Tulumello DV, Deber CM. Efficiency of detergents at maintaining membrane protein structures in their biologically relevant forms.
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012;
1818:1351-8. [PMID:
22285740 DOI:
10.1016/j.bbamem.2012.01.013]
[Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/11/2012] [Accepted: 01/13/2012] [Indexed: 10/14/2022]
Abstract
High-resolution structural analysis of membrane proteins by X-ray crystallography or solution NMR spectroscopy often requires their solubilization in the membrane-mimetic environments of detergents. Yet the choice of a detergent suitable for a given study remains largely empirical. In the present work, we considered the micelle-crystallized structures of lactose permease (LacY), the sodium/galactose symporter (vSGLT), the vitamin B(12) transporter (BtuCD), and the arginine/agmatine antiporter (AdiC). Representative transmembrane (TM) segments were selected from these proteins based on their relative contact(s) with water, lipid, and/or within the protein, and were synthesized as Lys-tagged peptides. Each peptide was studied by circular dichroism and fluorescence spectroscopy in water, and in the presence of the detergents sodium dodecylsulfate (SDS, anionic); n-dodecyl phosphatidylcholine (DPC, zwitterionic); n-dodecyl-β-d-maltoside (DDM, neutral); and n-octyl-β-d-glucoside (OG, neutral, varying acyl tail length). We found that (i) the secondary structures of the TM segments were statistically indistinguishable in the four detergents studied; and (ii) a strong correlation exists between the extent of helical structure of each individual TM segment in detergents with its helicity level as it exists in the full-length protein, indicating that helix adoption is fundamentally the same in both environments. The denaturing properties of so-called 'harsh' detergents may thus largely be due to their interactions with non-membranous regions of proteins. Given the consistency of structural features observed for each TM segment in a variety of micellar media, the overall results suggest that the structure likely corresponds to its relevant biological form in the intact protein in its native lipid bilayer environment.
Collapse