1
|
Pinos D, Millán-Leiva A, Ferré J, Hernández-Martínez P. New Paralogs of the Heliothis virescens ABCC2 Transporter as Potential Receptors for Bt Cry1A Proteins. Biomolecules 2024; 14:397. [PMID: 38672415 PMCID: PMC11047971 DOI: 10.3390/biom14040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The ATP-binding cassette (ABC) transporters are a superfamily of membrane proteins. These active transporters are involved in the export of different substances such as xenobiotics. ABC transporters from subfamily C (ABCC) have also been described as functional receptors for different insecticidal proteins from Bacillus thuringiensis (Bt) in several lepidopteran species. Numerous studies have characterized the relationship between the ABCC2 transporter and Bt Cry1 proteins. Although other ABCC transporters sharing structural and functional similarities have been described, little is known of their role in the mode of action of Bt proteins. For Heliothis virescens, only the ABCC2 transporter and its interaction with Cry1A proteins have been studied to date. Here, we have searched for paralogs to the ABCC2 gene in H. virescens, and identified two new ABC transporter genes: HvABCC3 and HvABCC4. Furthermore, we have characterized their gene expression in the midgut and their protein topology, and compared them with that of ABCC2. Finally, we discuss their possible interaction with Bt proteins by performing protein docking analysis.
Collapse
Affiliation(s)
- Daniel Pinos
- Departamento de Genética, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain; (D.P.); (A.M.-L.); (J.F.)
| | - Anabel Millán-Leiva
- Departamento de Genética, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain; (D.P.); (A.M.-L.); (J.F.)
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113 Valencia, Spain
| | - Juan Ferré
- Departamento de Genética, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain; (D.P.); (A.M.-L.); (J.F.)
| | - Patricia Hernández-Martínez
- Departamento de Genética, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain; (D.P.); (A.M.-L.); (J.F.)
| |
Collapse
|
2
|
Wei JZ, Lum A, Schepers E, Liu L, Weston RT, McGinness BS, Heckert MJ, Xie W, Kassa A, Bruck D, Rauscher G, Kapka-Kitzman D, Mathis JP, Zhao JZ, Sethi A, Barry J, Lu AL, Brugliera F, Lee EL, van derWeerden NL, Eswar N, Maher MJ, Anderson MA. Novel insecticidal proteins from ferns resemble insecticidal proteins from Bacillus thuringiensis. Proc Natl Acad Sci U S A 2023; 120:e2306177120. [PMID: 37871210 PMCID: PMC10622923 DOI: 10.1073/pnas.2306177120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/18/2023] [Indexed: 10/25/2023] Open
Abstract
Lepidopterans affect crop production worldwide. The use of transgenes encoding insecticidal proteins from Bacillus thuringiensis (Bt) in crop plants is a well-established technology that enhances protection against lepidopteran larvae. Concern about widespread field-evolved resistance to Bt proteins has highlighted an urgent need for new insecticidal proteins with different modes or sites of action. We discovered a new family of insecticidal proteins from ferns. The prototype protein from Pteris species (Order Polypodiales) and variants from two other orders of ferns, Schizaeales and Ophioglossales, were effective against important lepidopteran pests of maize and soybean in diet-based assays. Transgenic maize and soybean plants producing these proteins were more resistant to insect damage than controls. We report here the crystal structure of a variant of the prototype protein to 1.98 Å resolution. Remarkably, despite being derived from plants, the structure resembles the 3-domain Cry proteins from Bt but has only two out of three of their characteristic domains, lacking the C-terminal domain which is typically required for their activities. Two of the fern proteins were effective against strains of fall armyworm that were resistant to Bt 3-domain Cry proteins Cry1Fa or Cry2A.127. This therefore represents a novel family of insecticidal proteins that have the potential to provide future tools for pest control.
