1
|
Yin W, Mai W, Cui D, Zhao T, Song J, Zhang W, Chang Y, Zhan Y. Dynamic responses during early development of the sea urchin Strongylocentrotus intermedius to CO 2-driven ocean acidification: A microRNA-mRNA integrated analysis. MARINE POLLUTION BULLETIN 2025; 212:117514. [PMID: 39755060 DOI: 10.1016/j.marpolbul.2024.117514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
To explore the dynamic molecular responses to CO2-driven ocean acidification (OA) during the early developmental stages of sea urchins, gametes of Strongylocentrotus intermedius were fertilized and developed to the four-armed larva stage in either natural seawater (as a control; pHNBS = 7.99 ± 0.01) or acidified conditions (ΔpHNBS = -0.3, -0.4, and - 0.5 units) according to the prediction for ocean pH by the end of this century. Specimens from five developmental stages (fertilization, cleavage, blastula, prism, and four-armed larva) were collected and comparative microRNA (miRNA) and mRNA transcriptome analyses were performed. The results showed that 1) a total of 22,224 differentially expressed genes (DEGs) and 51 differentially expressed miRNAs (DEMs) were identified in the OA-treated groups compared with the control group. 2) The numbers of both DEGs and DEMs were the largest at the blastula stage, indicating dramatic changes in gene expression. 3) Five "miR-1/DEG" modules were identified as potential biomarkers reflecting the response of sea urchins to OA during the early developmental period. 4) The PI3K/Akt signaling pathway was a key pathway involved in the response of S. intermedius to OA in its early developmental stages. This study deepens our understanding of the dynamic molecular regulatory mechanisms underlying sea urchin responses to CO2-driven OA.
Collapse
Affiliation(s)
- Wenlu Yin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Wenhong Mai
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Dongyao Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China; College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Tanjun Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China; College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, PR China
| | - Jian Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Weijie Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China; College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China; College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, PR China.
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
2
|
Tsai HJ, Chang YF, Hsieh YJ, Wang JD, Wu CC, Ho MY, Cheng JC, Chen DP, Liao HR, Tseng CP. Human Disabled-2 regulates thromboxane A 2 signaling for efficient hemostasis in thrombocytopenia. Nat Commun 2024; 15:9816. [PMID: 39537612 PMCID: PMC11561248 DOI: 10.1038/s41467-024-54093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding platelet protein functions facilitates better assessment of platelet disorders. Megakaryocyte lineage-restricted human Disabled-2 knock-in (hDAB2-KI) mice are generated to delineate the functions of hDab2, a regulator of platelet function, in the control of bleeding associated with thrombocytopenia. Here we show that hDab2-KI mice with thrombocytopenia display decreased bleeding time when compared to the control mice. hDab2 augments thromboxane A2 (TxA2) mimetic U46619- but not other agonists-stimulated granule secretion, integrin activation, and aggregation at a lower platelet concentration in vitro. Binding of hDab2 to phosphatidic acid (PA) facilitates formation of the PA-hDab2-AKT complex leading to an increase in U46619-stimulated AKT-Ser473 phosphorylation and the first wave of ADP/ATP release. Consistent with these findings, hDab2 expression in platelets from patients with immune thrombocytopenic purpura is positively correlated with U46619-stimulated ATP release, which in turn inversely correlated with their bleeding tendency. hDab2 appears crucial in regulating bleeding severity associated with thrombocytopenia by a functional interplay with ADP/ATP release underlying TxA2 signaling.
Collapse
Affiliation(s)
- Hui-Ju Tsai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ya-Fang Chang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ya-Ju Hsieh
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Jiaan-Der Wang
- Children's Medical Center, Taichung Veterans General Hospital, Taichung, 407, Taiwan, Republic of China
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 402, Taiwan, Republic of China
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Meng-Ying Ho
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, North District, Taichung, 404, Taiwan, Republic of China
| | - Ding-Ping Chen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China
| | - Hsiang-Rui Liao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China
| | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China.
