1
|
Mardakheh FK, Shechner DM. A molecular cartographer's toolkit for mapping RNA's uncharted realms. Cell Rep 2025; 44:115877. [PMID: 40540402 DOI: 10.1016/j.celrep.2025.115877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 05/03/2025] [Accepted: 05/30/2025] [Indexed: 06/22/2025] Open
Abstract
Deciphering RNA molecules' function and regulation requires an in-depth understanding of the myriad interactions these RNAs form within their cellular environment. In this review, we present a comprehensive overview of recent technological advances that collectively form a molecular toolkit for mapping the molecular environment of RNA. We discuss innovative RNA-centric methods designed to overcome long-standing challenges in capturing direct RNA-protein interactions in living cells. Additionally, we explore transformative proximity-labeling techniques that leverage engineered enzymes and chemical catalysts to spatially resolve the composition of RNA-associated microenvironments. By critically evaluating the strengths and limitations of these emerging methodologies, we highlight how they are reshaping our understanding of RNA function, from local binding events to the dynamic organization of RNA-scaffolded compartments. These advancements not only promise to elucidate the molecular grammar underlying RNA regulatory networks in unprecedented details but also pave the way for an integrative, system-level understanding of complex RNA-mediated cellular processes.
Collapse
Affiliation(s)
- Faraz K Mardakheh
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK.
| | - David M Shechner
- Department of Pharmacology, University of Washington, Seattle, WA, USA; Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
2
|
Lo J, Vaeth KF, Bhardwaj G, Mukherjee N, Russ HA, Moore JK, Taliaferro JM. The RNA binding protein HNRNPA2B1 regulates RNA abundance and motor protein activity in neurites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609768. [PMID: 39253515 PMCID: PMC11383297 DOI: 10.1101/2024.08.26.609768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
RNA molecules are localized to subcellular regions through interactions between localization-regulatory cis-elements and trans-acting RNA binding proteins (RBPs). However, the identities of RNAs whose localization is regulated by a specific RBP as well as the impacts of that RNA localization on cell function have generally remained unknown. Here, we demonstrate that the RBP HNRNPA2B1 acts to keep specific RNAs out of neuronal projections. Using subcellular fractionation, high-throughput sequencing, and single molecule RNA FISH, we find that hundreds of RNAs demonstrate markedly increased abundance in neurites in HNRNPA2B1 knockout cells. These RNAs often encode motor proteins and are enriched for known HNRNPA2B1 binding sites and motifs in their 3' UTRs. The speed and processivity of microtubule-based transport is impaired in these cells, specifically in their neurites. HNRNPA2B1 point mutations that increase its cytoplasmic abundance relative to wildtype lead to stronger suppression of RNA mislocalization defects than seen with wildtype HNRNPA2B1. We further find that the subcellular localizations of HNRNPA2B1 target RNAs are sensitive to perturbations of RNA decay machinery, suggesting that it is HNRNPA2B1's known role in regulating RNA stability that may explain these observations. These findings establish HNRNPA2B1 as a negative regulator of neurite RNA abundance and link the subcellular activities of motor proteins with the subcellular abundance of the RNAs that encode them.
Collapse
Affiliation(s)
- Joelle Lo
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine F. Vaeth
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Neelanjan Mukherjee
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Holger A. Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Jeffrey K. Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J. Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Oliveira MM, Mohamed M, Elder MK, Banegas-Morales K, Mamcarz M, Lu EH, Golhan EAN, Navrange N, Chatterjee S, Abel T, Klann E. The integrated stress response effector GADD34 is repurposed by neurons to promote stimulus-induced translation. Cell Rep 2024; 43:113670. [PMID: 38219147 PMCID: PMC10964249 DOI: 10.1016/j.celrep.2023.113670] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024] Open
Abstract
Neuronal protein synthesis is required for long-lasting plasticity and long-term memory consolidation. Dephosphorylation of eukaryotic initiation factor 2α is one of the key translational control events that is required to increase de novo protein synthesis that underlies long-lasting plasticity and memory consolidation. Here, we interrogate the molecular pathways of translational control that are triggered by neuronal stimulation with brain-derived neurotrophic factor (BDNF), which results in eukaryotic initiation factor 2α (eIF2α) dephosphorylation and increases in de novo protein synthesis. Primary rodent neurons exposed to BDNF display elevated translation of GADD34, which facilitates eIF2α dephosphorylation and subsequent de novo protein synthesis. Furthermore, GADD34 requires G-actin generated by cofilin to dephosphorylate eIF2α and enhance protein synthesis. Finally, GADD34 is required for BDNF-induced translation of synaptic plasticity-related proteins. Overall, we provide evidence that neurons repurpose GADD34, an effector of the integrated stress response, as an orchestrator of rapid increases in eIF2-dependent translation in response to plasticity-inducing stimuli.
