1
|
Al-Shihabi AM, Al-Mohaya M, Haider M, Demiralp B. Exploring the promise of lipoplexes: From concept to clinical applications. Int J Pharm 2025; 674:125424. [PMID: 40043964 DOI: 10.1016/j.ijpharm.2025.125424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/02/2025] [Accepted: 02/28/2025] [Indexed: 03/09/2025]
Abstract
Lipoplexes are non-viral lipid vectors that effectively form complexes with genetic material, positioning them as promising alternatives to viral vectors in gene therapy. Their advantages include lower toxicity, reduced immunogenicity, improved targetability, and ease of large-scale production. A typical lipoplex is composed of cationic lipids, neutral lipids, and anionic nucleic acids (e.g., DNA, mRNA, miRNA, siRNA, shRNA). Neutral lipids play an auxiliary role and are often used as transfection enhancers. Enhancing lipoplex efficiency often involves modifying the cationic lipid structure through functional groups like PEG polymers and targeting ligands. The assembly of lipoplexes occurs spontaneously. This process involves the binding of the positively charged polar head group of the cationic lipid to the negatively charged DNA spontaneously as a result of electrostatic interaction, then irreversible rearrangement and condensation of the lipoplex occurs to form either lamellar or hexagonal structures. The transfection process encompasses several steps: cellular entry, endosomal escape and cargo release, cytoplasmic trafficking, and nuclear entry. The physicochemical and biological properties of lipoplexes are influenced by factors such as lipid structure, charge ratio, and environmental conditions. Despite certain limitations like low gene transfer efficiency and rapid clearance by serum proteins, lipoplexes show promise for clinical applications. They can be administered through various routes, offering potential treatments for diseases such as cancer, bone damage, infection, and cystic fibrosis. The study aims to examine the potential of lipoplexes as a promising vehicle for delivering therapeutic agents and their progression from theoretical concepts to practical clinical applications.
Collapse
Affiliation(s)
- Alaa M Al-Shihabi
- Institute of Health Sciences, Istanbul University, 34216, Beyazıt, Istanbul, Turkey; Istanbul University, Faculty of Pharmacy, Pharmaceutical Technology Dept., 34126, Beyazıt, Istanbul, Turkey
| | - Mazen Al-Mohaya
- Institute of Health Sciences, Istanbul University, 34216, Beyazıt, Istanbul, Turkey; Istanbul University, Faculty of Pharmacy, Pharmaceutical Technology Dept., 34126, Beyazıt, Istanbul, Turkey
| | - Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah 27272 Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah 27272 Sharjah, United Arab Emirates.
| | - Burcu Demiralp
- Istanbul University, Faculty of Pharmacy, Pharmaceutical Technology Dept., 34126, Beyazıt, Istanbul, Turkey.
| |
Collapse
|
2
|
Gómez-Varela AI, Gaspar R, Miranda A, Assis JL, Valverde RHF, Einicker-Lamas M, Silva BFB, De Beule PAA. Fluorescence cross-correlation spectroscopy as a valuable tool to characterize cationic liposome-DNA nanoparticle assembly. JOURNAL OF BIOPHOTONICS 2021; 14:e202000200. [PMID: 32827206 DOI: 10.1002/jbio.202000200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The development of nonviral gene delivery vehicles for therapeutic applications requires methods capable of quantifying the association between the genes and their carrier counterparts. Here we investigate the potential of fluorescence cross-correlation spectroscopy (FCCS) to characterize and optimize the assembly of nonviral cationic liposome (CL)-DNA complexes based on a CL formulation consisting of the cationic lipid DOTAP and zwitterionic lipid DOPC. We use a DNA plasmid for lipoplex loading encoding the Oct4 gene, critically involved in reprogramming somatic cells into induced pluripotent stem cells. We demonstrate that FCCS is able to quantitatively determine the extent of the association between DNA and the liposomes and assess its loading capacity. We also establish that the cationic lipid fraction, being proportional to the liposome membrane charge density, as well as charge ratio between the CLs and anionic DNA play an important role in the degree of interaction between the liposomes and DNA.
