1
|
Millet J, Aguilar-Sanchez Y, Kornyeyev D, Bazmi M, Fainstein D, Copello JA, Escobar AL. Thermal modulation of epicardial Ca2+ dynamics uncovers molecular mechanisms of Ca2+ alternans. J Gen Physiol 2021; 153:211659. [PMID: 33410862 PMCID: PMC7797898 DOI: 10.1085/jgp.202012568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 11/02/2020] [Accepted: 11/30/2020] [Indexed: 01/16/2023] Open
Abstract
Ca2+ alternans (Ca-Alts) are alternating beat-to-beat changes in the amplitude of Ca2+ transients that frequently occur during tachycardia, ischemia, or hypothermia that can lead to sudden cardiac death. Ca-Alts appear to result from a variation in the amount of Ca2+ released from the sarcoplasmic reticulum (SR) between two consecutive heartbeats. This variable Ca2+ release has been attributed to the alternation of the action potential duration, delay in the recovery from inactivation of RYR Ca2+ release channel (RYR2), or an incomplete Ca2+ refilling of the SR. In all three cases, the RYR2 mobilizes less Ca2+ from the SR in an alternating manner, thereby generating an alternating profile of the Ca2+ transients. We used a new experimental approach, fluorescence local field optical mapping (FLOM), to record at the epicardial layer of an intact heart with subcellular resolution. In conjunction with a local cold finger, a series of images were recorded within an area where the local cooling induced a temperature gradient. Ca-Alts were larger in colder regions and occurred without changes in action potential duration. Analysis of the change in the enthalpy and Q10 of several kinetic processes defining intracellular Ca2+ dynamics indicated that the effects of temperature change on the relaxation of intracellular Ca2+ transients involved both passive and active mechanisms. The steep temperature dependency of Ca-Alts during tachycardia suggests Ca-Alts are generated by insufficient SERCA-mediated Ca2+ uptake into the SR. We found that Ca-Alts are heavily dependent on intra-SR Ca2+ and can be promoted through partial pharmacologic inhibition of SERCA2a. Finally, the FLOM experimental approach has the potential to help us understand how arrhythmogenesis correlates with the spatial distribution of metabolically impaired myocytes along the myocardium.
Collapse
Affiliation(s)
- Jose Millet
- Institute of Information and Communication Technologies, Universitat Politècnica de València and Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Valencia, Spain
| | - Yuriana Aguilar-Sanchez
- Department of Physiology and Biophysics, School of Medicine, Rush University Medical Center, Chicago, IL.,School of Natural Sciences, University of California, Merced, Merced, CA
| | - Dmytro Kornyeyev
- Department of Bioengineering, School of Engineering, University of California Merced, Merced, CA
| | - Maedeh Bazmi
- School of Natural Sciences, University of California, Merced, Merced, CA
| | - Diego Fainstein
- Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Entre Ríos, Argentina.,Department of Bioengineering, School of Engineering, University of California Merced, Merced, CA
| | - Julio A Copello
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL
| | - Ariel L Escobar
- Department of Bioengineering, School of Engineering, University of California Merced, Merced, CA
| |
Collapse
|
2
|
Gopinath T, Weber D, Wang S, Larsen E, Veglia G. Solid-State NMR of Membrane Proteins in Lipid Bilayers: To Spin or Not To Spin? Acc Chem Res 2021; 54:1430-1439. [PMID: 33655754 PMCID: PMC11457538 DOI: 10.1021/acs.accounts.0c00670] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Membrane proteins mediate a plethora of cellular functions and represent important targets for drug development. Unlike soluble proteins, membrane proteins require native-like environments to fold correctly and be active. Therefore, modern structural biology techniques have aimed to determine the structure and dynamics of these membrane proteins at physiological temperature and in liquid crystalline lipid bilayers. With the flourishing of new NMR methodologies and improvements in sample preparations, magic angle spinning (MAS) and oriented sample solid-state NMR (OS-ssNMR) spectroscopy of membrane proteins is experiencing a new renaissance. Born as antagonistic approaches, these techniques nowadays offer complementary information on the structural topology and dynamics of membrane proteins reconstituted in lipid membranes. By spinning biosolid samples at the magic angle (θ = 54.7°), MAS NMR experiments remove the intrinsic anisotropy of the NMR interactions, increasing spectral resolution. Internuclear spin interactions (spin exchange) are reintroduced by RF pulses, providing distances and torsion angles to determine secondary, tertiary, and quaternary structures of membrane proteins. OS-ssNMR, on the other hand, directly detects anisotropic NMR parameters such as dipolar couplings (DC) and anisotropic chemical shifts (CS), providing orientational constraints to determine the architecture (i.e., topology) of membrane proteins relative to the lipid membrane. Defining the orientation of membrane proteins and their interactions with lipid membranes is of paramount importance since lipid-protein interactions can shape membrane protein conformations and ultimately define their functional states.In this Account, we report selected studies from our group integrating MAS and OS-ssNMR techniques to give a comprehensive view of the biological processes occurring at cellular membranes. We focus on the main experiments for both techniques, with an emphasis on new implementation to increase both sensitivity and spectral resolution. We also describe how the structural constraints derived from both isotropic and anisotropic NMR parameters are integrated into dynamic structural modeling using replica-averaged orientational-restrained molecular dynamics simulations (RAOR-MD). We showcase small membrane proteins that are involved in Ca2+ transport and regulate cardiac and skeletal muscle contractility: phospholamban (PLN, 6 kDa), sarcolipin (SLN, 4 kDa), and DWORF (4 kDa). We summarize our results for the structures of these polypeptides free and in complex with the sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA, 110 kDa). Additionally, we illustrate the progress toward the determination of the structural topology of a six transmembrane protein associated with succinate and acetate transport (SatP, hexamer 120 kDa). From these examples, the integrated MAS and OS-ssNMR approach, in combination with modern computational methods, emerges as a way to overcome the challenges posed by studying large membrane protein systems.
