1
|
Ramírez-Alonso JI, Sampedro JG. Effect of Cations on ATP Binding to the N-domain of Na +, K +-ATPase. J Fluoresc 2024:10.1007/s10895-024-03922-3. [PMID: 39298054 DOI: 10.1007/s10895-024-03922-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024]
Abstract
The nucleotide-binding domain (N-domain) of the Na+, K+-ATPase (NKA) is physicochemically characterized by a high content of Glu and Asp residues, resulting in a low isoelectric point (pI = 5.0). Acidic proteins are known to interact with cations. The analysis in silico revealed potential cation interaction sites in the NKA N-domain structure. The interaction with cations was tested in vitro by using a recombinant NKA N-domain. The N-domain contains two Trp residues at the protein surface, as determined by acrylamide-mediated fluorescence quenching, that are useful for structural studies through fluorescence changes. Intrinsic fluorescence of the N-domain was decreased by the presence of cations (Na+, K+, Ca2+) indicating an effect on the protein structure. ATP binding also decreased the N-domain intrinsic fluorescence, which allowed nucleotide affinity determination. In the presence of cations, the N-domain affinity for ATP was increased. Molecular docking of fluorescein isothiocyanate (FITC) with the N-domain showed two binding modes with the isothiocyanate group located 5-6 Å close to Lys485 and Lys506 in the nucleotide-binding site. The presence of ATP prevented the FITC covalent labeling of the N-domain demonstrating the competitive behavior for the binding site. It is proposed that cations interact with the N-domain structure and thereby modulate nucleotide (ATP) affinity and possibly affecting NKA catalysis.
Collapse
Affiliation(s)
- Jocelin I Ramírez-Alonso
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, Privadas del Pedregal, San Luis Potosí, SLP, C.P. 78295, México
| | - José G Sampedro
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, Privadas del Pedregal, San Luis Potosí, SLP, C.P. 78295, México.
| |
Collapse
|
2
|
Leone FA, Fabri LM, Costa MIC, Moraes CM, Garçon DP, McNamara JC. Differential effects of cobalt ions in vitro on gill (Na +, K +)-ATPase kinetics in the Blue crab Callinectes danae (Decapoda, Brachyura). Comp Biochem Physiol C Toxicol Pharmacol 2023; 274:109757. [PMID: 37741603 DOI: 10.1016/j.cbpc.2023.109757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
We used the gill (Na+, K+)-ATPase as a molecular marker to provide a comprehensive kinetic analysis of the effects of Co2+in vitro on the modulation of K+-phosphatase activity in the Blue crab Callinectes danae. Co2+ can stimulate or inhibit K+-phosphatase activity. With Mg2+, K+-phosphatase activity is almost completely inhibited by Co2+. Co2+ stimulates K+-phosphatase activity similarly to Mg2+ although with a ≈4.5-fold greater affinity. At saturating Mg2+ concentrations, Mg2+ displaces bound Co2+ from the Mg2+-binding site in a concentration dependent manner, but Co2+ cannot displace Mg2+ from its binding site even at millimolar concentrations. Saturation by Co2+ of the Mg2+ binding site does not affect pNPP recognition by the enzyme. Substitution of Mg2+ by Co2+ slightly increases enzyme affinity for K+ and NH4+. Independently of Mg2+, inhibition by ouabain or sodium ions is unaffected by Co2+. Investigation of gill (Na+, K+)-ATPase K+-phosphatase activity provides a reliable tool to examine the kinetic effects of Co2+ with and without Na+ and ATP. Given that the toxic effects of Co2+ at the molecular level are poorly understood, these findings advance our knowledge of the mechanism of action of Co2+ on the crustacean gill (Na+, K+)-ATPase.
Collapse
Affiliation(s)
- Francisco A Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Leonardo M Fabri
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Brazil
| | - Maria I C Costa
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Cintya M Moraes
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Brazil
| | | | - John C McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil; Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, Brazil. https://twitter.com/@maracoani
| |
Collapse
|
3
|
Chen S, Xiong W, Zhao X, Luo W, Yan X, Lu Y, Chen C, Ling X. Study on the mechanism of efficient extracellular expression of toxic streptomyces phospholipase D in Brevibacillus choshinensis under Mg2+ stress. Microb Cell Fact 2022; 21:41. [PMID: 35305639 PMCID: PMC8933894 DOI: 10.1186/s12934-022-01770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/05/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Phospholipase D (PLD) has significant advantages in the food and medicine industries due to its unique transphosphatidylation. However, the high heterologous expression of PLD is limited by its cytotoxicity. The present study sought to develop an efficient and extracellular expression system of PLD in the non-pathogenic Brevibacillus choshinensis (B. choshinensis).
