1
|
Farhadi P, Park T. The p130Cas-Crk/CrkL Axis: A Therapeutic Target for Invasive Cancers Unveiled by Collaboration Among p130Cas, Crk, and CrkL. Int J Mol Sci 2025; 26:4017. [PMID: 40362257 PMCID: PMC12071665 DOI: 10.3390/ijms26094017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Numerous studies have documented the involvement of p130Cas (Crk-associated substrate) in a wide range of cellular processes across different types of cells. These processes encompass cell transformation, the connection between the extracellular matrix and the actin cytoskeleton, cell migration and invasion, and cardiovascular development. Moreover, p130Cas has been associated with the regulation of various physiological processes, including mammary, bone, brain, muscle, and liver homeostasis. The diverse functions of p130Cas can be attributed to its possession of multiple protein-protein interaction domains, which sets it apart as a unique class of adaptor protein. It is well established that p130Cas interacts critically with the CT10 regulator of kinase (Crk) adaptor protein family members, including CrkII, CrkI, and Crk-like (CrkL), which is the basis for the naming of the Cas family. The Crk family proteins play a crucial role in integrating signals from various sources, such as growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. An increasing body of evidence suggests that the dysregulation of Crk family proteins is linked to various human diseases, including cancer and increased susceptibility to pathogen infections. This review focuses primarily on the structural and functional aspects of the interaction between p130Cas and the Crk family proteins, providing insights into how these proteins regulate specific signaling events. Furthermore, we delve into the functions of p130Cas and the Crk family proteins in both normal and tumor cells to gain a comprehensive understanding of their collaborative roles in cellular physiology and pathology. This review demonstrates that tumor cell migration and invasion are the two cellular functions that have been studied the most for the p130Cas-Crk/CrkL axis. Understanding the tumor cell migration and invasion that require both p130Cas and Crk/CrkL is necessary to further evaluate the role of the p130Cas-Crk/CrkL axis in cancer. Establishing the contribution of the p130Cas-Crk/CrkL axis to cancer will facilitate the development of cancer drugs targeting the axis to inhibit cancer cell dissemination and improve patient outcomes.
Collapse
Affiliation(s)
- Pegah Farhadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67155, Iran
| | - Taeju Park
- Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| |
Collapse
|
2
|
Sun Y, Fang W, Peng J, Liu X, Wang C, Song L, Deng Z. Potential role of CFLAR in enhancing 5-FU sensitivity and modulating immune cell infiltration in breast cancer. Eur J Med Res 2025; 30:265. [PMID: 40211399 PMCID: PMC11983979 DOI: 10.1186/s40001-025-02532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Breast cancer (BRCA), the most common malignancy among women, is a highly heterogeneous disease. Chemoresistance is a major factor leading to treatment failure in BRCA. However, mechanisms underlying the development of chemoresistance remain unclear. METHODS In this study, we performed a comprehensive bioinformatic analysis to examine the role of cell death-associated genes in BRCA treatment. Specifically, we focused on caspase 8 and Fas-associated protein with death domain-like apoptosis regulator (CFLAR), which was identified as a co-differentially expressed cell death-associated molecule with potential prognostic values. We then validated these findings through in vitro experiments in BT- 549 and MDA-MB- 231 breast cancer cells. RESULTS Based on bioinformatics analysis, CFLAR expression was found to be downregulated in patients with BRCA, whereas its high expression was significantly associated with improved prognosis. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that aberrantly expressed CFLAR was potentially associated with oxidative phosphorylation, T cell receptor signaling, and NADH dehydrogenase (ubiquinone) activity. In vitro experiments demonstrated that overexpression of CFLAR inhibited the generation of reactive oxygen species (ROS), consequently promoting 5-fluorouracil (5-FU) sensitivity in BT- 549 and MDA-MB- 231 breast cancer cells. The expression of CFLAR was positively correlated with the abundance of several tumor-infiltrating immune cells, especially CD8 + T cells, further supporting the role of CFLAR in immune regulation. CONCLUSION In conclusion, this study reveals the novel roles of CFLAR in enhancing chemotherapy sensitivity and patient outcome in BRCA and underscores its potential as a therapeutic target. These results supported CFLAR as a therapeutic target and prognostic biomarker in BRCA patients.
