1
|
Li HC, Yang CH, Lo SY. Hepatitis C Viral Replication Complex. Viruses 2021; 13:v13030520. [PMID: 33809897 PMCID: PMC8004249 DOI: 10.3390/v13030520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
The life cycle of the hepatitis C virus (HCV) can be divided into several stages, including viral entry, protein translation, RNA replication, viral assembly, and release. HCV genomic RNA replication occurs in the replication organelles (RO) and is tightly linked to ER membrane alterations containing replication complexes (proteins NS3 to NS5B). The amplification of HCV genomic RNA could be regulated by the RO biogenesis, the viral RNA structure (i.e., cis-acting replication elements), and both viral and cellular proteins. Studies on HCV replication have led to the development of direct-acting antivirals (DAAs) targeting the replication complex. This review article summarizes the viral and cellular factors involved in regulating HCV genomic RNA replication and the DAAs that inhibit HCV replication.
Collapse
Affiliation(s)
- Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien 97004, Taiwan;
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan;
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan;
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
- Correspondence: ; Tel.: +886-3-8565301 (ext. 2322)
| |
Collapse
|
2
|
Study of membrane deformations induced by Hepatitis C protein NS4B and its terminal amphipathic peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183537. [PMID: 33383025 DOI: 10.1016/j.bbamem.2020.183537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 11/27/2020] [Accepted: 12/13/2020] [Indexed: 11/21/2022]
Abstract
Many viruses destabilize cellular membranous compartments to form their replication complexes, but the mechanism(s) underlying membrane perturbation remains unknown. Expression in eukaryotic cells of NS4B, a protein of the hepatitis C virus (HCV), alters membranous complexes and induces structures similar to the so-called membranous web that appears crucial to the formation of the HCV replication complex. As over-expression of the protein is lethal to both prokaryotic and eukaryotic cells, NS4B was produced in large quantities in a "cell-free" system in the presence of detergent, after which it was inserted into lipid membranes. X-ray diffraction revealed that NS4B modifies the phase diagram of synthetic lipid aqueous phases considerably, perturbing the transition temperature and cooperativity. Cryo-electron microscopy demonstrated that NS4B introduces significant disorder in the synthetic membrane as well as discontinuities that could be interpreted as due to the formation of pores and membrane merging events. C- and N-terminal fragments of NS4B are both able to destabilize liposomes. While most NS4B amphipathic peptides perforate membranes, one NS4B peptide induces membrane fusion. Cryo-electron microscopy reveals a particular structure that can be interpreted as arising from hemi-fusion-like events. Amphipathic domains are present in many proteins, and if exposed to the aqueous cytoplasmic medium are sufficient to destabilize membranes in order to form viral replication complexes. These domains have important functions in the viral replication cycle, and thus represent potential targets for the development of anti-viral molecules.
Collapse
|
3
|
Tabata K, Neufeldt CJ, Bartenschlager R. Hepatitis C Virus Replication. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037093. [PMID: 31570388 DOI: 10.1101/cshperspect.a037093] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Replication and amplification of the viral genome is a key process for all viruses. For hepatitis C virus (HCV), a positive-strand RNA virus, amplification of the viral genome requires the synthesis of a negative-sense RNA template, which is in turn used for the production of new genomic RNA. This process is governed by numerous proteins, both host and viral, as well as distinct lipids and specific RNA elements within the positive- and negative-strand RNAs. Moreover, this process requires specific changes to host cell ultrastructure to create microenvironments conducive to viral replication. This review will focus on describing the processes and factors involved in facilitating or regulating HCV genome replication.