Collapse
|
3
|
Gopinath T, Veglia G. Probing membrane protein ground and conformationally excited states using dipolar- and J-coupling mediated MAS solid state NMR experiments. Methods 2018; 148:115-122. [PMID: 30012515 PMCID: PMC6428079 DOI: 10.1016/j.ymeth.2018.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
The intrinsic conformational plasticity of membrane proteins directly influences the magnitude of the orientational-dependent NMR interactions such as dipolar couplings (DC) and chemical shift anisotropy (CSA). As a result, the conventional cross-polarization (CP)-based techniques mainly capture the more rigid regions of membrane proteins, while the most dynamic regions are essentially invisible. Nonetheless, dynamic regions can be detected using experiments in which polarization transfer takes place via J-coupling interactions. Here, we review our recent efforts to develop single and dual acquisition pulse sequences with either 1H or 13C detection that utilize both DC and J-coupling mediated transfer to detect both rigid and mobile regions of membrane proteins in native-like lipid environments. We show the application of these new methods for studying the conformational equilibrium of a single-pass membrane protein, phospholamban, which regulates the calcium transport across the sarcoplasmic reticulum (SR) membrane by interacting with the SR Ca2+-ATPase. We anticipate that these methods will be ideal to portray the complex dynamics of membrane proteins in their native environments.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
4
|
Knox R, Lento C, Wilson DJ. Mapping Conformational Dynamics to Individual Steps in the TEM-1 β-Lactamase Catalytic Mechanism. J Mol Biol 2018; 430:3311-3322. [PMID: 29964048 DOI: 10.1016/j.jmb.2018.06.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
Conformational dynamics are increasingly recognized as being essential for enzyme function. However, there is virtually no direct experimental evidence to support the notion that individual dynamic modes are required for specific catalytic processes, apart from the initial step of substrate binding. In this work, we use a unique approach based on millisecond hydrogen-deuterium exchange mass spectrometry to identify dynamic modes linked to individual catalytic processes in the antibiotic resistance enzyme TEM-1 β-lactamase. Using a "good" substrate (ampicillin), a poorly hydrolyzed substrate (cephalexin) and a covalent inhibitor (clavulanate), we are able to isolate dynamic modes that are specifically linked to substrate binding, productive lactam ring hydrolysis and deacylation. These discoveries are ultimately translated into specific targets for allosteric TEM-1 inhibitor development.
Collapse
Affiliation(s)
- Ruth Knox
- Department of Chemistry, York University, Toronto, Canada M3J 1P3
| | - Cristina Lento
- Department of Chemistry, York University, Toronto, Canada M3J 1P3
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Canada M3J 1P3; Center for Research in Mass Spectrometry, York University, Toronto, Canada M3J 1P3.
| |
Collapse
|
5
|
Nelson SED, Ha KN, Gopinath T, Exline MH, Mascioni A, Thomas DD, Veglia G. Effects of the Arg9Cys and Arg25Cys mutations on phospholamban's conformational equilibrium in membrane bilayers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:1335-1341. [PMID: 29501609 PMCID: PMC6428084 DOI: 10.1016/j.bbamem.2018.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/14/2018] [Accepted: 02/27/2018] [Indexed: 11/23/2022]
Abstract
Approximately, 70% of the Ca2+ ion transport into the sarcoplasmic reticulum is catalyzed by the sarcoplasmic reticulum Ca2+-ATPase (SERCA), whose activity is endogenously regulated by phospholamban (PLN). PLN comprises a TM inhibitory region and a cytoplasmic regulatory region that harbors a consensus sequence for cAMP-dependent protein kinase (PKA). The inhibitory region binds the ATPase, reducing its apparent Ca2+ binding affinity. β-adrenergic stimulation activates PKA, which phosphorylates PLN at Ser 16, reversing its inhibitory function. Mutations and post-translational modifications of PLN may lead to dilated cardiomyopathy (DCM) and heart failure. PLN's cytoplasmic region interconverts between a membrane-associated T state and a membrane-detached R state. The importance of these structural transitions on SERCA regulation is emerging, but the effects of natural occurring mutations and their relevance to the progression of heart disease are unclear. Here we use solid-state NMR spectroscopy to investigate the structural dynamics of two lethal PLN mutations, R9C and R25C, which lead to DCM. We found that the R25C mutant enhances the dynamics of PLN and shifts the conformational equilibrium toward the R state confirmation, whereas the R9C mutant drives the amphipathic cytoplasmic domain toward the membrane-associate state, enriching the T state population. The changes in membrane interactions caused by these mutations may explain the aberrant regulation of SERCA.