Collapse
Affiliation(s)
| | - Muhaned Mohamed
- Center for Neural Science, New York University, New York, NY, USA
| | - Megan K Elder
- Center for Neural Science, New York University, New York, NY, USA
| | | | - Maggie Mamcarz
- Center for Neural Science, New York University, New York, NY, USA
| | - Emily H Lu
- Center for Neural Science, New York University, New York, NY, USA
| | - Ela A N Golhan
- Center for Neural Science, New York University, New York, NY, USA
| | - Nishika Navrange
- Center for Neural Science, New York University, New York, NY, USA
| | - Snehajyoti Chatterjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, USA; NYU Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Liang J, Han J, Gao X, Jia H, Li R, Tse ECM, Li Y. Clickable APEX2 Probes for Enhanced RNA Proximity Labeling in Live Cells. Anal Chem 2024; 96:685-693. [PMID: 38099807 DOI: 10.1021/acs.analchem.3c03614] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Although APEX2-mediated proximity labeling has been extensively implemented for studying RNA subcellular localization in live cells, the biotin-phenoxyl radical used for labeling RNAs has a relatively low efficiency, which can limit its compatibility with other profiling methods. Herein, a set of phenol derivatives were designed as APEX2 probes through balancing reactivity, hydrophilicity, and lipophilicity. Among these derivatives, Ph_N3 exhibited reliable labeling ability and enabled two biotinylation routes for downstream analysis. As a proof of concept, we used APEX2/Ph_N3 labeling with high-throughput sequencing analysis to examine the transcriptomes in the mitochondrial matrix, demonstrating high sensitivity and specificity. To further expand the utility of Ph_N3, we employed mechanistically orthogonal APEX2 and singlet oxygen (1O2)-mediated strategies for dual location labeling in live cells. Specifically, DRAQ5, a DNA-intercalating photosensitizer, was applied for nucleus-restricted 1O2 labeling. We validated the orthogonality of APEX2/Ph_N3 and DRAQ5-1O2 at the imaging level, providing an attractive and feasible approach for future studies of RNA translocation in live cells.
Collapse
Affiliation(s)
- Jiying Liang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jinghua Han
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xutao Gao
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Han Jia
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ran Li
- Academy for Advanced Interdisciplinary Studies, PKU-Tsinghua Center for Life Science, Peking University, Beijing 100871, China
| | - Edmund C M Tse
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, New Territories, Hong Kong, China
| | - Ying Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, New Territories, Hong Kong, China
| |
Collapse
|
5
|
Lo HYG, Engel KL, Goering R, Li Y, Spitale RC, Taliaferro JM. Halo-seq: An RNA Proximity Labeling Method for the Isolation and Analysis of Subcellular RNA Populations. Curr Protoc 2022; 2:e424. [PMID: 35532287 PMCID: PMC9097300 DOI: 10.1002/cpz1.424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The subcellular localization of specific RNA molecules promotes localized cellular activity across a variety of species and cell types. The misregulation of this RNA targeting can result in developmental defects, and mutations in proteins that regulate this process are associated with multiple diseases. For the vast majority of localized RNAs, however, the mechanisms that underlie their subcellular targeting are unknown, partly due to the difficulty associated with profiling and quantifying subcellular RNA populations. To address this challenge, we developed Halo-seq, a proximity labeling technique that can label and profile local RNA content at virtually any subcellular location. Halo-seq relies on a HaloTag fusion protein localized to a subcellular space of interest. Through the use of a radical-producing Halo ligand, RNAs that are near the HaloTag fusion are specifically labeled with spatial and temporal control. Labeled RNA is then specifically biotinylated in vitro via a click reaction, facilitating its purification from a bulk RNA sample using streptavidin beads. The content of the biotinylated RNA is then profiled using high-throughput sequencing. In this article, we describe the experimental and computational procedures for Halo-seq, including important benchmark and quality control steps. By allowing the flexible profiling of a variety of subcellular RNA populations, we envision Halo-seq facilitating the discovery and further study of RNA localization regulatory mechanisms. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Visualization of HaloTag fusion protein localization Basic Protocol 2: In situ copper-catalyzed cycloaddition of fluorophore via click reaction Basic Protocol 3: In vivo RNA alkynylation and extraction of total RNA Basic Protocol 4: In vitro copper-catalyzed cycloaddition of biotin via click reaction Basic Protocol 5: Assessment of RNA biotinylation by RNA dot blot Basic Protocol 6: Enrichment of biotinylated RNA using streptavidin beads and preparation of RNA-seq library Basic Protocol 7: Computational analysis of Halo-seq data.
Collapse
Affiliation(s)
- Hei-Yong G. Lo
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Krysta L. Engel
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Raeann Goering
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ying Li
- Department of Chemistry, Hong Kong University
| | - Robert C. Spitale
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
- Department of Chemistry, University of California Irvine, Irvine, CA, USA
| | - J. Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|