Collapse
Affiliation(s)
- Yuwei Sun
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Weilun Fang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Xingling Liu
- Department of Pharmacy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| | - Chunjiang Wang
- Department of Pharmacy, the Third Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Liying Song
- Department of Pharmacy, the Third Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhenzhen Deng
- Department of Pharmacy, the Third Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| |
Collapse
|
3
|
Villari G, Gioelli N, Gino M, Zhang H, Hodge K, Cordero F, Zanivan S, Zhu J, Serini G. Luminescent sensing of conformational integrin activation in living cells. Cell Rep 2025; 44:115319. [PMID: 39964812 PMCID: PMC11861568 DOI: 10.1016/j.celrep.2025.115319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/29/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025] Open
Abstract
Integrins are major receptors for secreted extracellular matrix, playing crucial roles in physiological and pathological contexts, such as angiogenesis and cancer. Regulation of the transition between inactive and active conformation is key for integrins to fulfill their functions, and pharmacological control of those dynamics may have therapeutic applications. We create and validate a prototypic luminescent β1 integrin activation sensor (β1IAS) by introducing a split luciferase into an activation reporting site between the βI and the hybrid domains. As a recombinant protein in both solution and living cells, β1IAS accurately reports β1 integrin activation in response to (bio)chemical and physical stimuli. A short interfering RNA (siRNA) high-throughput screening on live β1IAS knockin endothelial cells unveils hitherto unknown regulators of β1 integrin activation, such as β1 integrin inhibitors E3 ligase Pja2 and vascular endothelial growth factor B (VEGF-B). This split-luciferase-based strategy provides an in situ label-free measurement of integrin activation and may be applicable to other β integrins and receptors.
Collapse
Affiliation(s)
- Giulia Villari
- Department of Oncology, University of Torino School of Medicine, Candiolo, TO, Italy; Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, TO, Italy
| | - Noemi Gioelli
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, TO, Italy
| | - Marta Gino
- Department of Oncology, University of Torino School of Medicine, Candiolo, TO, Italy; Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, TO, Italy
| | - Heng Zhang
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Kelly Hodge
- Cancer Research UK Scotland Institute, Glasgow, UK
| | | | - Sara Zanivan
- Cancer Research UK Scotland Institute, Glasgow, UK; School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jieqing Zhu
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Guido Serini
- Department of Oncology, University of Torino School of Medicine, Candiolo, TO, Italy; Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, TO, Italy.
| |
Collapse
|
4
|
Deng Y, Leng L, Wang C, Yang Q, Hu Y. Analyzing the molecular mechanism of Scutellaria Radix in the treatment of sepsis using RNA sequencing. BMC Infect Dis 2024; 24:695. [PMID: 38997656 PMCID: PMC11241924 DOI: 10.1186/s12879-024-09589-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Sepsis is a life-threatening organ dysfunction, which seriously threatens human health. The clinical and experimental results have confirmed that Traditional Chinese medicine (TCM), such as Scutellariae Radix, has anti-inflammatory effects. This provides a new idea for the treatment of sepsis. This study systematically analyzed the mechanism of Scutellariae Radix treatment in sepsis based on network pharmacology, RNA sequencing and molecular docking. METHODS Gene expression analysis was performed using Bulk RNA sequencing on sepsis patients and healthy volunteers. After quality control of the results, the differentially expressed genes (DEGs) were analyzed. The active ingredients and targets of Scutellariae Radix were identified using The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Gene Ontology (GO) and Protein-Protein Interaction (PPI) analysis were performed for disease-drug intersection targets. With the help of GEO database, Survival analysis and Meta-analysis was performed on the cross-targets to evaluate the prognostic value and screen the core targets. Subsequently, single-cell RNA sequencing was used to determine where the core targets are located within the cell. Finally, in this study, molecular docking experiments were performed to further clarify the interrelationship between the active components of Scutellariae Radix and the corresponding targets. RESULTS There were 72 active ingredients of Scutellariae Radix, and 50 common targets of drug and disease. GO and PPI analysis showed that the intersection targets were mainly involved in response to chemical stress, response to oxygen levels, response to drug, regulation of immune system process. Survival analysis showed that PRKCD, EGLN1 and CFLAR were positively correlated with sepsis prognosis. Meta-analysis found that the three genes were highly expressed in sepsis survivor, while lowly in non-survivor. PRKCD was mostly found in Macrophages, while EGLN1 and CFLAR were widely expressed in immune cells. The active ingredient Apigenin regulates CFLAR expression, Baicalein regulates EGLN1 expression, and Wogonin regulates PRKCD expression. Molecular docking studies confrmed that the three active components of astragalus have good binding activities with their corresponding targets. CONCLUSIONS Apigenin, Baicalein and Wogonin, important active components of Scutellaria Radix, produce anti-sepsis effects by regulating the expression of their targets CFLAR, EGLN1 and PRKCD.