Collapse
Affiliation(s)
- Sarah E D Nelson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Kim N Ha
- St. Catherine University, Department of Chemistry and Biochemistry, 2004 Randolph Ave., St. Paul, MN 55105, United States
| | - Tata Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Mara H Exline
- St. Catherine University, Department of Chemistry and Biochemistry, 2004 Randolph Ave., St. Paul, MN 55105, United States
| | - Alessandro Mascioni
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
6
|
Kitevski-LeBlanc JL, Yuwen T, Dyer PN, Rudolph J, Luger K, Kay LE. Investigating the Dynamics of Destabilized Nucleosomes Using Methyl-TROSY NMR. J Am Chem Soc 2018; 140:4774-4777. [DOI: 10.1021/jacs.8b00931] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Julianne L. Kitevski-LeBlanc
- Departments of Chemistry, Molecular Genetics, and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tairan Yuwen
- Departments of Chemistry, Molecular Genetics, and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Pamela N. Dyer
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Johannes Rudolph
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Karolin Luger
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Lewis E. Kay
- Departments of Chemistry, Molecular Genetics, and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
7
|
Bugge K, Lindorff-Larsen K, Kragelund BB. Understanding single-pass transmembrane receptor signaling from a structural viewpoint-what are we missing? FEBS J 2016; 283:4424-4451. [PMID: 27350538 DOI: 10.1111/febs.13793] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/10/2016] [Accepted: 06/27/2016] [Indexed: 11/30/2022]
Abstract
Single-pass transmembrane receptors are involved in essential processes of both physiological and pathological nature and represent more than 1300 proteins in the human genome. Despite the high biological relevance of these receptors, the mechanisms of the signal transductions they facilitate are incompletely understood. One major obstacle is the lack of structures of the transmembrane domains that connect the extracellular ligand-binding domains to the intracellular signaling platforms. Over a period of almost 20 years since the first structure was reported, only 21 of these receptors have become represented by a transmembrane domain structure. This scarceness stands in strong contrast to the significance of these transmembrane α-helices for receptor functionality. In this review, we explore the properties and qualities of the current set of structures, as well as the methodological difficulties associated with their characterization and the challenges left to be overcome. Without an increased and focused effort to bring this class of proteins on par with the remaining membrane protein field, a serious lag in their biological understanding looms. Design of pharmaceutical agents, prediction of mutational affects in relation to disease, and deciphering of functional mechanisms require high-resolution structural information, especially when dealing with a domain carrying so much functionality in so few residues.
Collapse
Affiliation(s)
- Katrine Bugge
- Department of Biology, Structural Biology and NMR Laboratory, University of Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Department of Biology, Structural Biology and NMR Laboratory, University of Copenhagen, Denmark
| | - Birthe B Kragelund
- Department of Biology, Structural Biology and NMR Laboratory, University of Copenhagen, Denmark
| |
Collapse
|
8
|
De Simone A, Mote KR, Veglia G. Structural dynamics and conformational equilibria of SERCA regulatory proteins in membranes by solid-state NMR restrained simulations. Biophys J 2015; 106:2566-76. [PMID: 24940774 DOI: 10.1016/j.bpj.2014.03.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 03/14/2014] [Accepted: 03/19/2014] [Indexed: 01/08/2023] Open
Abstract
Solid-state NMR spectroscopy is emerging as a powerful approach to determine structure, topology, and conformational dynamics of membrane proteins at the atomic level. Conformational dynamics are often inferred and quantified from the motional averaging of the NMR parameters. However, the nature of these motions is difficult to envision based only on spectroscopic data. Here, we utilized restrained molecular dynamics simulations to probe the structural dynamics, topology and conformational transitions of regulatory membrane proteins of the calcium ATPase SERCA, namely sarcolipin and phospholamban, in explicit lipid bilayers. Specifically, we employed oriented solid-state NMR data, such as dipolar couplings and chemical shift anisotropy measured in lipid bicelles, to refine the conformational ensemble of these proteins in lipid membranes. The samplings accurately reproduced the orientations of transmembrane helices and showed a significant degree of convergence with all of the NMR parameters. Unlike the unrestrained simulations, the resulting sarcolipin structures are in agreement with distances and angles for hydrogen bonds in ideal helices. In the case of phospholamban, the restrained ensemble sampled the conformational interconversion between T (helical) and R (unfolded) states for the cytoplasmic region that could not be observed using standard structural refinements with the same experimental data set. This study underscores the importance of implementing NMR data in molecular dynamics protocols to better describe the conformational landscapes of membrane proteins embedded in realistic lipid membranes.
Collapse
Affiliation(s)
- Alfonso De Simone
- Department of Life Sciences, Imperial College London, London, United Kingdom.
| | - Kaustubh R Mote
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Gianluigi Veglia
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota; Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
9
|
Abstract
Membrane proteins have always presented technical challenges for structural studies because of their requirement for a lipid environment. Multiple approaches exist including X-ray crystallography and electron microscopy that can give significant insights into their structure and function. However, nuclear magnetic resonance (NMR) is unique in that it offers the possibility of determining the structures of unmodified membrane proteins in their native environment of phospholipid bilayers under physiological conditions. Furthermore, NMR enables the characterization of the structure and dynamics of backbone and side chain sites of the proteins alone and in complexes with both small molecules and other biopolymers. The learning curve has been steep for the field as most initial studies were performed under non-native environments using modified proteins until ultimately progress in both techniques and instrumentation led to the possibility of examining unmodified membrane proteins in phospholipid bilayers under physiological conditions. This review aims to provide an overview of the development and application of NMR to membrane proteins. It highlights some of the most significant structural milestones that have been reached by NMR spectroscopy of membrane proteins, especially those accomplished with the proteins in phospholipid bilayer environments where they function.
