1
|
Lausen B, Ahang A, Cummins S, Wang T. Investigation of Best Practices for Venom Toxin Purification in Jellyfish towards Functional Characterisation. Toxins (Basel) 2023; 15:170. [PMID: 36977061 PMCID: PMC10059823 DOI: 10.3390/toxins15030170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
The relative lack of marine venom pharmaceuticals can be anecdotally attributed to difficulties in working with venomous marine animals, including how to maintain venom bioactivity during extraction and purification. The primary aim of this systematic literature review was to examine the key factors for consideration when extracting and purifying jellyfish venom toxins to maximise their effectiveness in bioassays towards the characterisation of a single toxin.An up-to-date database of 119 peer-reviewed research articles was established for all purified and semi-purified venoms across all jellyfish, including their level of purification, LD50, and the types of experimental toxicity bioassay used (e.g., whole animal and cell lines). We report that, of the toxins successfully purified across all jellyfish, the class Cubozoa (i.e., Chironex fleckeri and Carybdea rastoni) was most highly represented, followed by Scyphozoa and Hydrozoa. We outline the best practices for maintaining jellyfish venom bioactivity, including strict thermal management, using the "autolysis" extraction method and two-step liquid chromatography purification involving size exclusion chromatography. To date, the box jellyfish C. fleckeri has been the most effective jellyfish venom model with the most referenced extraction methods and the most isolated toxins, including CfTX-A/B. In summary, this review can be used as a resource for the efficient extraction, purification, and identification of jellyfish venom toxins.
Collapse
Affiliation(s)
- Blake Lausen
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs 4556, Australia
| | - Anahita Ahang
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs 4556, Australia
| | - Scott Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs 4556, Australia
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs 4556, Australia
| |
Collapse
|
2
|
Li X, Ma X, Chen X, Wang T, Liu Q, Wang Y, Li Z, Höfer J, Li F, Xiao L, Sun X, Mo J. The medusa of Aurelia coerulea is similar to its polyp in molecular composition and different from the medusa of Stomolophus meleagris in toxicity. Toxicon 2022; 210:89-99. [PMID: 35183571 DOI: 10.1016/j.toxicon.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND The incidents of Aurelia sp. stinging have recently increased because of a bloom in offshore area. However, their symptoms are much milder than those from another scyphozoan jellyfish, Stomolophus meleagris. METHODS The molecular composition of the medusa and polyp of Aurelia coerulea was analyzed by sequencing the transcriptome and proteome. The toxicity of tentacle extract from A. coerulea medusa (A-TE) and S. meleagris medusa (S-TE) was measured by the survival rates of mice, their blood indexes, and integrity of red blood cells. RESULTS The medusa and polyp of A. coerulea are similar in molecular composition, while their gene expressions are significantly different at both transcriptome and proteome levels. A-TE displayed no in vitro hemolysis and caused mild damage to the liver, heart and kidney instead of lethality. In contrast, S-TE showed strong hemolytic toxicity, and lethal effect with serious damage to the liver, heart and kidney. The toxin screening in the medusae showed that there were similar toxin categories though the number of toxin species in A. coerulea was larger than that in S. meleagris. Among them, lactotransferrin and venom prothrombin activator were the two predominant protein toxins in the medusae of A. coerulea and S. meleagris, respectively. CONCLUSIONS A. coerulea medusa and polyp have similar molecular compositions, though there are observable morphological differences. The toxicity of A. coerulea medusa is significantly weaker than that of S. meleagris medusa of which the variation in toxin expressions is feasibly an important reason.
Collapse
Affiliation(s)
- Xiaoya Li
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Xueqi Ma
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Xintong Chen
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Tingfang Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Qing Liu
- College of Animal Science, Shanxi Agricultural University, 030801, Shanxi, PR China.
| | - Yongfang Wang
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Zhezhe Li
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China; College of Pharmacy, Xinjiang Medical University, Wulumuqi, Xinjiang, 830054, China.
| | - Juan Höfer
- Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Fangbing Li
- National Key Laboratory of Medical Immunology &Institute of Immunology, Navy Medical University, Shanghai, China.
| | - Liang Xiao
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Xuejun Sun
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Jinggang Mo
- Department of Hepatobiliary Surgery Taizhou Central Hospital, 999 Donghai Road, Taizhou, Zhejiang, 318000, China.
| |
Collapse
|
3
|
Molecular dissection of box jellyfish venom cytotoxicity highlights an effective venom antidote. Nat Commun 2019; 10:1655. [PMID: 31040274 PMCID: PMC6491561 DOI: 10.1038/s41467-019-09681-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 03/25/2019] [Indexed: 01/11/2023] Open
Abstract
The box jellyfish Chironex fleckeri is extremely venomous, and envenoming causes tissue necrosis, extreme pain and death within minutes after severe exposure. Despite rapid and potent venom action, basic mechanistic insight is lacking. Here we perform molecular dissection of a jellyfish venom-induced cell death pathway by screening for host components required for venom exposure-induced cell death using genome-scale lenti-CRISPR mutagenesis. We identify the peripheral membrane protein ATP2B1, a calcium transporting ATPase, as one host factor required for venom cytotoxicity. Targeting ATP2B1 prevents venom action and confers long lasting protection. Informatics analysis of host genes required for venom cytotoxicity reveal pathways not previously implicated in cell death. We also discover a venom antidote that functions up to 15 minutes after exposure and suppresses tissue necrosis and pain in mice. These results highlight the power of whole genome CRISPR screening to investigate venom mechanisms of action and to rapidly identify new medicines. Box jellyfish venom causes tissue damage, pain, and death through unknown molecular mechanisms. Here, Lau et al. perform a CRISPR screen to identify genes required for venom action and use this information to develop an antidote that blocks venom-induced pain and tissue damage in vivo.