Results
The extracellular PLD was effectively expressed by the strong promoter (P2) under Mg2+ stress, with the highest activity of 10 U/mL. The inductively coupled plasma–mass spectrometry (ICP-MS) results elucidated that the over-expression of PLD by P2 promoter without Mg2+ stress induced the ionic homeostasis perturbation caused by the highly enhanced Ca2+ influx, leading to cell injury or death. Under Mg2+ stress, Ca2+ influx was significantly inhibited, and the strengths of P2 promoter and HWP gene expression were weakened. The study results revealed that the mechanism of Mg2+ induced cell growth protection and PLD expression might be related to the lowered strength of PLD expression by P2 promoter repression to meet with the secretion efficiency of B. choshinensis, and the redistribution of intracellular ions accompanied by decreased Ca2+ influx.
Conclusions
The PLD production was highly improved under Mg2+ stress. By ICP-MS and qPCR analysis combined with other results, the mechanism of the efficient extracellular PLD expression under Mg2+ stress was demonstrated. The relatively low-speed PLD expression during cell growth alleviated cell growth inhibition and profoundly improved PLD production. These results provided a potential approach for the large-scale production of extracellular PLD and novel insights into PLD function.
Collapse
|
4
|
Bejček J, Spiwok V, Kmoníčková E, Rimpelová S. Na +/K +-ATPase Revisited: On Its Mechanism of Action, Role in Cancer, and Activity Modulation. Molecules 2021; 26:molecules26071905. [PMID: 33800655 PMCID: PMC8061769 DOI: 10.3390/molecules26071905] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023] Open
Abstract
Maintenance of Na+ and K+ gradients across the cell plasma membrane is an essential process for mammalian cell survival. An enzyme responsible for this process, sodium-potassium ATPase (NKA), has been currently extensively studied as a potential anticancer target, especially in lung cancer and glioblastoma. To date, many NKA inhibitors, mainly of natural origin from the family of cardiac steroids (CSs), have been reported and extensively studied. Interestingly, upon CS binding to NKA at nontoxic doses, the role of NKA as a receptor is activated and intracellular signaling is triggered, upon which cancer cell death occurs, which lies in the expression of different NKA isoforms than in healthy cells. Two major CSs, digoxin and digitoxin, originally used for the treatment of cardiac arrhythmias, are also being tested for another indication—cancer. Such drug repositioning has a big advantage in smoother approval processes. Besides this, novel CS derivatives with improved performance are being developed and evaluated in combination therapy. This article deals with the NKA structure, mechanism of action, activity modulation, and its most important inhibitors, some of which could serve not only as a powerful tool to combat cancer, but also help to decipher the so-far poorly understood NKA regulation.
Collapse
Affiliation(s)
- Jiří Bejček
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic; (J.B.); (V.S.)
| | - Vojtěch Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic; (J.B.); (V.S.)
| | - Eva Kmoníčková
- Department of Pharmacology, Second Faculty of Medicine, Charles University, Plzeňská 311, 150 00 Prague, Czech Republic;
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic; (J.B.); (V.S.)
- Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
- Correspondence: ; Tel.: +420-220-444-360
| |
Collapse
|
5
|
Abstract
Hypermagnesemia occurs in elderly people or patients with renal insufficiency after
excessive ingestion of magnesium-containing laxatives. In addition to typical
electrocardiogram (ECG) findings caused by conduction defects, changes in the ST segments
and T waves are also observed in patients with severe hypermagnesemia. This suggested the
involvement of similar pathophysiology to acute myocardial infarction, as we previously
demonstrated using burn-induced subepicardial injury model in frog hearts. In the present
study, by exposing the bullfrog heart to high-magnesium solution, we reproduced prominent
ST segment changes in ECG as actually observed in patients with severe hypermagnesemia. In
addition to the great increase in the T waves, the ECG showed a marked elevation of the ST
segments and the cardiac action potential demonstrated a marked shift of the resting
membrane potential to the depolarized side. High-magnesium exposure did not affect the
abundance of Na+/K+-ATPase proteins. However, the pharmacological
stimulation of Na+/K+-ATPase activity by insulin quickly retrieved
the elevated ST segments in ECG. From these results, the functional blockade of
Na+/K+-ATPase activity by magnesium ions was thought to be
responsible for generating the potassium concentration gradient and the subsequent ST
segment changes.