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China.
| |
Collapse
|
3
|
Pandya DV, Parikh RV, Gena RM, Kothari NR, Parekh PS, Chorawala MR, Jani MA, Yadav MR, Shah PA. The scaffold protein disabled 2 (DAB2) and its role in tumor development and progression. Mol Biol Rep 2024; 51:701. [PMID: 38822973 DOI: 10.1007/s11033-024-09653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Disabled 2 (DAB2) is a multifunctional protein that has emerged as a critical component in the regulation of tumor growth. Its dysregulation is implicated in various types of cancer, underscoring its importance in understanding the molecular mechanisms underlying tumor development and progression. This review aims to unravel the intricate molecular mechanisms by which DAB2 exerts its tumor-suppressive functions within cancer signaling pathways. METHODS AND RESULTS We conducted a comprehensive review of the literature focusing on the structure, expression, physiological functions, and tumor-suppressive roles of DAB2. We provide an overview of the structure, expression, and physiological functions of DAB2. Evidence supporting DAB2's role as a tumor suppressor is explored, highlighting its ability to inhibit cell proliferation, induce apoptosis, and modulate key signaling pathways involved in tumor suppression. The interaction between DAB2 and key oncogenes is examined, elucidating the interplay between DAB2 and oncogenic signaling pathways. We discuss the molecular mechanisms underlying DAB2-mediated tumor suppression, including its involvement in DNA damage response and repair, regulation of cell cycle progression and senescence, and modulation of epithelial-mesenchymal transition (EMT). The review explores the regulatory networks involving DAB2, covering post-translational modifications, interactions with other tumor suppressors, and integration within complex signaling networks. We also highlight the prognostic significance of DAB2 and its role in pre-clinical studies of tumor suppression. CONCLUSION This review provides a comprehensive understanding of the molecular mechanisms by which DAB2 exerts its tumor-suppressive functions. It emphasizes the significance of DAB2 in cancer signaling pathways and its potential as a target for future therapeutic interventions.
Collapse
Affiliation(s)
- Disha V Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Rajsi V Parikh
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Ruhanahmed M Gena
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nirjari R Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Priyajeet S Parekh
- Pharmacy Practice Division, AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India.
| | - Maharsh A Jani
- Pharmacy Practice Division, Anand Niketan, Shilaj, Ahmedabad, Gujarat, 380059, India
| | - Mayur R Yadav
- Department of Pharmacy Practice and Administration, Western University of Health Science, 309 E Second St, Pomona, CA, 91766, USA
| | - Palak A Shah
- Department of Pharmacology and Pharmacy Practice, K. B. Institute of Pharmaceutical Education and Research, Gandhinagar, Gujarat, 382023, India
| |
Collapse
|
4
|
Capelluto DGS. The repertoire of protein-sulfatide interactions reveal distinct modes of sulfatide recognition. Front Mol Biosci 2022; 9:1080161. [PMID: 36533082 PMCID: PMC9748700 DOI: 10.3389/fmolb.2022.1080161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 12/29/2023] Open
Abstract
Sulfatide is an abundant glycosphingolipid in the mammalian nervous system, kidney, trachea, gastrointestinal tract, spleen, and pancreas and is found in low levels in other tissues. Sulfatide is characterized by the presence of a sulfate group in the hydrophilic galactose moiety, with isoforms differing in their sphingosine base and the length, unsaturation, and hydroxylation of their acyl chain. Sulfatide has been associated with a variety of cellular processes including immune responses, cell survival, myelin organization, platelet aggregation, and host-pathogen interactions. Structural studies of protein-sulfatide interactions markedly advanced our understanding of their molecular contacts, key-interacting residues, orientation of the sulfatide in its binding site, and in some cases, sulfatide-mediated protein oligomerization. To date, all protein-sulfatide interactions are reported to display dissociation constants in the low micromolar range. At least three distinct modes of protein-sulfatide binding were identified: 1) protein binding to short consensus stretches of amino acids that adopt α-helical-loop-α-helical conformations; 2) sulfatide-bound proteins that present the sulfatide head group to another protein; and 3) proteins that cage sulfatides. The scope of this review is to present an up-to-date overview of these molecular mechanisms of sulfatide recognition to better understand the role of this glycosphingolipid in physiological and pathological states.
