1
|
Taurino F, Gnoni A. Systematic review of plasma-membrane ecto-ATP synthase: A new player in health and disease. Exp Mol Pathol 2018; 104:59-70. [DOI: 10.1016/j.yexmp.2017.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/15/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023]
|
2
|
Functional Regulation of the Plasma Protein Histidine-Rich Glycoprotein by Zn 2+ in Settings of Tissue Injury. Biomolecules 2017; 7:biom7010022. [PMID: 28257077 PMCID: PMC5372734 DOI: 10.3390/biom7010022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 01/05/2023] Open
Abstract
Divalent metal ions are essential nutrients for all living organisms and are commonly protein-bound where they perform important roles in protein structure and function. This regulatory control from metals is observed in the relatively abundant plasma protein histidine-rich glycoprotein (HRG), which displays preferential binding to the second most abundant transition element in human systems, Zinc (Zn2+). HRG has been proposed to interact with a large number of protein ligands and has been implicated in the regulation of various physiological and pathological processes including the formation of immune complexes, apoptotic/necrotic and pathogen clearance, cell adhesion, antimicrobial activity, angiogenesis, coagulation and fibrinolysis. Interestingly, these processes are often associated with sites of tissue injury or tumour growth, where the concentration and distribution of Zn2+ is known to vary. Changes in Zn2+ levels have been shown to modify HRG function by altering its affinity for certain ligands and/or providing protection against proteolytic disassembly by serine proteases. This review focuses on the molecular interplay between HRG and Zn2+, and how Zn2+ binding modifies HRG-ligand interactions to regulate function in different settings of tissue injury.
Collapse
|
3
|
Zhang Q, Jiang K, Li Y, Gao D, Sun L, Zhang S, Liu T, Guo K, Liu Y. Histidine-rich glycoprotein function in hepatocellular carcinoma depends on its N-glycosylation status, and it regulates cell proliferation by inhibiting Erk1/2 phosphorylation. Oncotarget 2015; 6:30222-30231. [PMID: 26336134 PMCID: PMC4745792 DOI: 10.18632/oncotarget.4997] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/31/2015] [Indexed: 11/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer mortality. Significantly downregulated histidine-rich glycoprotein (HRG) during the dynamic stages (WB, WB7, and WB11) of neoplastic transformation of WB F344 hepatic oval-like cells was screened out by iTRAQ labeling followed by 2DLC-ESI-MS/MS analysis. HRG expression was significantly lower in HCC tissues. HRG overexpression in Huh7 and MHCC-97H hepatoma cell lines led to decreased cell proliferation, colony-forming ability, and tumor growth, and increased cell apoptosis. HRG could inhibit cell proliferation via the FGF-Erk1/2 signaling pathway by reducing Erk1/2 phosphorylation. On the other hand, the functional expression of HRG was also dependent on the glycosylation status at its N-terminal, especially at the glycosylation site Asn 125. The glycosylation of HRG may play a key competitive role in the interaction between HRG and heparin sulfate for binding bFGF and activating the FGF receptor. These findings provide novel insights into the molecular mechanism of HRG in HCC.
Collapse
Affiliation(s)
- Qinle Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Kai Jiang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Yan Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lu Sun
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tianhua Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
de Jesus Perez VA, Yuan K, Lyuksyutova MA, Dewey F, Orcholski ME, Shuffle EM, Mathur M, Yancy L, Rojas V, Li CG, Cao A, Alastalo TP, Khazeni N, Cimprich KA, Butte AJ, Ashley E, Zamanian RT. Whole-exome sequencing reveals TopBP1 as a novel gene in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 2014; 189:1260-72. [PMID: 24702692 DOI: 10.1164/rccm.201310-1749oc] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Idiopathic pulmonary arterial hypertension (IPAH) is a life-threatening disorder characterized by progressive loss of pulmonary microvessels. Although mutations in the bone morphogenetic receptor 2 (BMPR2) are found in 80% of heritable and ∼15% of patients with IPAH, their low penetrance (∼20%) suggests that other unidentified genetic modifiers are required for manifestation of the disease phenotype. Use of whole-exome sequencing (WES) has recently led to the discovery of novel susceptibility genes in heritable PAH, but whether WES can also accelerate gene discovery in IPAH remains unknown. OBJECTIVES To determine whether WES can help identify novel gene modifiers in patients with IPAH. METHODS Exome capture and sequencing was performed on genomic DNA isolated from 12 unrelated patients with IPAH lacking BMPR2 mutations. Observed genetic variants were prioritized according to their pathogenic potential using ANNOVAR. MEASUREMENTS AND MAIN RESULTS A total of nine genes were identified as high-priority candidates. Our top hit was topoisomerase DNA binding II binding protein 1 (TopBP1), a gene involved in the response to DNA damage and replication stress. We found that TopBP1 expression was reduced in vascular lesions and pulmonary endothelial cells isolated from patients with IPAH. Although TopBP1 deficiency made endothelial cells susceptible to DNA damage and apoptosis in response to hydroxyurea, its restoration resulted in less DNA damage and improved cell survival. CONCLUSIONS WES led to the discovery of TopBP1, a gene whose deficiency may increase susceptibility to small vessel loss in IPAH. We predict that use of WES will help identify gene modifiers that influence an individual's risk of developing IPAH.