Collapse
Affiliation(s)
- Itsuro Kazama
- School of Nursing, Miyagi University, Gakuen, Taiwa-cho, Kurokawa-gun, Miyagi 981-3298, Japan
| |
Collapse
|
6
|
Franken GAC, Adella A, Bindels RJM, de Baaij JHF. Mechanisms coupling sodium and magnesium reabsorption in the distal convoluted tubule of the kidney. Acta Physiol (Oxf) 2021; 231:e13528. [PMID: 32603001 PMCID: PMC7816272 DOI: 10.1111/apha.13528] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/29/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Hypomagnesaemia is a common feature of renal Na+ wasting disorders such as Gitelman and EAST/SeSAME syndrome. These genetic defects specifically affect Na+ reabsorption in the distal convoluted tubule, where Mg2+ reabsorption is tightly regulated. Apical uptake via TRPM6 Mg2+ channels and basolateral Mg2+ extrusion via a putative Na+ -Mg2+ exchanger determines Mg2+ reabsorption in the distal convoluted tubule. However, the mechanisms that explain the high incidence of hypomagnesaemia in patients with Na+ wasting disorders of the distal convoluted tubule are largely unknown. In this review, we describe three potential mechanisms by which Mg2+ reabsorption in the distal convoluted tubule is linked to Na+ reabsorption. First, decreased activity of the thiazide-sensitive Na+ /Cl- cotransporter (NCC) results in shortening of the segment, reducing the Mg2+ reabsorption capacity. Second, the activity of TRPM6 and NCC are determined by common regulatory pathways. Secondary effects of NCC dysregulation such as hormonal imbalance, therefore, might disturb TRPM6 expression. Third, the basolateral membrane potential, maintained by the K+ permeability and Na+ -K+ -ATPase activity, provides the driving force for Na+ and Mg2+ extrusion. Depolarisation of the basolateral membrane potential in Na+ wasting disorders of the distal convoluted tubule may therefore lead to reduced activity of the putative Na+ -Mg2+ exchanger SLC41A1. Elucidating the interconnections between Mg2+ and Na+ transport in the distal convoluted tubule is hampered by the currently available models. Our analysis indicates that the coupling of Na+ and Mg2+ reabsorption may be multifactorial and that advanced experimental models are required to study the molecular mechanisms.
Collapse
Affiliation(s)
- Gijs A. C. Franken
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| | - Anastasia Adella
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| | - René J. M. Bindels
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| | - Jeroen H. F. de Baaij
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenthe Netherlands
| |
Collapse
|
7
|
Magnesium in Obesity, Metabolic Syndrome, and Type 2 Diabetes. Nutrients 2021; 13:nu13020320. [PMID: 33499378 PMCID: PMC7912442 DOI: 10.3390/nu13020320] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/27/2022] Open
Abstract
Magnesium (Mg2+) deficiency is probably the most underestimated electrolyte imbalance in Western countries. It is frequent in obese patients, subjects with type-2 diabetes and metabolic syndrome, both in adulthood and in childhood. This narrative review aims to offer insights into the pathophysiological mechanisms linking Mg2+ deficiency with obesity and the risk of developing metabolic syndrome and type 2 diabetes. Literature highlights critical issues about the treatment of Mg2+ deficiency, such as the lack of a clear definition of Mg2+ nutritional status, the use of different Mg2+ salts and dosage and the different duration of the Mg2+ supplementation. Despite the lack of agreement, an appropriate dietary pattern, including the right intake of Mg2+, improves metabolic syndrome by reducing blood pressure, hyperglycemia, and hypertriglyceridemia. This occurs through the modulation of gene expression and proteomic profile as well as through a positive influence on the composition of the intestinal microbiota and the metabolism of vitamins B1 and D.
Collapse
|
8
|
Xiong W, Luo W, Zhang X, Pan X, Zeng X, Yao C, Jing K, Shen L, Chen C, Ling X, Lu Y. High expression of toxic
Streptomyces
phospholipase D in
Escherichia coli
under salt stress and its mechanism. AIChE J 2019. [DOI: 10.1002/aic.16856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Weide Xiong
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical EngineeringXiamen University Xiamen People's Republic of China
| | - Weiyi Luo
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical EngineeringXiamen University Xiamen People's Republic of China
| | - Xueliang Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical EngineeringXiamen University Xiamen People's Republic of China
| | - Xueshan Pan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical EngineeringXiamen University Xiamen People's Republic of China
| | - Xianhai Zeng
- College of EnergyXiamen University Xiamen People's Republic of China
| | - Chuanyi Yao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical EngineeringXiamen University Xiamen People's Republic of China
| | - Keju Jing
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical EngineeringXiamen University Xiamen People's Republic of China
| | - Liang Shen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical EngineeringXiamen University Xiamen People's Republic of China
| | - Cuixue Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical EngineeringXiamen University Xiamen People's Republic of China
| | - Xueping Ling
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical EngineeringXiamen University Xiamen People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen CityXiamen University Xiamen People's Republic of China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical EngineeringXiamen University Xiamen People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen CityXiamen University Xiamen People's Republic of China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological ResourcesXiamen University Xiamen People's Republic of China
| |
Collapse
|
9
|
Lyoprotective effect of soluble extracellular polymeric substances from Oenococcus oeni during its freeze-drying process. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Šeflová J, Čechová P, Štenclová T, Šebela M, Kubala M. Identification of cisplatin-binding sites on the large cytoplasmic loop of the Na +/K +-ATPase. J Enzyme Inhib Med Chem 2018; 33:701-706. [PMID: 29577756 PMCID: PMC6009960 DOI: 10.1080/14756366.2018.1445735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cisplatin is the most widely used chemotherapeutic drug for the treatment of various types of cancer; however, its administration brings also numerous side effects. It was demonstrated that cisplatin can inhibit the Na+/K+-ATPase (NKA), which can explain a large part of the adverse effects. In this study, we have identified five cysteinyl residues (C452, C456, C457, C577, and C656) as the cisplatin binding sites on the cytoplasmic loop connecting transmembrane helices 4 and 5 (C45), using site-directed mutagenesis and mass spectrometry experiments. The identified residues are known to be susceptible to glutathionylation indicating their involvement in a common regulatory mechanism.