Collapse
Affiliation(s)
| | - Amy Lum
- Corteva Agriscience, Johnston, IA50131
| | | | - Lu Liu
- Corteva Agriscience, Johnston, IA50131
| | - Ross T. Weston
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
- Hexima Ltd., La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Bruce S. McGinness
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
- Hexima Ltd., La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | | | | | | | | | | | | | | | | | | | | | | | - Filippa Brugliera
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
- Hexima Ltd., La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Eunice L. Lee
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
- Hexima Ltd., La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Nicole L. van derWeerden
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
- Hexima Ltd., La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | | | - Megan J. Maher
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
- School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC3052, Australia
| | - Marilyn A. Anderson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
- Hexima Ltd., La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| |
Collapse
|
3
|
Pacheco S, Gómez I, Soberón M, Bravo A. A major conformational change of N-terminal helices of Bacillus thuringiensis Cry1Ab insecticidal protein is necessary for membrane insertion and toxicity. FEBS J 2022; 290:2692-2705. [PMID: 36560841 DOI: 10.1111/febs.16710] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/01/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Pore forming toxins rely on oligomerization for membrane insertion to kill their targets. Bacillus thuringiensis produces insecticidal Cry-proteins composed of three domains that form pores that kill the insect larvae. Domain I is involved in oligomerization and membrane insertion, whereas Domains II and III participate in receptor binding and specificity. However, the structural changes involved in membrane insertion of these proteins remain unsolved. The most widely accepted model for membrane insertion, the 'umbrella model', proposed that the α-4/α-5 hairpin of Domain I swings away and is inserted into the membrane. To determine the topology of Cry1Ab in the membrane, disulfide bonds linking α-helices of Domain I were introduced to restrict their movement. Disulfide bonds between helices α-2/α-3 or α-3/α-4 lost oligomerization and toxicity, indicating that movement of these helices is needed for insecticidal activity. By contrast, disulfide bonds linking helices α-5/α-6 did not affect toxicity, which contradicts the 'umbrella model'. Additionally, Föster resonance energy transfer closest approach analyses measuring distances of different points in the toxin to the membrane plane and collisional quenching assays analysing the protection of specific fluorescent-labeled residues to the soluble potassium iodide quencher in the membrane inserted state were performed. Overall, the data show that Domain I from Cry1Ab may undergo a major conformational change during its membrane insertion, where the N-terminal region (helices α-1 to α-4) participates in oligomerization and toxicity, probably forming an extended helix. These data break a paradigm, showing a new 'folding white-cane model', which better explains the structural changes of Cry toxins during insertion into the membrane.
Collapse
Affiliation(s)
- Sabino Pacheco
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Isabel Gómez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| |
Collapse
|
5
|
Groulx N, McGuire H, Laprade R, Schwartz JL, Blunck R. Single molecule fluorescence study of the Bacillus thuringiensis toxin Cry1Aa reveals tetramerization. J Biol Chem 2011; 286:42274-42282. [PMID: 22006922 DOI: 10.1074/jbc.m111.296103] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pore-forming toxins constitute a class of potent virulence factors that attack their host membrane in a two- or three-step mechanism. After binding to the membrane, often aided by specific receptors, they form pores in the membrane. Pore formation either unfolds a cytolytic activity in itself or provides a pathway to introduce enzymes into the cells that act upon intracellular proteins. The elucidation of the pore-forming mechanism of many of these toxins represents a major research challenge. As the toxins often refold after entering the membrane, their structure in the membrane is unknown, and key questions such as the stoichiometry of individual pores and their mechanism of oligomerization remain unanswered. In this study, we used single subunit counting based on fluorescence spectroscopy to explore the oligomerization process of the Cry1Aa toxin of Bacillus thuringiensis. Purified Cry1Aa toxin molecules labeled at different positions in the pore-forming domain were inserted into supported lipid bilayers, and the photobleaching steps of single fluorophores in the fluorescence time traces were counted to determine the number of subunits of each oligomer. We found that toxin oligomerization is a highly dynamic process that occurs in the membrane and that tetramers represent the final form of the toxins in a lipid bilayer environment.