Collapse
Affiliation(s)
- Ana I Gómez-Varela
- International Iberian Nanotechnology Laboratory, Braga, Portugal
- Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ricardo Gaspar
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Adelaide Miranda
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Juliane L Assis
- Biomembranes Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael H F Valverde
- Biomembranes Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Biomembranes Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno F B Silva
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | | |
Collapse
|
3
|
Rodrigues BDS, Kanekiyo T, Singh J. Nerve Growth Factor Gene Delivery across the Blood–Brain Barrier to Reduce Beta Amyloid Accumulation in AD Mice. Mol Pharm 2020; 17:2054-2063. [DOI: 10.1021/acs.molpharmaceut.0c00218] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Bruna dos Santos Rodrigues
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, United States
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| |
Collapse
|
4
|
Dos Santos Rodrigues B, Banerjee A, Kanekiyo T, Singh J. Functionalized liposomal nanoparticles for efficient gene delivery system to neuronal cell transfection. Int J Pharm 2019; 566:717-730. [PMID: 31202901 DOI: 10.1016/j.ijpharm.2019.06.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 06/13/2019] [Indexed: 01/17/2023]
Abstract
Liposome based delivery systems provide a promising strategy for treatment of neurodegenerative diseases. A rational design of brain-targeted liposomes can support the development of more efficient treatments with drugs and gene materials. Here, we characterized surface modified liposomes with transferrin (Tf) protein and penetratin (Pen), a cell-penetrating peptide, for efficient and targeted gene delivery to brain cells. PenTf-liposomes efficiently encapsulated plasmid DNA, protected them against enzymatic degradation and exhibited a sustained in vitro release kinetics. The formulation demonstrated low cytotoxicity and was non-hemolytic. Liposomes were internalized into cells mainly through energy-dependent pathways especially clathrin-mediated endocytosis. Reporter gene transfection and consequent protein expression in different cell lines were significantly higher using PenTf-liposomes compared to unmodified liposomes. The ability of these liposomes to escape from endosomes can be an important factor which may have likely contributed to the high transfection efficiency observed. Rationally designed bifunctional targeted-liposomes provide an efficient tool for improving the targetability and efficacy of synthesized delivery systems. This investigation of liposomal properties attempted to address cell differences, as well as, vector differences, in gene transfectability. The findings indicate that PenTf-liposomes can be a safe and non-invasive approach to transfect neuronal cells through multiple endocytosis pathways.
Collapse
Affiliation(s)
- Bruna Dos Santos Rodrigues
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Amrita Banerjee
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA.
| |
Collapse
|
5
|
Bunker A, Magarkar A, Viitala T. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2334-2352. [DOI: 10.1016/j.bbamem.2016.02.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/22/2023]
|
6
|
Ohno M, Toyota T, Nomoto T, Fujinami M. Changes in Interfacial Tension of a Lipid Membrane Formed at the Water/Chloroform Interface upon DNA Complex Formation. ANAL SCI 2015; 31:979-86. [PMID: 26460361 DOI: 10.2116/analsci.31.979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Changes in the interfacial tension of a lipid monolayer membrane formed at the water/chloroform interface upon DNA addition were measured using the quasi-elastic laser scattering (QELS) method. A cationic lipid, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTAP), as well as zwitterionic lipids, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), were used to form lipid monolayer membranes at different calcium ion concentrations. A rapid decrease of the interfacial tension resulting from electrostatic interactions between DOTAP and DNA was observed within 10 s. However, such rapid decreases were not observed for DOPE or DOPC. A decrease in the interfacial tension was exhibited by DOPE after 1000 s from the addition of DNA, which may be due to an overall structural change in the DOPE membrane. A DOTAP/DOPE complex system showed behaviors attributable to both DOTAP and DOPE, whereas the behavior of the DOTAP/DOPC system resembled that of DOPC alone. The current results provide a model for the so-called lipoplex carriers used in gene therapy.