Collapse
Affiliation(s)
- Jaroslava Šeflová
- a Department of Biophysics, Faculty of Science , Centre of Region Haná for Biotechnological and Agricultural Research, Palacký University , Olomouc , Czech Republic
| | - Petra Čechová
- a Department of Biophysics, Faculty of Science , Centre of Region Haná for Biotechnological and Agricultural Research, Palacký University , Olomouc , Czech Republic
| | - Tereza Štenclová
- a Department of Biophysics, Faculty of Science , Centre of Region Haná for Biotechnological and Agricultural Research, Palacký University , Olomouc , Czech Republic
| | - Marek Šebela
- b Department of Protein Biochemistry and Proteomics, Faculty of Science , Centre of Region Haná for Biotechnological and Agricultural Research, Palacký University , Olomouc , Czech Republic
| | - Martin Kubala
- a Department of Biophysics, Faculty of Science , Centre of Region Haná for Biotechnological and Agricultural Research, Palacký University , Olomouc , Czech Republic
| |
Collapse
|
11
|
Tangvoraphonkchai K, Davenport A. Magnesium and Cardiovascular Disease. Adv Chronic Kidney Dis 2018; 25:251-260. [PMID: 29793664 DOI: 10.1053/j.ackd.2018.02.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
Abstract
Magnesium is the most abundant intracellular divalent cation and essential for maintaining normal cellular physiology and metabolism, acting as a cofactor of numerous enzymes, regulating ion channels and energy generation. In the heart, magnesium plays a key role in modulating neuronal excitation, intracardiac conduction, and myocardial contraction by regulating a number of ion transporters, including potassium and calcium channels. Magnesium also has a role in regulating vascular tone, atherogenesis and thrombosis, vascular calcification, and proliferation and migration of endothelial and vascular smooth muscle cells. As such, magnesium potentially has a major influence on the pathogenesis of cardiovascular disease. As the kidney is a major regulator of magnesium homeostasis, kidney disorders can potentially lead to both magnesium depletion and overload, and as such increase the risk of cardiovascular disease. Observational data have shown an association between low serum magnesium concentrations or magnesium intake and increased atherosclerosis, coronary artery disease, arrhythmias, and heart failure. However, major trials of supplementation with magnesium have reported inconsistent benefits and also raised potential adverse effects of magnesium overload. As such, there is currently no firm recommendation for routine magnesium supplementation except when hypomagnesemia has been proven or suspected as a cause for cardiac arrhythmias.
Collapse
|
12
|
Samborska IA, Kalaji HM, Sieczko L, Goltsev V, Borucki W, Jajoo A. Structural and functional disorder in the photosynthetic apparatus of radish plants under magnesium deficiency. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:668-679. [PMID: 32290968 DOI: 10.1071/fp17241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/04/2018] [Indexed: 05/27/2023]
Abstract
Magnesium (Mg) is one of the significant macronutrients which is involved in the structural stabilisation of plant tissues and many enzymes such as PSII. The latter efficiency and performance were analysed, using chlorophyll (Chl) a fluorescence induction kinetics and microscopic images, to detect the changes in structure and function of photosynthetic apparatus of radish plants grown under Mg deficiency (Mgdef). Plants grown under Mgdef showed less PSII connectivity and fewer active primary electron acceptors (QA) oxidizing reaction centres than control plants. Confocal and electron microscopy analyses showed an increased amount of starch in chloroplasts, and 3,3'-diaminobenzidine (DAB)-uptake method revealed higher H2O2 accumulation under Mgdef. Prominent changes in the Chl a fluorescence parameters such as dissipated energy flux per reaction centre (DIo/RC), relative variable fluorescence at 150μs (Vl), and the sum of the partial driving forces for the events involved in OJIP fluorescence rise (DFabs) were observed under Mg deficiency. The latter also significantly affected some other parameters such as dissipated energy fluxes per cross-section (DIo/CSo), performance index for energy conservation from photons absorbed by PSII antenna until the reduction of PSI acceptors (PItotal), and relative variable fluorescence at 300μs (Vk). This work emphasises the use of chlorophyll fluorescence in combination with microscopic and statistical analyses to diagnose the effects of nutrients deficiency stress on plants at an early stage of its development as demonstrated for the example of Mgdef. Due to the short growth period and simple cultivation conditions of radish plant we recommend it as a new standard (model) plant to study nutrients deficiency and changes in plant photosynthetic efficiency under stress conditions.