Collapse
|
10
|
Yu X, Lorigan GA. Secondary structure, backbone dynamics, and structural topology of phospholamban and its phosphorylated and Arg9Cys-mutated forms in phospholipid bilayers utilizing 13C and 15N solid-state NMR spectroscopy. J Phys Chem B 2014; 118:2124-33. [PMID: 24511878 PMCID: PMC3983341 DOI: 10.1021/jp500316s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Phospholamban (PLB) is a membrane protein that regulates heart muscle relaxation rates via interactions with the sarcoplasmic reticulum Ca(2+) ATPase (SERCA). When PLB is phosphorylated or Arg9Cys (R9C) is mutated, inhibition of SERCA is relieved. (13)C and (15)N solid-state NMR spectroscopy is utilized to investigate conformational changes of PLB upon phosphorylation and R9C mutation. (13)C═O NMR spectra of the cytoplasmic domain reveal two α-helical structural components with population changes upon phosphorylation and R9C mutation. The appearance of an unstructured component is observed on domain Ib. (15)N NMR spectra indicate an increase in backbone dynamics of the cytoplasmic domain. Wild-type PLB (WT-PLB), Ser16-phosphorylated PLB (P-PLB), and R9C-mutated PLB (R9C-PLB) all have a very dynamic domain Ib, and the transmembrane domain has an immobile component. (15)N NMR spectra indicate that the cytoplasmic domain of R9C-PLB adopts an orientation similar to P-PLB and shifts away from the membrane surface. Domain Ib (Leu28) of P-PLB and R9C-PLB loses the alignment. The R9C-PLB adopts a conformation similar to P-PLB with a population shift to a more extended and disordered state. The NMR data suggest the more extended and disordered forms of PLB may relate to inhibition relief.
Collapse
Affiliation(s)
- Xueting Yu
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | | |
Collapse
|
11
|
Maltsev S, Lorigan GA. Membrane proteins structure and dynamics by nuclear magnetic resonance. Compr Physiol 2013; 1:2175-87. [PMID: 23733702 DOI: 10.1002/cphy.c110022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Membrane proteins represent a challenging class of biological systems to study. They are extremely difficult to crystallize and in most cases they retain their structure and functions only in membrane environments. Therefore, commonly used diffraction methods fail to give detailed molecular structure and other approaches have to be utilized to obtain biologically relevant information. Nuclear magnetic resonance (NMR) spectroscopy, however, can provide powerful structural and dynamical constraints on these complicated systems. Solution- and solid-state NMR are powerful methods for investigating membrane proteins studies. In this work, we briefly review both solution and solid-state NMR techniques for membrane protein studies and illustrate the applications of these methods to elucidate proteins structure, conformation, topology, dynamics, and function. Recent advances in electronics, biological sample preparation, and spectral processing provided opportunities for complex biological systems, such as membrane proteins inside lipid vesicles, to be studied faster and with outstanding quality. New analysis methods therefore have emerged, that benefit from the combination of sample preparation and corresponding specific high-end NMR techniques, which give access to more structural and dynamic information.
Collapse
Affiliation(s)
- Sergey Maltsev
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | | |
Collapse
|
12
|
Qin H, Lim L, Wei Y, Gupta G, Song J. Resolving the paradox for protein aggregation diseases: NMR structure and dynamics of the membrane-embedded P56S-MSP causing ALS imply a common mechanism for aggregation-prone proteins to attack membranes. F1000Res 2013; 2:221. [PMID: 25254094 PMCID: PMC4168755 DOI: 10.12688/f1000research.2-221.v2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/21/2014] [Indexed: 12/12/2022] Open
Abstract
Paradoxically, aggregation of specific proteins is characteristic of many human diseases and aging, yet aggregates have increasingly been found to be unnecessary for initiating pathogenesis. Here we determined the NMR topology and dynamics of a helical mutant in a membrane environment transformed from the 125-residue cytosolic all-β MSP domain of vesicle-associated membrane protein-associated protein B (VAPB) by the ALS-causing P56S mutation. Despite its low hydrophobicity, the P56S major sperm protein (MSP) domain becomes largely embedded in the membrane environment with high backbone rigidity. Furthermore it is composed of five helices with amphiphilicity comparable to those of the partly-soluble membrane toxin mellitin and α-synuclein causing Parkinson's disease. Consequently, the mechanism underlying this chameleon transformation becomes clear: by disrupting the specific tertiary interaction network stabilizing the native all-β MSP fold to release previously-locked amphiphilic segments, the P56S mutation acts to convert the classic MSP fold into a membrane-active protein that is fundamentally indistinguishable from mellitin and α-synuclein which are disordered in aqueous solution but spontaneously partition into membrane interfaces driven by hydrogen-bond energetics gained from forming α-helix in the membrane environments. As segments with high amphiphilicity exist in all proteins, our study successfully resolves the paradox by deciphering that the proteins with a higher tendency to aggregate have a stronger potential to partition into membranes through the same mechanism as α-synuclein to initially attack membranes to trigger pathogenesis without needing aggregates. This might represent the common first step for various kinds of aggregated proteins to trigger familiar, sporadic and aging diseases. Therefore the homeostasis of aggregated proteins in vivo is the central factor responsible for a variety of human diseases including aging. The number and degree of the membrane attacks by aggregated proteins may act as an endogenous clock to count down the aging process. Consequently, a key approach to fight against them is to develop strategies and agents to maintain or even enhance the functions of the degradation machineries.
