancer of split homolog-1(Hes1), S-opsin and Rhodopsin levels, while decreased the percentage of Glutamine synthetase positive cells, and reduced Glutamine synthetase and GFAP levels. Whereas, the effect of Insm1 overexpression on these protein levels were partly abolished by the knockdown of SHH or Hes1. We conclude that Insm1 promotes the differentiation of RPCs into photoreceptor cells in the developing retina through up-regulation of SHH.
Collapse
|
9
|
Sharma P, Ramachandran R. Retina regeneration: lessons from vertebrates. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac012. [PMID: 38596712 PMCID: PMC10913848 DOI: 10.1093/oons/kvac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/24/2022] [Accepted: 06/25/2022] [Indexed: 04/11/2024]
Abstract
Unlike mammals, vertebrates such as fishes and frogs exhibit remarkable tissue regeneration including the central nervous system. Retina being part of the central nervous system has attracted the interest of several research groups to explore its regenerative ability in different vertebrate models including mice. Fishes and frogs completely restore the size, shape and tissue structure of an injured retina. Several studies have unraveled molecular mechanisms underlying retina regeneration. In teleosts, soon after injury, the Müller glial cells of the retina reprogram to form a proliferating population of Müller glia-derived progenitor cells capable of differentiating into various neural cell types and Müller glia. In amphibians, the transdifferentiation of retinal pigment epithelium and differentiation of ciliary marginal zone cells contribute to retina regeneration. In chicks and mice, supplementation with external growth factors or genetic modifications cause a partial regenerative response in the damaged retina. The initiation of retina regeneration is achieved through sequential orchestration of gene expression through controlled modulations in the genetic and epigenetic landscape of the progenitor cells. Several developmental biology pathways are turned on during the Müller glia reprogramming, retinal pigment epithelium transdifferentiation and ciliary marginal zone differentiation. Further, several tumorigenic pathways and gene expression events also contribute to the complete regeneration cascade of events. In this review, we address the various retinal injury paradigms and subsequent gene expression events governed in different vertebrate species. Further, we compared how vertebrates such as teleost fishes and amphibians can achieve excellent regenerative responses in the retina compared with their mammalian counterparts.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, SAS Nagar, Sector 81, Manauli PO, 140306 Mohali, Punjab, India
| | - Rajesh Ramachandran
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, SAS Nagar, Sector 81, Manauli PO, 140306 Mohali, Punjab, India
| |
Collapse
|
10
|
Ning R, Zheng D, Xie B, Gao G, Xu J, Xu P, Wang Y, Peng F, Jiang B, Ge J, Zhong X. Spatial and Temporal Development of Müller Glial Cells in hiPSC-Derived Retinal Organoids Facilitates the Cell Enrichment and Transcriptome Analysis. Front Cell Neurosci 2022; 16:820396. [PMID: 35663427 PMCID: PMC9160306 DOI: 10.3389/fncel.2022.820396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
Müller glial cells (MGCs) play important roles in human retina during physiological and pathological conditions. However, the development process of human MGCs in vivo remains unclear, and how to obtain large numbers of human MGCs with high quality faces technical challenges, which hinder the further study and application of MGCs. Human induced pluripotent stem cell (hiPSC)-derived retinal organoids (ROs) with all retinal cell subtypes provide an unlimited cell resource and a platform for the studies of retinal development and disorders. This study explored the development of human MGCs in hiPSC-derived ROs and developed an approach to select and expand the induced MGCs (iMGCs). In ROs, retinal progenitor cells progressively differentiated into SOX9+ Ki67– MGC precursors during differentiation day (D) 60 to D90, while mature MGCs expressing markers CRALBP and GS gradually appeared since D120, which spanned the entire thickness of the neural retina layer. Cells isolated from ROs aged older than 120 days was an optimal source for the enrichment of iMGCs with high purity and expansion ability. They had typical features of human MGCs in morphological, structural, molecular and functional aspects, and could be passaged serially at least 10 times, yielding large numbers of cells in a short period. The transcriptome pattern of the expanded iMGCs was also revealed. This study firstly clarified the timecourse of human MGC development in the RO model, where the iMGCs could be enriched and expanded, paving the way for downstream investigation and application in MGC-related retinal disorders.