Collapse
Affiliation(s)
- Daniel G. S Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
5
|
Song W, Gottschalk CJ, Tang TX, Biscardi A, Ellena JF, Finkielstein CV, Brown AM, Capelluto DGS. Structural, in silico, and functional analysis of a Disabled-2-derived peptide for recognition of sulfatides. Sci Rep 2020; 10:13520. [PMID: 32782308 PMCID: PMC7421900 DOI: 10.1038/s41598-020-70478-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
Disabled-2 (Dab2) is an adaptor protein that regulates the extent of platelet aggregation by two mechanisms. In the first mechanism, Dab2 intracellularly downregulates the integrin αIIbβ3 receptor, converting it to a low affinity state for adhesion and aggregation processes. In the second mechanism, Dab2 is released extracellularly and interacts with the pro-aggregatory mediators, the integrin αIIbβ3 receptor and sulfatides, blocking their association to fibrinogen and P-selectin, respectively. Our previous research indicated that a 35-amino acid region within Dab2, which we refer to as the sulfatide-binding peptide (SBP), contains two potential sulfatide-binding motifs represented by two consecutive polybasic regions. Using molecular docking, nuclear magnetic resonance, lipid-binding assays, and surface plasmon resonance, this work identifies the critical Dab2 residues within SBP that are responsible for sulfatide binding. Molecular docking suggested that a hydrophilic region, primarily mediated by R42, is responsible for interaction with the sulfatide headgroup, whereas the C-terminal polybasic region contributes to interactions with acyl chains. Furthermore, we demonstrated that, in Dab2 SBP, R42 significantly contributes to the inhibition of platelet P-selectin surface expression. The Dab2 SBP residues that interact with sulfatides resemble those described for sphingolipid-binding in other proteins, suggesting that sulfatide-binding proteins share common binding mechanisms.
Collapse
Affiliation(s)
- Wei Song
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Carter J Gottschalk
- Research and Informatics, University Libraries, Biochemistry Department, and Center for Drug Discovery, Virginia Tech, Blacksburg, 24061, VA, USA
| | - Tuo-Xian Tang
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Andrew Biscardi
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jeffrey F Ellena
- Biomolecular Magnetic Resonance Facility, University of Virginia, Charlottesville, VA, 22904, USA
| | - Carla V Finkielstein
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute, Department of Biological Sciences, and Center for Drug Discovery, Virginia Tech, Roanoke, VA, 24016, USA
| | - Anne M Brown
- Research and Informatics, University Libraries, Biochemistry Department, and Center for Drug Discovery, Virginia Tech, Blacksburg, 24061, VA, USA
| | - Daniel G S Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
6
|
Yap WY, Tan KJSX, Hwang JS. Expansion of Hydra actinoporin-like toxin (HALT) gene family: Expression divergence and functional convergence evolved through gene duplication. Toxicon 2019; 170:10-20. [PMID: 31513812 DOI: 10.1016/j.toxicon.2019.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 11/15/2022]
Abstract
Hydra actinoporin-like toxin 1 (HALT-1) was previously shown to cause cytolysis and haemolysis in a number of human cells and has similar functional properties to the actinoporins equinatoxin and sticholysin. In addition to HALT-1, five other HALTs (HALTs 2, 3, 4, 6 and 7) were also isolated from Hydra magnipapillata and expressed as recombinant proteins in this study. We demonstrated that recombinant HALTs have cytolytic activity on HeLa cells but each exhibited a different range of toxicity. All six recombinant HALTs bound to sulfatide, while rHALT-1 and rHALT-3 bound to two additional sphingolipids, lysophosphatidic acid and sphingosine-1-phosphate as indicated by the protein-lipid overlay assay. When either tryptophan133 or tyrosine129 of HALT-1 was mutated, the mutant protein lost binding to sulfatide, lysophosphatidic acid and sphingosine-1-phosphate. As further verification of HALTs' binding to sulfatide, we performed ELISA for each HALT. To determine the cell-type specific gene expression of seven HALTs in Hydra, we searched for individual HALT expression in the single-cell RNA-seq data set of Single Cell Portal. The results showed that HALT-1, 4 and 7 were expressed in differentiating stenoteles. HALT-1 and HALT-6 were expressed in the female germline during oogenesis. HALT-2 was strongly expressed in the gland and mucous cells in the endoderm. Information on HALT-3 and HALT-5 could not be found in the single-cell data set. Our findings show that subfunctionalisation of gene expression following duplication enabled HALTs to become specialized in various cell types of the interstitial cell lineage.