Collapse
Affiliation(s)
- Haina Qin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore
| | - Yuanyuan Wei
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Garvita Gupta
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore ; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119260, Singapore
| |
Collapse
|
13
|
Qin H, Lim L, Wei Y, Gupta G, Song J. Resolving the paradox for protein aggregation diseases: NMR structure and dynamics of the membrane-embedded P56S-MSP causing ALS imply a common mechanism for aggregation-prone proteins to attack membranes. F1000Res 2013. [PMID: 25254094 DOI: 10.12688/f1000research.2-221.v1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Paradoxically, aggregation of specific proteins is characteristic of many human diseases and aging, yet aggregates have increasingly been found to be unnecessary for initiating pathogenesis. Here we determined the NMR topology and dynamics of a helical mutant in a membrane environment transformed from the 125-residue cytosolic all-β MSP domain of vesicle-associated membrane protein-associated protein B (VAPB) by the ALS-causing P56S mutation. Despite its low hydrophobicity, the P56S major sperm protein (MSP) domain becomes largely embedded in the membrane environment with high backbone rigidity. Furthermore it is composed of five helices with amphiphilicity comparable to those of the partly-soluble membrane toxin mellitin and α-synuclein causing Parkinson's disease. Consequently, the mechanism underlying this chameleon transformation becomes clear: by disrupting the specific tertiary interaction network stabilizing the native all-β MSP fold to release previously-locked amphiphilic segments, the P56S mutation acts to convert the classic MSP fold into a membrane-active protein that is fundamentally indistinguishable from mellitin and α-synuclein which are disordered in aqueous solution but spontaneously partition into membrane interfaces driven by hydrogen-bond energetics gained from forming α-helix in the membrane environments. As segments with high amphiphilicity exist in all proteins, our study successfully resolves the paradox by deciphering that the proteins with a higher tendency to aggregate have a stronger potential to partition into membranes through the same mechanism as α-synuclein to initially attack membranes to trigger pathogenesis without needing aggregates. This might represent the common first step for various kinds of aggregated proteins to trigger familiar, sporadic and aging diseases. Therefore the homeostasis of aggregated proteins in vivo is the central factor responsible for a variety of human diseases including aging. The number and degree of the membrane attacks by aggregated proteins may act as an endogenous clock to count down the aging process. Consequently, a key approach to fight against them is to develop strategies and agents to maintain or even enhance the functions of the degradation machineries.
Collapse
Affiliation(s)
- Haina Qin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore
| | - Yuanyuan Wei
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Garvita Gupta
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore ; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119260, Singapore
| |
Collapse
|
14
|
De Simone A, Gustavsson M, Montalvao RW, Shi L, Veglia G, Vendruscolo M. Structures of the excited states of phospholamban and shifts in their populations upon phosphorylation. Biochemistry 2013; 52:6684-94. [PMID: 23968132 DOI: 10.1021/bi400517b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phospholamban is an integral membrane protein that controls the calcium balance in cardiac muscle cells. As the function and regulation of this protein require the active involvement of low populated states in equilibrium with the native state, it is of great interest to acquire structural information about them. In this work, we calculate the conformations and populations of the ground state and the three main excited states of phospholamban by incorporating nuclear magnetic resonance residual dipolar couplings as replica-averaged structural restraints in molecular dynamics simulations. We then provide a description of the manner in which phosphorylation at Ser16 modulates the activity of the protein by increasing the sizes of the populations of its excited states. These results demonstrate that the approach that we describe provides a detailed characterization of the different states of phospholamban that determine the function and regulation of this membrane protein. We anticipate that the knowledge of conformational ensembles enable the design of new dominant negative mutants of phospholamban by modulating the relative populations of its conformational substates.
Collapse
Affiliation(s)
- Alfonso De Simone
- Division of Molecular Biosciences, Imperial College London , London SW7 2AZ, U.K
| | | | | | | | | | | |
Collapse
|
15
|
Veglia G, Cembran A. Role of conformational entropy in the activity and regulation of the catalytic subunit of protein kinase A. FEBS J 2013; 280:5608-15. [PMID: 23902454 DOI: 10.1111/febs.12462] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 12/01/2022]
Abstract
Protein kinase A (PKA) is the archetypical phosphokinase, sharing a catalytic core with the entire protein kinase superfamily. In eukaryotes, the ubiquitous location of PKA makes it one of the most important cellular signaling molecules, involved in a myriad of events. The catalytic subunit of PKA (PKA-C) is one of the most studied enzymes and was the first kinase to be crystallized; however, the effects of ligand binding, post-translational modifications and mutations on the activity of the kinase have been difficult to understand with only structural data. Here, we review our latest NMR studies on PKA-C, the results of which underscore the role of fast and slow conformational dynamics in the activation and inhibition of the kinase.
Collapse
Affiliation(s)
- Gianluigi Veglia
- Department of Biochemistry, Biophysics & Molecular Biology, University of Minnesota, Jackson Hall, MN, USA; Department of Chemistry, University of Minnesota, Smith Hall, MN, USA
| | | |
Collapse
|
16
|
NMR spectroscopy on domain dynamics in biomacromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 112:58-117. [DOI: 10.1016/j.pbiomolbio.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
|
17
|
Yu X, Lorigan GA. Probing the interaction of Arg9Cys mutated phospholamban with phospholipid bilayers by solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2444-9. [PMID: 23850636 DOI: 10.1016/j.bbamem.2013.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/10/2013] [Accepted: 07/01/2013] [Indexed: 01/05/2023]
Abstract
Phospholamban (PLB) is a 52 amino acid integral membrane protein that interacts with the sarcoplasmic reticulum Ca(2+) ATPase (SERCA) and helps to regulate Ca(2+) flow. PLB inhibits SERCA impairing Ca(2+) translocation. The inhibition can be relieved upon phosphorylation of PLB. The Arg9 to Cys (R9C) mutation is a loss of function mutation with reduced inhibitory potency. The effect R9C PLB has on the membrane surface and the hydrophobic region dynamics was investigated by (31)P and (2)H solid-state NMR spectroscopy in multilamellar vesicles (MLVs). The (31)P NMR spectra indicate that, like the phosphorylated PLB (P-PLB), the mutated R9C-PLB protein has significantly less interaction with the lipid bilayer headgroup when compared to wild-type PLB (WT-PLB). Similar to P-PLB, R9C-PLB slightly decreases (31)P T1 values in the lipid headgroup region. (2)H SCD order parameters of (2)H nuclei along the lipid acyl chain decrease less dramatically for R9C-PLB and P-PLB when compared to WT-PLB. The results suggest that R9C-PLB interacts less with the membrane surface and hydrophobic region than WT-PLB. Detachment of the cytoplasmic domain of R9C-PLB from the membrane surface could be related to its loss of function.