Collapse
Affiliation(s)
- Nicolas Groulx
- Groupe d'Étude des Protéines Membranaires (GÉPROM), Université de Montréal, Montréal, Québec H3C 3J7, Canada; Department of Physics, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Hugo McGuire
- Groupe d'Étude des Protéines Membranaires (GÉPROM), Université de Montréal, Montréal, Québec H3C 3J7, Canada; Department of Physics, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Raynald Laprade
- Groupe d'Étude des Protéines Membranaires (GÉPROM), Université de Montréal, Montréal, Québec H3C 3J7, Canada; Department of Physics, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Jean-Louis Schwartz
- Groupe d'Étude des Protéines Membranaires (GÉPROM), Université de Montréal, Montréal, Québec H3C 3J7, Canada; Centre SÈVE, Université de Montréal, Montréal, Québec H3C 3J7, Canada; Department of Physiology, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Rikard Blunck
- Groupe d'Étude des Protéines Membranaires (GÉPROM), Université de Montréal, Montréal, Québec H3C 3J7, Canada; Department of Physics, Université de Montréal, Montréal, Québec H3C 3J7, Canada; Department of Physiology, Université de Montréal, Montréal, Québec H3C 3J7, Canada.
| |
Collapse
|
6
|
Zavala LE, Pardo-López L, Cantón PE, Gómez I, Soberón M, Bravo A. Domains II and III of Bacillus thuringiensis Cry1Ab toxin remain exposed to the solvent after insertion of part of domain I into the membrane. J Biol Chem 2011; 286:19109-17. [PMID: 21464133 DOI: 10.1074/jbc.m110.202994] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus thuringiensis produces insecticidal proteins named Cry toxins, that are used commercially for the control of economical important insect pests. These are pore-forming toxins that interact with different receptors in the insect gut, forming pores in the apical membrane causing cell burst and insect death. Elucidation of the structure of the membrane-inserted toxin is important to fully understand its mechanism of action. One hypothesis proposed that the hairpin of α-helices 4-5 of domain I inserts into the phospholipid bilayer, whereas the rest of helices of domain I are spread on the membrane surface in an umbrella-like conformation. However, a second hypothesis proposed that the three domains of the Cry toxin insert into the bilayer without major conformational changes. In this work we constructed single Cys Cry1Ab mutants that remain active against Manduca sexta larvae and labeled them with different fluorescent probes that have different responses to solvent polarity. Different soluble quenchers as well as a membrane-bound quencher were used to compare the properties of the soluble and brush border membrane-inserted forms of Cry1Ab toxin. The fluorescence and quenching analysis presented here, revealed that domains II and III of the toxin remain in the surface of the membrane and only a discrete region of domain I is inserted into the lipid bilayer, supporting the umbrella model of toxin insertion.
Collapse
Affiliation(s)
- Luis Enrique Zavala
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62250, Morelos, Mexico
| | | | | | | | | | | |
Collapse
|
8
|
Variant Cry1Ia toxins generated by DNA shuffling are active against sugarcane giant borer. J Biotechnol 2009; 145:215-21. [PMID: 19931577 DOI: 10.1016/j.jbiotec.2009.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 11/03/2009] [Accepted: 11/12/2009] [Indexed: 11/22/2022]
Abstract
Sugarcane giant borer (Telchin licus licus) is a serious sugarcane pest in Americas whose endophytic lifestyle hampers effective chemical and biological controls. Therefore, development of alternative control methods is extremely important. Envisaging development of transgenic plants resistant to this pest, we investigated the effect of the Bacillus thuringiensis Cry protein Cry1Ia12synth (truncated protein lacking C-terminus with plant codon usage) and variants against T. l. licus. cry1Ia12synth gene was used to generate mutated variants, which were screened for toxicity toward T. l. licus. For that purpose, an innovative technique combining cry gene shuffling with phage-display was used to build a combinatorial library comprising 1.97x10(5) Cry1Ia12synth variants. Screening of this library for variants binding to T. l. licus Brush Border Midgut Vesicles led to the identification of hundreds of clones, out of which 30 were randomly chosen for toxicity testing. Bioassays revealed four variants exhibiting activity against T. l. licus as compared to the non-toxic Cry1Ia12synth. Eight single substitutions sites were found in these active variants. Based on theoretical molecular modelling, the probable implications of these mutations are discussed. Therefore, we have four genes encoding Cry1Ia12synth variants active against T. l. licus promising for future development of resistant transgenic sugarcane lines.
Collapse
|