Collapse
Affiliation(s)
- Wei Yuen Yap
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights Cheras, 56000, Kuala Lumpur, Malaysia
| | - Katrina Joan Shu Xian Tan
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights Cheras, 56000, Kuala Lumpur, Malaysia
| | - Jung Shan Hwang
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
7
|
Finkielstein CV, Capelluto DGS. Disabled-2: A modular scaffold protein with multifaceted functions in signaling. Bioessays 2017; 38 Suppl 1:S45-55. [PMID: 27417122 DOI: 10.1002/bies.201670907] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/08/2015] [Accepted: 07/12/2015] [Indexed: 12/14/2022]
Abstract
Disabled-2 (Dab2) is a multimodular scaffold protein with signaling roles in the domains of cell growth, trafficking, differentiation, and homeostasis. Emerging evidences place Dab2 as a novel modulator of cell-cell interaction; however, its mode of action has remained largely elusive. In this review, we highlight the relevance of Dab2 function in cell signaling and development and provide the most recent and comprehensive analysis of Dab2's action as a mediator of homotypical and heterotypical interactions. Accordingly, Dab-2 controls the extent of platelet aggregation through various motifs within its N-terminus. Dab2 interacts with the cytosolic tail of the integrin receptor blocking inside-out signaling, whereas extracellular Dab2 competes with fibrinogen for integrin αIIb β3 receptor binding and, thus, modulates outside-in signaling. An additional level of regulation results from Dab2's association with cell surface lipids, an event that defines the extent of cell-cell interactions. As a multifaceted regulator, Dab2 acts as a mediator of endocytosis through its association with the [FY]xNPx[YF] motifs of internalized cell surface receptors, phosphoinositides, and clathrin. Other emerging roles of Dab2 include its participation in developmental mechanisms required for tissue formation and in modulation of immune responses. This review highlights the various novel mechanisms by which Dab2 mediates an array of signaling events with vast physiological consequences.
Collapse
Affiliation(s)
- Carla V Finkielstein
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA
| | - Daniel G S Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
8
|
Zhang J, Dubey P, Padarti A, Zhang A, Patel R, Patel V, Cistola D, Badr A. Novel functions of CCM1 delimit the relationship of PTB/PH domains. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1274-1286. [PMID: 28698152 DOI: 10.1016/j.bbapap.2017.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/27/2017] [Accepted: 07/01/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Three NPXY motifs and one FERM domain in CCM1 makes it a versatile scaffold protein for tethering the signaling components together within the CCM signaling complex (CSC). The cellular role of CCM1 protein remains inadequately expounded. Both phosphotyrosine binding (PTB) and pleckstrin homology (PH) domains were recognized as structurally related but functionally distinct domains. METHODS By utilizing molecular cloning, protein binding assays and RT-qPCR to identify novel cellular partners of CCM1 and its cellular expression patterns; by screening candidate PTB/PH proteins and subsequently structurally simulation in combining with current X-ray crystallography and NMR data to defined the essential structure of PTB/PH domain for NPXY-binding and the relationship among PTB, PH and FERM domain(s). RESULTS We identified a group of 28 novel cellular partners of CCM1, all of which contain either PTB or PH domain(s), and developed a novel classification system for these PTB/PH proteins based on their relationship with different NPXY motifs of CCM1. Our results demonstrated that CCM1 has a wide spectrum of binding to different PTB/PH proteins and perpetuates their specificity to interact with certain PTB/PH domains through selective combination of three NPXY motifs. We also demonstrated that CCM1 can be assembled into oligomers through intermolecular interaction between its F3 lobe in FERM domain and one of the three NPXY motifs. Despite being embedded in FERM domain as F3 lobe, F3 module acts as a fully functional PH domain to interact with NPXY motif. The most salient feature of the study was that both PTB and PH domains are structurally and functionally comparable, suggesting that PTB domain is likely evolved from PH domain with polymorphic structural additions at its N-terminus. CONCLUSIONS A new β1A-strand of the PTB domain was discovered and new minimum structural requirement of PTB/PH domain for NPXY motif-binding was determined. Based on our data, a novel theory of structure, function and relationship of PTB, PH and FERM domains has been proposed, which extends the importance of the NPXY-PTB/PH interaction on the CSC signaling and/or other cell receptors with great potential pointing to new therapeutic strategies. GENERAL SIGNIFICANCE The study provides new insight into the structural characteristics of PTB/PH domains, essential structural elements of PTB/PH domain required for NPXY motif-binding, and function and relationship among PTB, PH and FERM domains.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA.