Collapse
Affiliation(s)
- Izabela A Samborska
- Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences WULS-SGGW, 159 Nowoursynowska, 02-776 Warsaw, Poland
| | - Hazem M Kalaji
- Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences WULS-SGGW, 159 Nowoursynowska, 02-776 Warsaw, Poland
| | - Leszek Sieczko
- Department of Experimental Statistics and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences WULS-SGGW, 159 Nowoursynowska, 02-776 Warsaw, Poland
| | - Vasilij Goltsev
- Department of Biophysics and Radiobiology, Faculty of Biology, St. Kl. Ohridski University of Sofia, 8 Dragan Tzankov Blvd., Sofia, 1164, Bulgaria
| | - Wojciech Borucki
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences WULS-SGGW, 159 Nowoursynowska, 02-776 Warsaw, Poland
| | - Anjana Jajoo
- School of Life Science, Devi Ahilya University, Indore 452017, India
| |
Collapse
|
13
|
The Central Role of Biometals Maintains Oxidative Balance in the Context of Metabolic and Neurodegenerative Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8210734. [PMID: 28751933 PMCID: PMC5511683 DOI: 10.1155/2017/8210734] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/19/2017] [Accepted: 05/28/2017] [Indexed: 12/13/2022]
Abstract
Traditionally, oxidative stress as a biological aspect is defined as an imbalance between the free radical generation and antioxidant capacity of living systems. The intracellular imbalance of ions, disturbance in membrane dynamics, hypoxic conditions, and dysregulation of gene expression are all molecular pathogenic mechanisms closely associated with oxidative stress and underpin systemic changes in the body. These also include aspects such as chronic immune system activation, the impairment of cellular structure renewal, and alterations in the character of the endocrine secretion of diverse tissues. All of these mentioned features are crucial for the correct function of the various tissue types in the body. In the present review, we summarize current knowledge about the common roots of metabolic and neurodegenerative disorders induced by oxidative stress. We discuss these common roots with regard to the way that (1) the respective metal ions are involved in the maintenance of oxidative balance and (2) the metabolic and signaling disturbances of the most important biometals, such as Mg2+, Zn2+, Se2+, Fe2+, or Cu2+, can be considered as the central connection point between the pathogenesis of both types of disorders and oxidative stress.
Collapse
|
14
|
Abstract
Na+/K+-ATPase (NKA) is an essential cation pump protein responsible for the maintenance of the sodium and potassium gradients across the plasma membrane. Recently published high-resolution structures revealed amino acids forming the cation binding sites (CBS) in the transmembrane domain and variable position of the domains in the cytoplasmic headpiece. Here we report molecular dynamic simulations of the human NKA α1β1 isoform embedded into DOPC bilayer. We have analyzed the NKA conformational changes in the presence of Na+- or K+-cations in the CBS, for various combinations of the cytoplasmic ligands, and the two major enzyme conformations in the 100 ns runs (more than 2.5 μs of simulations in total). We identified two novel cytoplasmic pathways along the pairs of transmembrane helices TM3/TM7 or TM6/TM9 that allow hydration of the CBS or transport of cations from/to the bulk. These findings can provide a structural explanation for previous mutagenesis studies, where mutation of residues that are distal from the CBS resulted in the alteration of the enzyme affinity to the transported cations or change in the enzyme activity.