Collapse
Affiliation(s)
- Rong Ning
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dandan Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Bingbing Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Guanjie Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jinhai Xu
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ping Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Fuhua Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bin Jiang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiufeng Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- *Correspondence: Xiufeng Zhong
| |
Collapse
|
11
|
Gallo RA, Qureshi F, Strong TA, Lang SH, Pino KA, Dvoriantchikova G, Pelaez D. Derivation and Characterization of Murine and Amphibian Müller Glia Cell Lines. Transl Vis Sci Technol 2022; 11:4. [PMID: 35377941 PMCID: PMC8994200 DOI: 10.1167/tvst.11.4.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Müller glia (MG) in the retina of Xenopus laevis (African clawed frog) reprogram to a transiently amplifying retinal progenitor state after an injury. These progenitors then give rise to new retinal neurons. In contrast, mammalian MG have a restricted neurogenic capacity and undergo reactive gliosis after injury. This study sought to establish MG cell lines from the regeneration-competent frog and the regeneration-deficient mouse. Methods MG were isolated from postnatal day 5 GLAST-CreERT; Rbfl/fl mice and from adult (3–5 years post-metamorphic) Xlaevis. Serial adherent subculture resulted in spontaneously immortalized cells and the establishment of two MG cell lines: murine retinal glia 17 (RG17) and Xenopus glia 69 (XG69). They were characterized for MG gene and protein expression by qPCR, immunostaining, and Western blot. Purinergic signaling was assessed with calcium imaging. Pharmacological perturbations with 2’-3’-O-(4-benzoylbenzoyl) adenosine 5’-triphosphate (BzATP) and KN-62 were performed on RG17 cells. Results RG17 and XG69 cells express several MG markers and retain purinergic signaling. Pharmacological perturbations of intracellular calcium responses with BzATP and KN-62 suggest that the ionotropic purinergic receptor P2X7 is present and functional in RG17 cells. Stimulation of XG69 cells with adenosine triphosphate–induced calcium responses in a dose-dependent manner. Conclusions We report the characterization of RG17 and XG69, two novel MG cell lines from species with significantly disparate retinal regenerative capabilities. Translational Relevance RG17 and XG69 cell line models will aid comparative studies between species endowed with varied regenerative capacity and will facilitate the development of new cell-based strategies for treating retinal degenerative diseases.
Collapse
Affiliation(s)
- Ryan A Gallo
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA.,Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Farhan Qureshi
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Thomas A Strong
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Steven H Lang
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kevin A Pino
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Galina Dvoriantchikova
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel Pelaez
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
12
|
Dvoriantchikova G, Lypka KR, Ivanov D. The Potential Role of Epigenetic Mechanisms in the Development of Retinitis Pigmentosa and Related Photoreceptor Dystrophies. Front Genet 2022; 13:827274. [PMID: 35360866 PMCID: PMC8961674 DOI: 10.3389/fgene.2022.827274] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Retinitis pigmentosa and related photoreceptor dystrophies (RPRPD) are rare retinal diseases caused by hereditary gene mutations resulting in photoreceptor death, followed by vision loss. While numerous genes involved in these diseases have been identified, many cases have still not been associated with any gene, indicating that new mechanisms may be involved in the pathogenesis of these photoreceptor dystrophies. Many genes associated with RPRPD regulate photoreceptor specification and maturation in the developing retina. Since retinal development begins with a population of equivalent, proliferating retinal progenitor cells (RPCs) having a specific “competence” in generating all types of retinal neurons, including cone and rod photoreceptors, we tested the epigenetic changes in promoters of genes required for photoreceptor development and genes associated with RPRPD during RPC differentiation into cone and rod photoreceptors. We found that promoters of many of these genes are epigenetically repressed in RPCs but have no epigenetic restrictions in photoreceptors. Our findings also suggest that DNA methylation as an epigenetic mark, and DNA demethylation as a process, are more important than other epigenetic marks or mechanisms in the pathogenesis of these diseases. Most notably, irregularities in the DNA demethylation process during the RPC-to-photoreceptor transition may significantly contribute to retinitis pigmentosa (RP) pathogenesis since genes with hypermethylated promoters in RPCs account for at least 40% of autosomal recessive RP cases and at least 30% of autosomal dominant RP cases. Thus, we proposed an epigenetic model according to which unsuccessful demethylation of regulatory sequences (e.g., promoters, enhancers) of genes required for photoreceptor development, maturation, and function during the RPC-to-photoreceptor transition may reduce or even eliminate their activity, leading to RPRPD without any inheritable mutations in these genes.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Karin Rose Lypka
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Dmitry Ivanov
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Dmitry Ivanov,
| |
Collapse
|
13
|
Enhancer decommissioning imposes an epigenetic barrier to sensory hair cell regeneration. Dev Cell 2021; 56:2471-2485.e5. [PMID: 34331868 DOI: 10.1016/j.devcel.2021.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 01/02/2023]
Abstract
Adult mammalian tissues such as heart, brain, retina, and the sensory structures of the inner ear do not effectively regenerate, although a latent capacity for regeneration exists at embryonic and perinatal times. We explored the epigenetic basis for this latent regenerative potential in the mouse inner ear and its rapid loss during maturation. In perinatal supporting cells, whose fate is maintained by Notch-mediated lateral inhibition, the hair cell enhancer network is epigenetically primed (H3K4me1) but silenced (active H3K27 de-acetylation and trimethylation). Blocking Notch signaling during the perinatal period of plasticity rapidly eliminates epigenetic silencing and allows supporting cells to transdifferentiate into hair cells. Importantly, H3K4me1 priming of the hair cell enhancers in supporting cells is removed during the first post-natal week, coinciding with the loss of transdifferentiation potential. We hypothesize that enhancer decommissioning during cochlear maturation contributes to the failure of hair cell regeneration in the mature organ of Corti.