| | - Pallavi Dubey
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Akhil Padarti
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Aileen Zhang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Rinkal Patel
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Vipulkumar Patel
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - David Cistola
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Ahmed Badr
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
9
|
Tang TX, Xiong W, Finkielstein CV, Capelluto DGS. Identification of Lipid Binding Modulators Using the Protein-Lipid Overlay Assay. Methods Mol Biol 2017; 1647:197-206. [PMID: 28809004 DOI: 10.1007/978-1-4939-7201-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The protein-lipid overlay assay is an inexpensive, easy-to-implement, and high-throughput methodology that employs nitrocellulose membranes to immobilize lipids in order to rapid screen and identify protein-lipid interactions. In this chapter, we show how this methodology can identify potential modulators of protein-lipid interactions by screening water-soluble lipid competitors or even the introduction of pH changes during the binding assay to identify pH-dependent lipid binding events.
Collapse
Affiliation(s)
- Tuo-Xian Tang
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, 24061, USA
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wen Xiong
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, 24061, USA
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Carla V Finkielstein
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Daniel G S Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
10
|
Stahelin RV, Scott JL, Frick CT. Cellular and molecular interactions of phosphoinositides and peripheral proteins. Chem Phys Lipids 2014; 182:3-18. [PMID: 24556335 DOI: 10.1016/j.chemphyslip.2014.02.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 12/23/2022]
Abstract
Anionic lipids act as signals for the recruitment of proteins containing cationic clusters to biological membranes. A family of anionic lipids known as the phosphoinositides (PIPs) are low in abundance, yet play a critical role in recruitment of peripheral proteins to the membrane interface. PIPs are mono-, bis-, or trisphosphorylated derivatives of phosphatidylinositol (PI) yielding seven species with different structure and anionic charge. The differential spatial distribution and temporal appearance of PIPs is key to their role in communicating information to target proteins. Selective recognition of PIPs came into play with the discovery that the substrate of protein kinase C termed pleckstrin possessed the first PIP binding region termed the pleckstrin homology (PH) domain. Since the discovery of the PH domain, more than ten PIP binding domains have been identified including PH, ENTH, FYVE, PX, and C2 domains. Representative examples of each of these domains have been thoroughly characterized to understand how they coordinate PIP headgroups in membranes, translocate to specific membrane docking sites in the cell, and function to regulate the activity of their full-length proteins. In addition, a number of novel mechanisms of PIP-mediated membrane association have emerged, such as coincidence detection-specificity for two distinct lipid headgroups. Other PIP-binding domains may also harbor selectivity for a membrane physical property such as charge or membrane curvature. This review summarizes the current understanding of the cellular distribution of PIPs and their molecular interaction with peripheral proteins.
Collapse
Affiliation(s)
- Robert V Stahelin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN 46617, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States.