Collapse
Affiliation(s)
- Masashi Ohno
- Department of Applied Chemistry and Biotechnology, Chiba University
| | | | | | | |
Collapse
|
7
|
Reinhardt N, Adumeau L, Lambert O, Ravaine S, Mornet S. Quaternary Ammonium Groups Exposed at the Surface of Silica Nanoparticles Suitable for DNA Complexation in the Presence of Cationic Lipids. J Phys Chem B 2015; 119:6401-11. [DOI: 10.1021/acs.jpcb.5b01834] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nora Reinhardt
- CNRS,
ICMCB, UPR 9048, Université de Bordeaux, 87 avenue du Dr. A. Schweitzer, F-33600 Pessac, France
- CNRS,
CRPP, UPR 8641, Université de Bordeaux, F-33600, Pessac, France
| | - Laurent Adumeau
- CNRS,
ICMCB, UPR 9048, Université de Bordeaux, 87 avenue du Dr. A. Schweitzer, F-33600 Pessac, France
| | - Olivier Lambert
- CNRS,
CBMN, UMR 5248, Université de Bordeaux, F-33402 Talence, France
| | - Serge Ravaine
- CNRS,
CRPP, UPR 8641, Université de Bordeaux, F-33600, Pessac, France
| | - Stéphane Mornet
- CNRS,
ICMCB, UPR 9048, Université de Bordeaux, 87 avenue du Dr. A. Schweitzer, F-33600 Pessac, France
| |
Collapse
|
8
|
Deleu M, Crowet JM, Nasir MN, Lins L. Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3171-3190. [DOI: 10.1016/j.bbamem.2014.08.023] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/05/2014] [Accepted: 08/21/2014] [Indexed: 02/08/2023]
|
9
|
Oliveira ACN, Martens TF, Raemdonck K, Adati RD, Feitosa E, Botelho C, Gomes AC, Braeckmans K, Real Oliveira MECD. Dioctadecyldimethylammonium:monoolein nanocarriers for efficient in vitro gene silencing. ACS APPLIED MATERIALS & INTERFACES 2014; 6:6977-6989. [PMID: 24712543 DOI: 10.1021/am500793y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study describes a novel liposomal formulation for siRNA delivery, based on the mixture of the neutral lipid monoolein (MO) and cationic lipids of the dioctadecyldimethylammonium (DODA) family. The cationic lipids dioctadecyldimethylammonium bromide (DODAB) and chloride (DODAC) were compared in order to identify which one will most efficiently induce gene silencing. MO has a fluidizing effect on DODAC and DODAB liposomes, although it was more homogeneously distributed in DODAC bilayers. All MO-based liposomal formulations were able to efficiently encapsulate siRNA. Stable lipoplexes of small size (100-160 nm) with a positive surface charge (>+45 mV) were formed. A more uniform MO incorporation in DODAC:MO may explain an increase of the fusogenic potential of these liposomes. The siRNA-lipoplexes were readily internalized by human nonsmall cell lung carcinoma (H1299) cells, in an energy dependent process. DODAB:MO nanocarriers showed a higher internalization efficiency in comparison to DODAC:MO lipoplexes, and were also more efficient in promoting gene silencing. MO had a similar gene silencing ability as the commonly used helper lipid 1,2-dioleyl-3-phosphatidylethanolamine (DOPE), but with much lower cytotoxicity. Taking in consideration all the results presented, DODAB:MO liposomes are the most promising tested formulation for systemic siRNA delivery.
Collapse
Affiliation(s)
- Ana Cristina Norberto Oliveira
- CBMA (Center of Molecular and Environmental Biology), Department of Biology and ‡CFUM (Center of Physics), Department of Physics, University of Minho , Campus of Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Loizeau D, Le Gall T, Mahfoudhi S, Berchel M, Maroto A, Yaouanc JJ, Jaffrès PA, Lehn P, Deschamps L, Montier T, Giamarchi P. Physicochemical properties of cationic lipophosphoramidates with an arsonium head group and various lipid chains: A structure–activity approach. Biophys Chem 2013. [DOI: 10.1016/j.bpc.2012.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|