Collapse
Affiliation(s)
- Xueting Yu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | |
Collapse
|
18
|
Tuning the structural coupling between the transmembrane and cytoplasmic domains of phospholamban to control sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) function. J Muscle Res Cell Motil 2012; 33:485-92. [PMID: 22971924 DOI: 10.1007/s10974-012-9319-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/18/2012] [Indexed: 12/15/2022]
Abstract
Phospholamban (PLN) is the endogenous inhibitor of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), the integral membrane enzyme responsible for 70 % of the removal of Ca(2+) from the cytosol, inducing cardiac muscle relaxation in humans. Dysfunctions in SERCA:PLN interactions have been implicated as having a critical role in cardiac disease, and targeting Ca(2+) transport has been demonstrated to be a promising avenue in treating conditions of heart failure. Here, we designed a series of new mutants able to tune SERCA function, targeting the loop sequence that connects the transmembrane and cytoplasmic helices of PLN. We found that a variable degree of loss of inhibition mutants is attainable by engineering glycine mutations along PLN's loop domain. Remarkably, a double glycine mutation results in a complete loss-of-function mutant, fully mimicking the phosphorylated state of PLN. Using nuclear magnetic resonance spectroscopy, we rationalized the effects of these mutations in terms of entropic control on PLN function, whose inhibitory function can be modulated by increasing its conformational dynamics. However, if PLN mutations go past a threshold set by the phosphorylated state, they break the structural coupling between the transmembrane and cytoplasmic domains, resulting in a species that behaves as the inhibitory transmembrane domain alone. These studies provide new potential candidates for gene therapy to reverse the effects of heart failure.
Collapse
|
19
|
Prehna G, Zhang G, Gong X, Duszyk M, Okon M, McIntosh L, Weiner J, Strynadka N. A Protein Export Pathway Involving Escherichia coli Porins. Structure 2012; 20:1154-66. [DOI: 10.1016/j.str.2012.04.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 11/28/2022]
|
20
|
Traaseth NJ, Chao FA, Masterson LR, Mangia S, Garwood M, Michaeli S, Seelig B, Veglia G. Heteronuclear Adiabatic Relaxation Dispersion (HARD) for quantitative analysis of conformational dynamics in proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 219:75-82. [PMID: 22621977 PMCID: PMC3568944 DOI: 10.1016/j.jmr.2012.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 03/22/2012] [Accepted: 03/29/2012] [Indexed: 05/09/2023]
Abstract
NMR relaxation methods probe biomolecular motions over a wide range of timescales. In particular, the rotating frame spin-lock R(1ρ) and Carr-Purcell-Meiboom-Gill (CPMG) R(2) experiments are commonly used to characterize μs to ms dynamics, which play a critical role in enzyme folding and catalysis. In an effort to complement these approaches, we introduced the Heteronuclear Adiabatic Relaxation Dispersion (HARD) method, where dispersion in rotating frame relaxation rate constants (longitudinal R(1ρ) and transverse R(2ρ)) is created by modulating the shape and duration of adiabatic full passage (AFP) pulses. Previously, we showed the ability of the HARD method to detect chemical exchange dynamics in the fast exchange regime (k(ex)∼10(4)-10(5) s(-1)). In this article, we show the sensitivity of the HARD method to slower exchange processes by measuring R(1ρ) and R(2ρ) relaxation rates for two soluble proteins (ubiquitin and 10C RNA ligase). One advantage of the HARD method is its nominal dependence on the applied radio frequency field, which can be leveraged to modulate the dispersion in the relaxation rate constants. In addition, we also include product operator simulations to define the dynamic range of adiabatic R(1ρ) and R(2ρ) that is valid under all exchange regimes. We conclude from both experimental observations and simulations that this method is complementary to CPMG-based and rotating frame spin-lock R(1ρ) experiments to probe conformational exchange dynamics for biomolecules. Finally, this approach is germane to several NMR-active nuclei, where relaxation rates are frequency-offset independent.
Collapse
Affiliation(s)
- Nathaniel J. Traaseth
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Chemistry, New York University, New York, NY 10003, United States
| | - Fa-An Chao
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Larry R. Masterson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Silvia Mangia
- Department of Radiology (Center for Magnetic Resonance Research), University of Minnesota, Minneapolis, MN 55455, United States
| | - Michael Garwood
- Department of Radiology (Center for Magnetic Resonance Research), University of Minnesota, Minneapolis, MN 55455, United States
| | - Shalom Michaeli
- Department of Radiology (Center for Magnetic Resonance Research), University of Minnesota, Minneapolis, MN 55455, United States
| | - Burckhard Seelig
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
- Corresponding author. Address: 6-155 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, United States. Fax: +1 612 625 2163. (G. Veglia)
| |
Collapse
|
21
|
|
22
|
Nevzorov AA. Orientational and motional narrowing of solid-state NMR lineshapes of uniaxially aligned membrane proteins. J Phys Chem B 2011; 115:15406-14. [PMID: 22073926 DOI: 10.1021/jp2092847] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A unified theory for the NMR line shapes of aligned membrane proteins arising from uniaxial disorder (mosaic spread) and global rotational diffusion about the director axis is presented. A superoperator formalism allows one to take into account the effects of continuous radiofrequency irradiation and frequency offsets in the presence of dynamics. A general method based on the Stochastic Liouville Equation makes it possible to bridge the static and dynamic limits in a single model. Simulations of solid-state NMR spectra are performed for a uniform α helix by considering orientational disorder and diffusion of the helix as a whole relative to the alignment axis. The motional narrowing of the resonance lines is highly inhomogeneous and can be used as an additional angular restraint in structure calculations. Experimental solid-state NMR spectra of Pf1 coat protein support the conclusions of the theory for two limiting cases. The static disorder dominates the (15)N NMR spectra of Pf1 aligned on a phage, while fast uniaxial diffusion provides a line narrowing mechanism for the Pf1 protein reconstituted in magnetically aligned bicelles.