Collapse
Affiliation(s)
- Petra Čechová
- Department of Biophysics, Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacký University , Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Karel Berka
- Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University , 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Martin Kubala
- Department of Biophysics, Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacký University , Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
15
|
Kubala M, Čechová P, Geletičová J, Biler M, Štenclová T, Trouillas P, Biedermann D. Flavonolignans As a Novel Class of Sodium Pump Inhibitors. Front Physiol 2016; 7:115. [PMID: 27065883 PMCID: PMC4812144 DOI: 10.3389/fphys.2016.00115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/14/2016] [Indexed: 11/13/2022] Open
Abstract
We examined the inhibitory effects of three flavonolignans and their dehydro- derivatives, taxifolin and quercetin on the activity of the Na+/K+-ATPase (NKA). The flavonolignans silychristin, dehydrosilychristin and dehydrosilydianin inhibited NKA with IC50 of 110 ± 40 μM, 38 ± 8 μM, and 36 ± 14 μM, respectively. Using the methods of molecular modeling, we identified several possible binding sites for these species on NKA and proposed the possible mechanisms of inhibition. The binding to the extracellular- or cytoplasmic C-terminal sites can block the transport of cations through the plasma membrane, while the binding on the interface of cytoplasmic domains can inhibit the enzyme allosterically. Fluorescence spectroscopy experiments confirmed the interaction of these three species with the large cytoplasmic segment connecting transmembrane helices 4 and 5 (C45). The flavonolignans are distinct from the cardiac glycosides that are currently used in NKA treatment. Because their binding sites are different, the mechanism of inhibition is different as well as the range of active concentrations, one can expect that these new NKA inhibitors would exhibit also a different biomedical actions than cardiac glycosides.
Collapse
Affiliation(s)
- Martin Kubala
- Department of Biophysics, Faculty of Science, Centre of Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Czech Republic
| | - Petra Čechová
- Department of Biophysics, Faculty of Science, Centre of Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Czech Republic
| | - Jaroslava Geletičová
- Department of Biophysics, Faculty of Science, Centre of Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Czech Republic
| | - Michal Biler
- Department of Biophysics, Faculty of Science, Centre of Region Haná for Biotechnological and Agricultural Research, Palacký UniversityOlomouc, Czech Republic; INSERM UMR 850, School of Pharmacy, University LimogesLimoges, France
| | - Tereza Štenclová
- Department of Biophysics, Faculty of Science, Centre of Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Czech Republic
| | - Patrick Trouillas
- INSERM UMR 850, School of Pharmacy, University LimogesLimoges, France; Department of Physical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacký UniversityOlomouc, Czech Republic
| | - David Biedermann
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences Prague, Czech Republic
| |
Collapse
|
16
|
Petrushanko IY, Mitkevich VA, Anashkina AA, Klimanova EA, Dergousova EA, Lopina OD, Makarov AA. Critical role of γ-phosphate in structural transition of Na,K-ATPase upon ATP binding. Sci Rep 2014; 4:5165. [PMID: 24893715 PMCID: PMC4044624 DOI: 10.1038/srep05165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/14/2014] [Indexed: 11/09/2022] Open
Abstract
Active transport of sodium and potassium ions by Na,K-ATPase is accompanied by the enzyme conformational transition between E1 and E2 states. ATP and ADP bind to Na,K-ATPase in the E1 conformation with similar affinity but the properties of enzyme in complexes with these nucleotides are different. We have studied thermodynamics of Na,K-ATPase binding with adenine nucleotides at different temperatures using isothermal titration calorimetry. Our data indicate that β-phosphate is involved in complex formation by increasing the affinity of adenine nucleotides to Na,K-ATPase by an order of magnitude, while γ-phosphate does not affect it. ATP binding to Na,K-ATPase in contrast to ADP binding generates a structural transition in the enzyme, which is consistent with the movement of a significant portion of the surface area to a solvent-protected state. We propose that ATP binding leads to convergence of the nucleotide-binding and phosphorylation domains transferring the enzyme from the "E1-open" to "E1-closed" conformation ready for phosphorylation.