| | - Jordan L Scott
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Cary T Frick
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
11
|
Xiao S, Zhao X, Finkielstein CV, Capelluto DGS. A rapid procedure to isolate isotopically labeled peptides for NMR studies: application to the Disabled-2 sulfatide-binding motif. J Pept Sci 2014; 20:216-22. [DOI: 10.1002/psc.2604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/17/2013] [Accepted: 11/26/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Shuyan Xiao
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Virginia Bioinformatics Institute; Virginia Tech; Blacksburg VA 24061 USA
| | - Xiaolin Zhao
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Virginia Bioinformatics Institute; Virginia Tech; Blacksburg VA 24061 USA
| | - Carla V. Finkielstein
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Bioinformatics Institute; Virginia Tech; Blacksburg VA 24061 USA
| | - Daniel G. S. Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Virginia Bioinformatics Institute; Virginia Tech; Blacksburg VA 24061 USA
| |
Collapse
|
12
|
Sun F, Kale SD, Azurmendi HF, Li D, Tyler BM, Capelluto DGS. Structural basis for interactions of the Phytophthora sojae RxLR effector Avh5 with phosphatidylinositol 3-phosphate and for host cell entry. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:330-44. [PMID: 23075041 DOI: 10.1094/mpmi-07-12-0184-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Oomycetes such as Phytophthora sojae employ effector proteins that enter plant cells to facilitate infection. Entry of some effector proteins is mediated by RxLR motifs in the effectors and phosphoinositides (PIP) resident in the host plasma membrane such as phosphatidylinositol 3-phosphate (PtdIns(3)P). Recent reports differ regarding the regions on RxLR effectors involved in PIP recognition. We have structurally and functionally characterized the P. sojae effector, avirulence homolog-5 (Avh5). Using nuclear magnetic resonance (NMR) spectroscopy, we demonstrate that Avh5 is helical in nature, with a long N-terminal disordered region. NMR titrations of Avh5 with the PtdIns(3)P head group, inositol 1,3-bisphosphate, directly identified the ligand-binding residues. A C-terminal lysine-rich helical region (helix 2) was the principal lipid-binding site, with the N-terminal RxLR (RFLR) motif playing a more minor role. Mutations in the RFLR motif affected PtdIns(3)P binding, while mutations in the basic helix almost abolished it. Mutations in the RFLR motif or in the basic region both significantly reduced protein entry into plant and human cells. Both regions independently mediated cell entry via a PtdIns(3)P-dependent mechanism. Based on these findings, we propose a model where Avh5 interacts with PtdIns(3)P through its C terminus, and by binding of the RFLR motif, which promotes host cell entry.
Collapse
Affiliation(s)
- Furong Sun
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | | | | | | | | |
Collapse
|
13
|
The Enigmatic Role of Sulfatides: New Insights into Cellular Functions and Mechanisms of Protein Recognition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:27-40. [DOI: 10.1007/978-94-007-6331-9_3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Xiao S, Charonko JJ, Fu X, Salmanzadeh A, Davalos RV, Vlachos PP, Finkielstein CV, Capelluto DGS. Structure, sulfatide binding properties, and inhibition of platelet aggregation by a disabled-2 protein-derived peptide. J Biol Chem 2012; 287:37691-702. [PMID: 22977233 DOI: 10.1074/jbc.m112.385609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Disabled-2 (Dab2) targets membranes and triggers a wide range of biological events, including endocytosis and platelet aggregation. Dab2, through its phosphotyrosine-binding (PTB) domain, inhibits platelet aggregation by competing with fibrinogen for α(IIb)β(3) integrin receptor binding. We have recently shown that the N-terminal region, including the PTB domain (N-PTB), drives Dab2 to the platelet membrane surface by binding to sulfatides through two sulfatide-binding motifs, modulating the extent of platelet aggregation. The three-dimensional structure of a Dab2-derived peptide encompassing the sulfatide-binding motifs has been determined in dodecylphosphocholine micelles using NMR spectroscopy. Dab2 sulfatide-binding motif contains two helices when embedded in micelles, reversibly binds to sulfatides with moderate affinity, lies parallel to the micelle surface, and when added to a platelet mixture, reduces the number and size of sulfatide-induced aggregates. Overall, our findings identify and structurally characterize a minimal region in Dab2 that modulates platelet homotypic interactions, all of which provide the foundation for rational design of a new generation of anti-aggregatory low-molecular mass molecules for therapeutic purposes.
Collapse
Affiliation(s)
- Shuyan Xiao
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Virginia Tech, 1981 Kraft Dr., Rm. 2007, Blacksburg, VA 24061, USA
| | | | | | | | | | | | | | | |
Collapse
|