Collapse
Affiliation(s)
- Alexander A Nevzorov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8240, USA
| |
Collapse
|
23
|
Gustavsson M, Traaseth NJ, Veglia G. Probing ground and excited states of phospholamban in model and native lipid membranes by magic angle spinning NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:146-53. [PMID: 21839724 DOI: 10.1016/j.bbamem.2011.07.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 10/18/2022]
Abstract
In this paper, we analyzed the ground and excited states of phospholamban (PLN), a membrane protein that regulates sarcoplasmic reticulum calcium ATPase (SERCA), in different membrane mimetic environments. Previously, we proposed that the conformational equilibria of PLN are central to SERCA regulation. Here, we show that these equilibria detected in micelles and bicelles are also present in native sarcoplasmic reticulum lipid membranes as probed by MAS solid-state NMR. Importantly, we found that the kinetics of conformational exchange and the extent of ground and excited states in detergent micelles and lipid bilayers are different, revealing a possible role of the membrane composition on the allosteric regulation of SERCA. Since the extent of excited states is directly correlated to SERCA inhibition, these findings open up the exciting possibility that calcium transport in the heart can be controlled by the lipid bilayer composition. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Martin Gustavsson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
24
|
Masterson LR, Yu T, Shi L, Wang Y, Gustavsson M, Mueller MM, Veglia G. cAMP-dependent protein kinase A selects the excited state of the membrane substrate phospholamban. J Mol Biol 2011; 412:155-64. [PMID: 21741980 DOI: 10.1016/j.jmb.2011.06.041] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 11/29/2022]
Abstract
Phosphorylation of membrane proteins is a central regulatory and signaling mechanism across cell compartments. However, the recognition process and phosphorylation mechanism of membrane-bound substrates by kinases are virtually unknown. cAMP-dependent protein kinase A (PKA) is a ubiquitous enzyme that phosphorylates several soluble and membrane-bound substrates. In cardiomyocytes, PKA targets phospholamban (PLN), a membrane protein that inhibits the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA). In the unphosphorylated state, PLN binds SERCA, reducing the calcium uptake and generating muscle contraction. PKA phosphorylation of PLN at S16 in the cytoplasmic helix relieves SERCA inhibition, initiating muscle relaxation. Using steady-state kinetic assays, NMR spectroscopy, and molecular modeling, we show that PKA recognizes and phosphorylates the excited, membrane-detached R-state of PLN. By promoting PLN from a ground state to an excited state, we obtained a linear relationship between rate of phosphorylation and population of the excited state of PLN. The conformational equilibrium of PLN is crucial to regulate the extent of PLN phosphorylation and SERCA inhibition.
Collapse
Affiliation(s)
- Larry R Masterson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method. Proc Natl Acad Sci U S A 2011; 108:9101-6. [PMID: 21576492 DOI: 10.1073/pnas.1016535108] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Phospholamban (PLN) is a type II membrane protein that inhibits the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA), thereby regulating calcium homeostasis in cardiac muscle. In membranes, PLN forms pentamers that have been proposed to function either as a storage for active monomers or as ion channels. Here, we report the T-state structure of pentameric PLN solved by a hybrid solution and solid-state NMR method. In lipid bilayers, PLN adopts a pinwheel topology with a narrow hydrophobic pore, which excludes ion transport. In the T state, the cytoplasmic amphipathic helices (domains Ia) are absorbed into the lipid bilayer with the transmembrane domains arranged in a left-handed coiled-coil configuration, crossing the bilayer with a tilt angle of approximately 11° with respect to the membrane normal. The tilt angle difference between the monomer and pentamer is approximately 13°, showing that intramembrane helix-helix association forces dominate over the hydrophobic mismatch, driving the overall topology of the transmembrane assembly. Our data reveal that both topology and function of PLN are shaped by the interactions with lipids, which fine-tune the regulation of SERCA.