Collapse
|
5
|
New Insights into the Functions of Histidine-Rich Glycoprotein. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:467-93. [DOI: 10.1016/b978-0-12-407696-9.00009-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
BAKER LINDSAYA, RUBINSTEIN JOHNL. SINGLE PARTICLE ELECTRON MICROSCOPY OF THE MITOCHONDRIAL ATP SYNTHASE. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048010001135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mitochondrial ATP synthase is a large, membrane-bound protein complex that plays a central role in cellular metabolism. Since the identification of this assembly in micrographs of mitochondrial membranes, electron microscopy has been crucial in elucidating the structure and mechanism of the enzyme. This review addresses the recent use of single particle electron microscopy for structure determination of ATP synthase, including subunit localization, the challenges posed by the protein, and areas in which further work is needed.
Collapse
Affiliation(s)
- LINDSAY A. BAKER
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, 555 University Ave, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, 555 University Ave, Toronto, Ontario M5G 1X8, Canada
| | - JOHN L. RUBINSTEIN
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, 555 University Ave, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, 555 University Ave, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
7
|
The major antigenic membrane protein of "Candidatus Phytoplasma asteris" selectively interacts with ATP synthase and actin of leafhopper vectors. PLoS One 2011; 6:e22571. [PMID: 21799902 PMCID: PMC3143171 DOI: 10.1371/journal.pone.0022571] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/23/2011] [Indexed: 11/24/2022] Open
Abstract
Phytoplasmas, uncultivable phloem-limited phytopathogenic wall-less bacteria, represent a major threat to agriculture worldwide. They are transmitted in a persistent, propagative manner by phloem-sucking Hemipteran insects. Phytoplasma membrane proteins are in direct contact with hosts and are presumably involved in determining vector specificity. Such a role has been proposed for phytoplasma transmembrane proteins encoded by circular extrachromosomal elements, at least one of which is a plasmid. Little is known about the interactions between major phytoplasma antigenic membrane protein (Amp) and insect vector proteins. The aims of our work were to identify vector proteins interacting with Amp and to investigate their role in transmission specificity. In controlled transmission experiments, four Hemipteran species were identified as vectors of “Candidatus Phytoplasma asteris”, the chrysanthemum yellows phytoplasmas (CYP) strain, and three others as non-vectors. Interactions between a labelled (recombinant) CYP Amp and insect proteins were analysed by far Western blots and affinity chromatography. Amp interacted specifically with a few proteins from vector species only. Among Amp-binding vector proteins, actin and both the α and β subunits of ATP synthase were identified by mass spectrometry and Western blots. Immunofluorescence confocal microscopy and Western blots of plasma membrane and mitochondrial fractions confirmed the localisation of ATP synthase, generally known as a mitochondrial protein, in plasma membranes of midgut and salivary gland cells in the vector Euscelidius variegatus. The vector-specific interaction between phytoplasma Amp and insect ATP synthase is demonstrated for the first time, and this work also supports the hypothesis that host actin is involved in the internalization and intracellular motility of phytoplasmas within their vectors. Phytoplasma Amp is hypothesized to play a crucial role in insect transmission specificity.
Collapse
|
8
|
Kim BW, Lee CS, Yi JS, Lee JH, Lee JW, Choo HJ, Jung SY, Kim MS, Lee SW, Lee MS, Yoon G, Ko YG. Lipid raft proteome reveals that oxidative phosphorylation system is associated with the plasma membrane. Expert Rev Proteomics 2011; 7:849-66. [PMID: 21142887 DOI: 10.1586/epr.10.87] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although accumulating proteomic analyses have supported the fact that mitochondrial oxidative phosphorylation (OXPHOS) complexes are localized in lipid rafts, which mediate cell signaling, immune response and host-pathogen interactions, there has been no in-depth study of the physiological functions of lipid-raft OXPHOS complexes. Here, we show that many subunits of OXPHOS complexes were identified from the lipid rafts of human adipocytes, C2C12 myotubes, Jurkat cells and surface biotin-labeled Jurkat cells via shotgun proteomic analysis. We discuss the findings of OXPHOS complexes in lipid rafts, the role of the surface ATP synthase complex as a receptor for various ligands and extracellular superoxide generation by plasma membrane oxidative phosphorylation complexes.