Collapse
|
14
|
Luz-Madrigal A, Grajales-Esquivel E, Tangeman J, Kosse S, Liu L, Wang K, Fausey A, Liang C, Tsonis PA, Del Rio-Tsonis K. DNA demethylation is a driver for chick retina regeneration. Epigenetics 2020; 15:998-1019. [PMID: 32290791 PMCID: PMC7518676 DOI: 10.1080/15592294.2020.1747742] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 01/01/2023] Open
Abstract
Cellular reprogramming resets the epigenetic landscape to drive shifts in transcriptional programmes and cell identity. The embryonic chick can regenerate a complete neural retina, after retinectomy, via retinal pigment epithelium (RPE) reprogramming in the presence of FGF2. In this study, we systematically analysed the reprogramming competent chick RPE prior to injury, and during different stages of reprogramming. In addition to changes in the expression of genes associated with epigenetic modifications during RPE reprogramming, we observed dynamic changes in histone marks associated with bivalent chromatin (H3K27me3/H3K4me3) and intermediates of the process of DNA demethylation including 5hmC and 5caC. Comprehensive analysis of the methylome by whole-genome bisulphite sequencing (WGBS) confirmed extensive rearrangements of DNA methylation patterns including differentially methylated regions (DMRs) found at promoters of genes associated with chromatin organization and fibroblast growth factor production. We also identified Tet methylcytosine dioxygenase 3 (TET3) as an important factor for DNA demethylation and retina regeneration, capable of reprogramming RPE in the absence of exogenous FGF2. In conclusion, we demonstrate that injury early in RPE reprogramming triggers genome-wide dynamic changes in chromatin, including bivalent chromatin and DNA methylation. In the presence of FGF2, these dynamic modifications are further sustained in the commitment to form a new retina. Our findings reveal active DNA demethylation as an important process that may be applied to remove the epigenetic barriers in order to regenerate retina in mammals. ABBREVIATIONS bp: Base pair; DMR: Differentially methylated region; DMC: Differentially methylated cytosines; GFP: Green fluorescent protein; PCR: Polymerase chain reaction. TET: Ten-eleven translocation; RPE: retinal pigment epithelium.