Collapse
|
26
|
Gustavsson M, Traaseth NJ, Karim CB, Lockamy EL, Thomas DD, Veglia G. Lipid-mediated folding/unfolding of phospholamban as a regulatory mechanism for the sarcoplasmic reticulum Ca2+-ATPase. J Mol Biol 2011; 408:755-65. [PMID: 21419777 PMCID: PMC3573877 DOI: 10.1016/j.jmb.2011.03.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 01/10/2011] [Accepted: 03/07/2011] [Indexed: 10/18/2022]
Abstract
The integral membrane protein complex between phospholamban (PLN) and sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) regulates cardiac contractility. In the unphosphorylated form, PLN binds SERCA and inhibits Ca(2+) flux. Upon phosphorylation of PLN at Ser16, the inhibitory effect is reversed. Although structural details on both proteins are emerging from X-ray crystallography, cryo-electron microscopy, and NMR studies, the molecular mechanisms of their interactions and regulatory process are still lacking. It has been speculated that SERCA regulation depends on PLN structural transitions (order to disorder, i.e., folding/unfolding). Here, we investigated PLN conformational changes upon chemical unfolding by a combination of electron paramagnetic resonance and NMR spectroscopies, revealing that the conformational transitions involve mostly the cytoplasmic regions, with two concomitant phenomena: (1) membrane binding and folding of the amphipathic domain Ia and (2) folding/unfolding of the juxtamembrane domain Ib of PLN. Analysis of phosphorylated and unphosphorylated PLN with two phosphomimetic mutants of PLN (S16E and S16D) shows that the population of an unfolded state in domains Ia and Ib (T' state) is linearly correlated to the extent of SERCA inhibition measured by activity assays. Inhibition of SERCA is carried out by the folded ground state (T state) of the protein (PLN), while the relief of inhibition involves promotion of PLN to excited conformational states (Ser16 phosphorylated PLN). We propose that PLN population shifts (folding/unfolding) are a key regulatory mechanism for SERCA.
Collapse
Affiliation(s)
- Martin Gustavsson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nathaniel J. Traaseth
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christine B. Karim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elizabeth L. Lockamy
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
27
|
Shi L, Traaseth NJ, Verardi R, Gustavsson M, Gao J, Veglia G. Paramagnetic-based NMR restraints lift residual dipolar coupling degeneracy in multidomain detergent-solubilized membrane proteins. J Am Chem Soc 2011; 133:2232-41. [PMID: 21287984 PMCID: PMC3328396 DOI: 10.1021/ja109080t] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Residual dipolar couplings (RDCs) are widely used as orientation-dependent NMR restraints to improve the resolution of the NMR conformational ensemble of biomacromolecules and define the relative orientation of multidomain proteins and protein complexes. However, the interpretation of RDCs is complicated by the intrinsic degeneracy of analytical solutions and protein dynamics that lead to ill-defined orientations of the structural domains (ghost orientations). Here, we illustrate how restraints from paramagnetic relaxation enhancement (PRE) experiments lift the orientational ambiguity of multidomain membrane proteins solubilized in detergent micelles. We tested this approach on monomeric phospholamban (PLN), a 52-residue membrane protein, which is composed of two helical domains connected by a flexible loop. We show that the combination of classical solution NMR restraints (NOEs and dihedral angles) with RDC and PRE constraints resolves topological ambiguities, improving the convergence of the PLN structural ensemble and giving the depth of insertion of the protein within the micelle. The combination of RDCs with PREs will be necessary for improving the accuracy and precision of membrane protein conformational ensembles, where three-dimensional structures are dictated by interactions with the membrane-mimicking environment rather than compact tertiary folds common in globular proteins.
Collapse
Affiliation(s)
- Lei Shi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
The voltage-dependent anion channel (VDAC), located in the outer mitochondrial membrane, acts as a gatekeeper for the entry and exit of mitochondrial metabolites. Here we reveal functional dynamics of isoform one of VDAC (VDAC1) by a combination of solution NMR spectroscopy, Gaussian network model analysis, and molecular dynamics simulation. Micro- to millisecond dynamics are significantly increased for the N-terminal six β-strands of VDAC1 in micellar solution, in agreement with increased B-factors observed in the same region in the bicellar crystal structure of VDAC1. Molecular dynamics simulations reveal that a charge on the membrane-facing glutamic acid 73 (E73) accounts for the elevation of N-terminal protein dynamics as well as a thinning of the nearby membrane. Mutation or chemical modification of E73 strongly reduces the micro- to millisecond dynamics in solution. Because E73 is necessary for hexokinase-I-induced VDAC channel closure and inhibition of apoptosis, our results imply that micro- to millisecond dynamics in the N-terminal part of the barrel are essential for VDAC interaction and gating.
Collapse
|
29
|
Mangia S, Traaseth NJ, Veglia G, Garwood M, Michaeli S. Probing slow protein dynamics by adiabatic R(1rho) and R(2rho) NMR experiments. J Am Chem Soc 2010; 132:9979-81. [PMID: 20590094 PMCID: PMC2929914 DOI: 10.1021/ja1038787] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Slow micros/ms dynamics involved in protein folding, binding, catalysis, and allostery are currently detected using NMR dispersion experiments such as CPMG (Carr-Purcell-Meiboom-Gill) or spin-lock R(1rho). In these methods, protein dynamics are obtained by analyzing relaxation dispersion curves obtained from either changing the time spacing between 180 degree pulses or by changing the effective spin-locking field strength. In this Communication, we introduce a new method to induce a dispersion of relaxation rates. Our approach relies on altering the shape of the adiabatic full passage pulse and is conceptually different from existing approaches. By changing the nature of the adiabatic radiofrequency irradiation, we are able to obtain rotating frame R(1rho) and R(2rho) dispersion curves that are sensitive to slow micros/ms protein dynamics (demonstrated with ubiquitin). The strengths of this method are to (a) extend the dynamic range of the relaxation dispersion analysis, (b) avoid the need for multiple magnetic field strengths to extract dynamic parameters, (c) measure accurate relaxation rates that are independent of frequency offset, and (d) reduce the stress to NMR hardware (e.g., cryoprobes).
Collapse
Affiliation(s)
- Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nathaniel J. Traaseth
- Department of Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gianluigi Veglia
- Department of Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Chemistry and Biochemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael Garwood
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shalom Michaeli
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|