Collapse
|
4
|
Stewart SE, D'Angelo ME, Piantavigna S, Tabor RF, Martin LL, Bird PI. Assembly of streptolysin O pores assessed by quartz crystal microbalance and atomic force microscopy provides evidence for the formation of anchored but incomplete oligomers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:115-26. [DOI: 10.1016/j.bbamem.2014.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/20/2014] [Accepted: 10/03/2014] [Indexed: 11/24/2022]
|
5
|
Effect of tetracaine on DMPC and DMPC+cholesterol biomembrane models: Liposomes and monolayers. Colloids Surf B Biointerfaces 2014; 116:63-71. [DOI: 10.1016/j.colsurfb.2013.12.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 11/21/2022]
|
6
|
Ponce D, López-Vera E, Aguilar MB, Sánchez-Rodríguez J. Preliminary results of the in vivo and in vitro characterization of a tentacle venom fraction from the jellyfish Aurelia aurita. Toxins (Basel) 2013; 5:2420-33. [PMID: 24322597 PMCID: PMC3873694 DOI: 10.3390/toxins5122420] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/01/2013] [Accepted: 11/04/2013] [Indexed: 11/16/2022] Open
Abstract
The neurotoxic effects produced by a tentacle venom extract and a fraction were analyzed and correlated by in vivo and in vitro approaches. The tentacle venom extract exhibited a wide range of protein components (from 24 to >225 kDa) and produced tetanic reactions, flaccid paralysis, and death when injected into crabs. Two chromatography fractions also produced uncontrolled appendix movements and leg stretching. Further electrophysiological characterization demonstrated that one of these fractions potently inhibited ACh-elicited currents mediated by both vertebrate fetal and adult muscle nicotinic acetylcholine receptors (nAChR) subtypes. Receptor inhibition was concentration-dependent and completely reversible. The calculated IC(50) values were 1.77 μg/μL for fetal and 2.28 μg/μL for adult muscle nAChRs. The bioactive fraction was composed of a major protein component at ~90 kDa and lacked phospholipase A activity. This work represents the first insight into the interaction of jellyfish venom components and muscle nicotinic receptors.
Collapse
Affiliation(s)
- Dalia Ponce
- Instituto de Ciencias del Mar y Limnología, Unidad Académica Puerto Morelos, Universidad Nacional Autónoma de México,77500 Cancún, Quintana Roo, Mexico; E-Mail:
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 Coyoacán, Distrito Federal, Mexico
| | - Estuardo López-Vera
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 Coyoacán, Distrito Federal, Mexico
| | - Manuel B. Aguilar
- Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla 76230, Querétaro, Mexico; E-Mail:
| | - Judith Sánchez-Rodríguez
- Instituto de Ciencias del Mar y Limnología, Unidad Académica Puerto Morelos, Universidad Nacional Autónoma de México,77500 Cancún, Quintana Roo, Mexico; E-Mail:
| |
Collapse
|
7
|
Lassen S, Wiebring A, Helmholz H, Ruhnau C, Prange A. Isolation of a Nav channel blocking polypeptide from Cyanea capillata medusae – A neurotoxin contained in fishing tentacle isorhizas. Toxicon 2012; 59:610-6. [DOI: 10.1016/j.toxicon.2012.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/08/2012] [Accepted: 02/21/2012] [Indexed: 01/31/2023]
|
8
|
Lassen S, Helmholz H, Ruhnau C, Prange A. A novel proteinaceous cytotoxin from the northern Scyphozoa Cyanea capillata (L.) with structural homology to cubozoan haemolysins. Toxicon 2011; 57:721-9. [PMID: 21333668 DOI: 10.1016/j.toxicon.2011.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/01/2011] [Accepted: 02/08/2011] [Indexed: 12/31/2022]
Abstract
It is well known that jellyfish are producers of complex mixtures of proteinaceous toxins for prey capture and defence. Nevertheless, studies on boreal scyphozoans concerning venom composition and toxic effects are rare. Here the isolation of a novel cytotoxic protein from the fishing tentacle venom of Cyanea capillata (L. 1758) using bioactivity-guided, multidimensional liquid chromatography is described. The crude venom was purified utilising preparative size-exclusion, ion-exchange, and reversed-phase chromatography. The cytotoxicity of resulting chromatographic fractions has been proven by a dye-uptake assay with the human hepatocyte cell line HepG2. The final purification step yielded, among other fractions, a fraction containing a single protein (named CcTX-1) with a molecular weight of its main isoform of 31.17 kDa The purification process leads to an increased cytotoxic activity per protein equivalents and the finally isolated CcTX-1 caused a nearly total loss of cell viability at a protein concentration of 1.3 μg mL⁻¹ corresponding to 0.4 μg/10⁵ cells. De novo sequencing of CcTX-1 was conducted after enzymatic digestion and subsequent matrix-assisted laser desorption ionisation time-of-flight/time-of-flight mass spectrometry (MALDI-ToF/ToF MS/MS). The obtained sequence data provide an approximate 85% description of the amino acid sequence. This sequence information partially matched that of two known haemolytic proteins of two cubozoan species: CaTX-1 from Carybdea alata Reynaud, 1830 and CrTX-1 from Carybdea rastonii Haacke, 1886.
Collapse
Affiliation(s)
- Stephan Lassen
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Department for Marine Bioanalytical Chemistry, Max-Planck-St. 1, 21502 Geesthacht, Germany.
| | | | | | | |
Collapse
|