Collapse
Affiliation(s)
- Agustín Luz-Madrigal
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
- Department of Biology and Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Erika Grajales-Esquivel
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Jared Tangeman
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Sarah Kosse
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Lin Liu
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Kai Wang
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Andrew Fausey
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Chun Liang
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
- Department of Computer Science and Software Engineering, Miami University, Oxford, OH, USA
| | - Panagiotis A. Tsonis
- Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, OH, USA
| | - Katia Del Rio-Tsonis
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| |
Collapse
|
15
|
Grigoryan EN. Potential Endogenous Cell Sources for Retinal Regeneration in Vertebrates and Humans: Progenitor Traits and Specialization. Biomedicines 2020; 8:E208. [PMID: 32664635 PMCID: PMC7400588 DOI: 10.3390/biomedicines8070208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Retinal diseases often cause the loss of photoreceptor cells and, consequently, impairment of vision. To date, several cell populations are known as potential endogenous retinal regeneration cell sources (RRCSs): the eye ciliary zone, the retinal pigment epithelium, the iris, and Müller glia. Factors that can activate the regenerative responses of RRCSs are currently under investigation. The present review considers accumulated data on the relationship between the progenitor properties of RRCSs and the features determining their differentiation. Specialized RRCSs (all except the ciliary zone in low vertebrates), despite their differences, appear to be partially "prepared" to exhibit their plasticity and be reprogrammed into retinal neurons due to the specific gene expression and epigenetic landscape. The "developmental" characteristics of RRCS gene expression are predefined by the pathway by which these cell populations form during eye morphogenesis; the epigenetic features responsible for chromatin organization in RRCSs are under intracellular regulation. Such genetic and epigenetic readiness is manifested in vivo in lower vertebrates and in vitro in higher ones under conditions permissive for cell phenotype transformation. Current studies on gene expression in RRCSs and changes in their epigenetic landscape help find experimental approaches to replacing dead cells through recruiting cells from endogenous resources in vertebrates and humans.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
16
|
García-García D, Locker M, Perron M. Update on Müller glia regenerative potential for retinal repair. Curr Opin Genet Dev 2020; 64:52-59. [PMID: 32619816 DOI: 10.1016/j.gde.2020.05.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/08/2020] [Accepted: 05/24/2020] [Indexed: 12/20/2022]
Abstract
Retinal regeneration efficiency from Müller glia varies tremendously among vertebrate species, being extremely limited in mammals. Efforts towards the identification of molecular mechanisms underlying Müller cell proliferative and neurogenic potential should help finding strategies to awake them and ensure regeneration in mammals. We provide here an update on the most recent and original progresses made in the field. These include remarkable discoveries regarding (i) unprecedented cross-species comparison of Müller cell transcriptome using single-cell technologies, (ii) the identification of new strategies to promote both the proliferative and the neurogenic potential of mammalian Müller cells, (iii) the role of the epigenome in regulating Müller glia plasticity, (iv) miRNA-based regulatory mechanisms of Müller cell response to injury, and (v) the influence of inflammatory signals on the regenerative process.
Collapse
Affiliation(s)
- Diana García-García
- Université Paris-Saclay, CNRS, Retina France, Institut des Neurosciences Paris Saclay, Orsay, France
| | - Morgane Locker
- Université Paris-Saclay, CNRS, Retina France, Institut des Neurosciences Paris Saclay, Orsay, France
| | - Muriel Perron
- Université Paris-Saclay, CNRS, Retina France, Institut des Neurosciences Paris Saclay, Orsay, France.
| |
Collapse
|
17
|
Tingle CF, Magnuson B, Zhao Y, Heisel CJ, Kish PE, Kahana A. Paradoxical Changes Underscore Epigenetic Reprogramming During Adult Zebrafish Extraocular Muscle Regeneration. Invest Ophthalmol Vis Sci 2020; 60:4991-4999. [PMID: 31794598 PMCID: PMC6890397 DOI: 10.1167/iovs.19-27556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose Genomic reprogramming and cellular dedifferentiation are critical to the success of de novo tissue regeneration in lower vertebrates such as zebrafish and axolotl. In tissue regeneration following injury or disease, differentiated cells must retain lineage while assuming a progenitor-like identity in order to repopulate the damaged tissue. Understanding the epigenetic regulation of programmed cellular dedifferentiation provides unique insights into the biology of stem cells and cancer and may lead to novel approaches for treating human degenerative conditions. Methods Using a zebrafish in vivo model of adult muscle regeneration, we utilized chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) to characterize early changes in epigenetic signals, focusing on three well-studied histone modifications-histone H3 trimethylated at lysine 4 (H3K4me3), and histone H3 trimethylated or acetylated at lysine 27 (H3K27me3 and H3K27Ac, respectively). Results We discovered that zebrafish myocytes undergo a global, rapid, and transient program to drive genomic remodeling. The timing of these epigenetic changes suggests that genomic reprogramming itself represents a distinct sequence of events, with predetermined checkpoints, to generate cells capable of de novo regeneration. Importantly, we uncovered subsets of genes that maintain epigenetic marks paradoxical to changes in expression, underscoring the complexity of epigenetic reprogramming. Conclusions Within our model, histone modifications previously associated with gene expression act for the most part as expected, with exceptions suggesting that zebrafish chromatin maintains an easily editable state with a number of genes paradoxically marked for transcriptional activity despite downregulation.
Collapse
Affiliation(s)
- Christina F Tingle
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Brian Magnuson
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States.,Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States
| | - Yi Zhao
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Curtis J Heisel
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States.,University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Phillip E Kish
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Alon Kahana
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|