Collapse
Affiliation(s)
- Yaxing Deng
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, China
| | - Linghan Leng
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, China
| | - Chenglin Wang
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, China
| | - Qingqiang Yang
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, China.
| | - Yingchun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan, China.
| |
Collapse
|
5
|
Liu L, Lu L, Qiu M, Han N, Dai S, Shi S, He S, Zhang J, Yan Q, Chen S. Comprehensive modular analyses of scar subtypes illuminate underlying molecular mechanisms and potential therapeutic targets. Int Wound J 2024; 21:e14384. [PMID: 37697692 PMCID: PMC10784627 DOI: 10.1111/iwj.14384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
Pathological scarring resulting from traumas and wounds, such as hypertrophic scars and keloids, pose significant aesthetic, functional and psychological challenges. This study provides a comprehensive transcriptomic analysis of these conditions, aiming to illuminate underlying molecular mechanisms and potential therapeutic targets. We employed a co-expression and module analysis tool to identify significant gene clusters associated with distinct pathophysiological processes and mechanisms, notably lipid metabolism, sebum production, cellular energy metabolism and skin barrier function. This examination yielded critical insights into several skin conditions including folliculitis, skin fibrosis, fibrosarcoma and congenital ichthyosis. Particular attention was paid to Module Cluster (MCluster) 3, encompassing genes like BLK, TRPV1 and GABRD, all displaying high expression and potential implications in immune modulation. Preliminary immunohistochemistry validation supported these findings, showing elevated expression of these genes in non-fibrotic samples rich in immune activity. The complex interplay of different cell types in scar formation, such as fibroblasts, myofibroblasts, keratinocytes and mast cells, was also explored, revealing promising therapeutic strategies. This study underscores the promise of targeted gene therapy for pathological scars, paving the way for more personalised therapeutic approaches. The results necessitate further research to fully ascertain the roles of these identified genes and pathways in skin disease pathogenesis and potential therapeutics. Nonetheless, our work forms a strong foundation for a new era of personalised medicine for patients suffering from pathological scarring.
Collapse
Affiliation(s)
- Liang Liu
- College of Life SciencesZhejiang UniversityHangzhouChina
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhouChina
| | - Lantian Lu
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaAustralia
| | - Min Qiu
- Hangzhou Neoantigen Therapeutics Co., LtdHangzhouChina
| | - Ning Han
- Hangzhou AI‐Nano Therapeutics Co., Ltd.HangzhouChina
| | - Shijie Dai
- School of Life SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Shuiping Shi
- Hangzhou Neoantigen Therapeutics Co., LtdHangzhouChina
| | - Shanshan He
- College of Life SciencesZhejiang UniversityHangzhouChina
| | - Jing Zhang
- College of Life SciencesZhejiang UniversityHangzhouChina
| | - Qingfeng Yan
- College of Life SciencesZhejiang UniversityHangzhouChina
| | - Shuqing Chen
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhouChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
6
|
Shen J, Wang Q, Mao Y, Gao W, Duan S. Targeting the p53 signaling pathway in cancers: Molecular mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e288. [PMID: 37256211 PMCID: PMC10225743 DOI: 10.1002/mco2.288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Tumor suppressor p53 can transcriptionally activate downstream genes in response to stress, and then regulate the cell cycle, DNA repair, metabolism, angiogenesis, apoptosis, and other biological responses. p53 has seven functional domains and 12 splice isoforms, and different domains and subtypes play different roles. The activation and inactivation of p53 are finely regulated and are associated with phosphorylation/acetylation modification and ubiquitination modification, respectively. Abnormal activation of p53 is closely related to the occurrence and development of cancer. While targeted therapy of the p53 signaling pathway is still in its early stages and only a few drugs or treatments have entered clinical trials, the development of new drugs and ongoing clinical trials are expected to lead to the widespread use of p53 signaling-targeted therapy in cancer treatment in the future. TRIAP1 is a novel p53 downstream inhibitor of apoptosis. TRIAP1 is the homolog of yeast mitochondrial intermembrane protein MDM35, which can play a tumor-promoting role by blocking the mitochondria-dependent apoptosis pathway. This work provides a systematic overview of recent basic research and clinical progress in the p53 signaling pathway and proposes that TRIAP1 is an important therapeutic target downstream of p53 signaling.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Wei Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| |
Collapse
|