Collapse
Affiliation(s)
- Irina Yu Petrushanko
- 1] Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, 119991 Moscow, Russia [2]
| | - Vladimir A Mitkevich
- 1] Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, 119991 Moscow, Russia [2]
| | - Anastasia A Anashkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, 119991 Moscow, Russia
| | | | - Elena A Dergousova
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Olga D Lopina
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, 119991 Moscow, Russia
| |
Collapse
|
17
|
Kubala M, Geleticova J, Huliciak M, Zatloukalova M, Vacek J, Sebela M. Na(+)/K(+)-ATPase inhibition by cisplatin and consequences for cisplatin nephrotoxicity. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014; 158:194-200. [PMID: 24781046 DOI: 10.5507/bp.2014.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/02/2014] [Indexed: 01/30/2023] Open
Abstract
AIMS Cisplatin is a widely used chemotherapeutic. However, it is associated with numerous adverse effects. The aim of our study was examination of cisplatin interaction with Na(+)/K(+)-ATPase (NKA, the sodium pump). This enzyme is of crucial importance for all animal cells and particularly for the kidney, which is frequently damaged during chemotherapy. METHODS The entire NKA was isolated from porcine kidney. Its large cytoplasmic segment connecting transmembrane helices 4 and 5 (C45), was heterologously expressed in E.coli (wild-type or C367S mutant). The ATPase activity was evaluated according to the inorganic phosphate production and the interaction of isolated C45 with cisplatin was studied using chronopotentiometry and mass spectrometry. RESULTS Our experiments revealed that cisplatin can inhibit NKA. The finding that other platinum-based drugs with a low nephrotoxicity, carboplatin and oxaliplatin, did not inhibit NKA, suggested that NKA/cisplatin interaction is an important factor in cisplatin adverse effects. The inhibitory effect of cisplatin could be prevented by preincubation of the enzyme with reduced glutathione or DTT. Using chronopotentiometry and mass spectrometry, we found that cisplatin is bound to C45. However, our mutagenesis experiment did not confirm that the suggested Cys367 could be the binding site for cisplatin. CONCLUSION Unintended interactions of drugs present serious limitations to treatment success. Although a large number of membrane pumps have been identified as potential targets of cisplatin, vis-a-vis nephrotoxicity, NKA inhibition seems to be of crucial importance. Experiments with isolated large cytoplasmic segment C45 revealed that it is the main target of cisplatin on NKA and that the reaction with cysteine residues plays an important role in cisplatin/NKA interactions. However, further experiments must be performed to identify the interacting amino acid residues more precisely.
Collapse
Affiliation(s)
- Martin Kubala
- Department of Biophysics, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|
18
|
Vacek J, Zatloukalova M, Havlikova M, Ulrichova J, Kubala M. Changes in the intrinsic electrocatalytic nature of Na+/K+ ATPase reflect structural changes on ATP-binding: Electrochemical label-free approach. Electrochem commun 2013. [DOI: 10.1016/j.elecom.2012.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Havlíková M, Huličiak M, Bazgier V, Berka K, Kubala M. Fluorone dyes have binding sites on both cytoplasmic and extracellular domains of Na,K-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:568-76. [PMID: 23142565 DOI: 10.1016/j.bbamem.2012.10.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/24/2012] [Accepted: 10/31/2012] [Indexed: 11/30/2022]
Abstract
Combination of fluorescence techniques and molecular docking was used to monitor interaction of Na,K-ATPase and its large cytoplasmic loop connecting fourth and fifth transmembrane helices (C45) with fluorone dyes (i.e. eosin Y, 5(6)-carboxyeosin, rose bengal, fluorescein, and erythrosine B). Our data suggested that there are at least two binding sites for all used fluorone dyes, except of 5(6)-carboxyeosin. The first binding site is located on C45 loop, and it is sensitive to the presence of nucleotide. The other site is located on the extracellular part of the enzyme, and it is sensitive to the presence of Na(+) or K(+) ions. The molecular docking revealed that in the open conformation of C45 loop (which is obtained in the presence of ATP) all used fluorone dyes occupy position directly inside the ATP-binding pocket, while in the closed conformation (i.e. in the absence of any ligand) they are located only near the ATP-binding site depending on their different sizes. On the extracellular part of the protein, the molecular docking predicts two possible binding sites with similar binding energy near Asp897(α) or Gln69(β). The former was identified as a part of interaction site between α- and β-subunits, the latter is in contact with conserved FXYD sequence of the γ-subunit. Our findings provide structural explanation for numerous older studies, which were performed with fluorone dyes before the high-resolution structures were known. Further, fluorone dyes seem to be good probes for monitoring of intersubunit interactions influenced by Na(+) and K(+) binding.