Collapse
Affiliation(s)
- Bong-Woo Kim
- College of Life Sciences and Biotechnology, Korea University, 1, 5-ka, Anam-dong, Sungbuk-ku, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sabbatini ARM, Mattii L, Battolla B, Polizzi E, Martini D, Ranieri-Raggi M, Moir AJG, Raggi A. Evidence that muscle cells do not express the histidine-rich glycoprotein associated with AMP deaminase but can internalise the plasma protein. Eur J Histochem 2011; 55:e6. [PMID: 21556121 PMCID: PMC3167348 DOI: 10.4081/ejh.2011.e6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 11/30/2010] [Accepted: 01/12/2011] [Indexed: 11/25/2022] Open
Abstract
Histidine-rich glycoprotein (HRG) is synthesized by liver and is present at relatively high concentration in the plasma of vertebrates. We have previously described the association of a HRG-like molecule to purified rabbit skeletal muscle AMP deaminase (AMPD). We also provided the first evidence for the presence of a HRG-like protein in human skeletal muscle where a positive correlation between HRG content and total determined AMPD activity has been shown. In the present paper we investigate the origin of skeletal muscle HRG. The screening of a human skeletal muscle cDNA expression library using an anti-HRG antibody failed to reveal any positive clone. The RT-PCR analysis, performed on human skeletal muscle RNA as well as on RNA from the rhabdomyosarcoma (RD) cell line, failed to show any mRNA specific for the plasma HRG or for the putative muscle variant. When the RD cells were incubated with human plasma HRG, a time-dependent increase of the HRG immunoreactivity was detected both at the plasma membrane level and intracellularly. The internalisation of HRG was inhibited by the addition of heparin. The above data strongly suggest that skeletal muscle cells do not synthesize the muscle variant of HRG but instead can actively internalise it from plasma.
Collapse
Affiliation(s)
- A R M Sabbatini
- Dipartimento di Scienze dell’Uomo edell’Ambiente, Chimica e Biochimica Medica, University of Pisa.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
AbstractHistidine-rich glycoprotein (HRG), also known as histidine-proline-rich glyco-protein, is an abundant and well-characterized protein of vertebrate plasma. HRG has a multidomain structure that allows the molecule to interact with many ligands, including heparin, phospholipids, plasminogen, fibrinogen, immunoglobulin G, C1q, heme, and Zn2+. The ability of HRG to interact with various ligands simultaneously has suggested that HRG can function as an adaptor molecule and regulate numerous important biologic processes, such as immune complex/necrotic cell/pathogen clearance, cell adhesion, angiogenesis, coagulation, and fibrinolysis. The present review covers the proposed multifunctional roles of HRG with a focus on recent findings that have led to its emergence as a key regulator of immunity and vascular biology. Also included is a discussion of the striking functional similarities between HRG and other important multifunctional proteins found in plasma, such as C-reactive protein, C1q, β2 glycoprotein I, and thrombospondin-1.
Collapse
|
11
|
Poon IKH, Hulett MD, Parish CR. Molecular mechanisms of late apoptotic/necrotic cell clearance. Cell Death Differ 2009; 17:381-97. [PMID: 20019744 DOI: 10.1038/cdd.2009.195] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phagocytosis serves as one of the key processes involved in development, maintenance of tissue homeostasis, as well as in eliminating pathogens from an organism. Under normal physiological conditions, dying cells (e.g., apoptotic and necrotic cells) and pathogens (e.g., bacteria and fungi) are rapidly detected and removed by professional phagocytes such as macrophages and dendritic cells (DCs). In most cases, specific receptors and opsonins are used by phagocytes to recognize and bind their target cells, which can trigger the intracellular signalling events required for phagocytosis. Depending on the type of target cell, phagocytes may also release both immunomodulatory molecules and growth factors to orchestrate a subsequent immune response and wound healing process. In recent years, evidence is growing that opsonins and receptors involved in the removal of pathogens can also aid the disposal of dying cells at all stages of cell death, in particular plasma membrane-damaged cells such as late apoptotic and necrotic cells. This review provides an overview of the molecular mechanisms and the immunological outcomes of late apoptotic/necrotic cell removal and highlights the striking similarities between late apoptotic/necrotic cell and pathogen clearance.
Collapse
Affiliation(s)
- I K H Poon
- John Curtin School of Medical Research, Australian National University, Canberra, 2601, Australia
| | | | | |
Collapse
|
12
|
Ohta T, Ikemoto Y, Saeki K, Koide T, Wakabayashi S. Histidine-rich glycoprotein and concanavalin A synergistically stimulate the phosphatidylinositol 3-kinase-independent signaling pathway in leukocytes leading to increased cell adhesion and changes in cell morphology. Cell Immunol 2009; 259:5-12. [DOI: 10.1016/j.cellimm.2009.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 05/01/2009] [Indexed: 11/29/2022]
|