Collapse
Affiliation(s)
- Marika Havlíková
- Department of Biophysics, Faculty of Science, Palacký University in Olomouc, tř. 17. listopadu 12, 771 46 Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|
20
|
Petrushanko IY, Yakushev S, Mitkevich VA, Kamanina YV, Ziganshin RH, Meng X, Anashkina AA, Makhro A, Lopina OD, Gassmann M, Makarov AA, Bogdanova A. S-glutathionylation of the Na,K-ATPase catalytic α subunit is a determinant of the enzyme redox sensitivity. J Biol Chem 2012; 287:32195-205. [PMID: 22798075 DOI: 10.1074/jbc.m112.391094] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Na,K-ATPase is highly sensitive to changes in the redox state, and yet the mechanisms of its redox sensitivity remain unclear. We have explored the possible involvement of S-glutathionylation of the catalytic α subunit in redox-induced responses. For the first time, the presence of S-glutathionylated cysteine residues was shown in the α subunit in duck salt glands, rabbit kidneys, and rat myocardium. Exposure of the Na,K-ATPase to oxidized glutathione (GSSG) resulted in an increase in the number of S-glutathionylated cysteine residues. Increase in S-glutathionylation was associated with dose- and time-dependent suppression of the enzyme function up to its complete inhibition. The enzyme inhibition concurred with S-glutathionylation of the Cys-454, -458, -459, and -244. Upon binding of glutathione to these cysteines, the enzyme was unable to interact with adenine nucleotides. Inhibition of the Na,K-ATPase by GSSG did not occur in the presence of ATP at concentrations above 0.5 mm. Deglutathionylation of the α subunit catalyzed by glutaredoxin or dithiothreitol resulted in restoration of the Na,K-ATPase activity. Oxidation of regulatory cysteines made them inaccessible for glutathionylation but had no profound effect on the enzyme activity. Regulatory S-glutathionylation of the α subunit was induced in rat myocardium in response to hypoxia and was associated with oxidative stress and ATP depletion. S-Glutathionylation was followed by suppression of the Na,K-ATPase activity. The rat α2 isoform was more sensitive to GSSG than the α1 isoform. Our findings imply that regulatory S-glutathionylation of the catalytic subunit plays a key role in the redox-induced regulation of Na,K-ATPase activity.
Collapse
Affiliation(s)
- Irina Yu Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 11999 Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zatloukalová M, Orolinová E, Kubala M, Hrbáč J, Vacek J. Electrochemical Determination of Transmembrane Protein Na+/K+-ATPase and Its Cytoplasmic Loop C45. ELECTROANAL 2012. [DOI: 10.1002/elan.201200165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Huličiak M, Vacek J, Sebela M, Orolinová E, Znaleziona J, Havlíková M, Kubala M. Covalent binding of cisplatin impairs the function of Na(+)/K(+)-ATPase by binding to its cytoplasmic part. Biochem Pharmacol 2012; 83:1507-13. [PMID: 22394404 DOI: 10.1016/j.bcp.2012.02.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 01/26/2023]
Abstract
This study was aimed at verifying the hypothesis that acute kidney failure accompanying cisplatin administration in the cancer therapy could be due to cisplatin interaction with the cytoplasmic part of Na(+)/K(+)-ATPase. Our results demonstrated that cisplatin-binding caused inhibition of Na(+)/K(+)-ATPase, in contrast to other platinated chemotherapeutics such as carboplatin and oxaliplatin, which are known to be much less nephrotoxic. To acquire more detailed structural information, we performed a series of experiments with the isolated large cytoplasmic segment connecting transmembrane helices 4 and 5 (C45 loop) of Na(+)/K(+)-ATPase. Electrochemistry showed that cisplatin is bound to the cysteine residues of the C45 loop, mass spectrometry revealed a modification of the C45 peptide fragment GSHMASLEAVETLGSTSTICSDK, which contains the conserved phosphorylated residue Asp369. Hence, we hypothesize that binding of cisplatin to Cys367 can cause sterical obstruction during the phosphorylation or dephosphorylation step of the Na(+)/K(+)-ATPase catalytic cycle.
Collapse
Affiliation(s)
- Miroslav Huličiak
- Department of Biophysics, Palacký University in Olomouc, Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
23
|
Kubala M, Grycova L, Lansky Z, Sklenovsky P, Janovska M, Otyepka M, Teisinger J. Changes in electrostatic surface potential of Na+/K+-ATPase cytoplasmic headpiece induced by cytoplasmic ligand(s) binding. Biophys J 2009; 97:1756-64. [PMID: 19751681 DOI: 10.1016/j.bpj.2009.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/23/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022] Open
Abstract
A set of single-tryptophan mutants of the Na(+)/K(+)-ATPase isolated, large cytoplasmic loop connecting transmembrane helices M4 and M5 (C45) was prepared to monitor effects of the natural cytoplasmic ligands (i.e., Mg(2+) and/or ATP) binding. We introduced a novel method for the monitoring of the changes in the electrostatic surface potential (ESP) induced by ligand binding, using the quenching of the intrinsic tryptophan fluorescence by acrylamide or iodide. This approach opens a new way to understanding the interactions within the proteins. Our experiments revealed that the C45 conformation in the presence of the ATP (without magnesium) substantially differed from the conformation in the presence of Mg(2+) or MgATP or in the absence of any ligand not only in the sense of geometry but also in the sense of the ESP. Notably, the set of ESP-sensitive residues was different from the set of geometry-sensitive residues. Moreover, our data indicate that the effect of the ligand binding is not restricted only to the close environment of the binding site and that the information is in fact transmitted also to the distal parts of the molecule. This property could be important for the communication between the cytoplasmic headpiece and the cation binding sites located within the transmembrane domain.
Collapse
Affiliation(s)
- Martin Kubala
- Laboratory of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|