Collapse
Affiliation(s)
- Keisuke Tabata
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany.,Division of Virus-Associated Carcinogenesis, German Cancer Research Center, 69120 Heidelberg, Germany.,German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Abstract
Replication of positive-strand RNA viruses occurs in tight association with reorganized host cell membranes. In a concerted fashion, viral and cellular factors generate distinct organelle-like structures, designated viral replication factories. These virus-induced compartments promote highly efficient genome replication, allow spatiotemporal coordination of the different steps of the viral replication cycle, and protect viral RNA from the hostile cytoplasmic environment. The combined use of ultrastructural and functional studies has greatly increased our understanding of the architecture and biogenesis of viral replication factories. Here, we review common concepts and distinct differences in replication organelle morphology and biogenesis within the Flaviviridae family, exemplified by dengue virus and hepatitis C virus. We discuss recent progress made in our understanding of the complex interplay between viral determinants and subverted cellular membrane homeostasis in biogenesis and maintenance of replication factories of this virus family.
Collapse
Affiliation(s)
- David Paul
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany; ,
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany; , .,Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Abstract
Hepatitis C virus (HCV) is a major global health burden accounting for around 170 million chronic infections worldwide. Although highly potent direct-acting antiviral drugs to treat chronic hepatitis C have been approved recently, owing to their high costs and limited availability and a large number of undiagnosed infections, the burden of disease is expected to rise in the next few years. In addition, HCV is an excellent paradigm for understanding the tight link between a pathogen and host cell pathways, most notably lipid metabolism. HCV extensively remodels intracellular membranes to establish its cytoplasmic replication factory and also usurps components of the intercellular lipid transport system for production of infectious virus particles. Here, we review the molecular mechanisms of viral replicase function, cellular pathways employed during HCV replication factory biogenesis, and viral, as well as cellular, determinants of progeny virus production.
Collapse
|
6
|
Póvoa TF, Alves AMB, Oliveira CAB, Nuovo GJ, Chagas VLA, Paes MV. The pathology of severe dengue in multiple organs of human fatal cases: histopathology, ultrastructure and virus replication. PLoS One 2014; 9:e83386. [PMID: 24736395 PMCID: PMC3987999 DOI: 10.1371/journal.pone.0083386] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 02/17/2014] [Indexed: 11/18/2022] Open
Abstract
Dengue is a public health problem, with several gaps in understanding its pathogenesis. Studies based on human fatal cases are extremely important and may clarify some of these gaps. In this work, we analyzed lesions in different organs of four dengue fatal cases, occurred in Brazil. Tissues were prepared for visualization in optical and electron microscopy, with damages quantification. As expected, we observed in all studied organ lesions characteristic of severe dengue, such as hemorrhage and edema, although other injuries were also detected. Cases presented necrotic areas in the liver and diffuse macro and microsteatosis, which were more accentuated in case 1, who also had obesity. The lung was the most affected organ, with hyaline membrane formation associated with mononuclear infiltrates in patients with pre-existing diseases such as diabetes and obesity (cases 1 and 2, respectively). These cases had also extensive acute tubular necrosis in the kidney. Infection induced destruction of cardiac fibers in most cases, with absence of nucleus and loss of striations, suggesting myocarditis. Spleens revealed significant destruction of the germinal centers and atrophy of lymphoid follicles, which may be associated to decrease of T cell number. Circulatory disturbs were reinforced by the presence of megakaryocytes in alveolar spaces, thrombus formation in glomerular capillaries and loss of endothelium in several tissues. Besides histopathological and ultrastructural observations, virus replication were investigated by detection of dengue antigens, especially the non-structural 3 protein (NS3), and confirmed by the presence of virus RNA negative strand (in situ hybridization), with second staining for identification of some cells. Results showed that dengue had broader tropism comparing to what was described before in literature, replicating in hepatocytes, type II pneumocytes and cardiac fibers, as well as in resident and circulating monocytes/macrophages and endothelial cells.
Collapse
Affiliation(s)
- Tiago F. Póvoa
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ada M. B. Alves
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carlos A. B. Oliveira
- Hospital Universitário Gaffrée Guinle, Departamento de Anatomia Patológica, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gerard J. Nuovo
- University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Vera L. A. Chagas
- Hospital Universitário Clementino Fraga Filho, Departamento de Anatomia Patológica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marciano V. Paes
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
7
|
Paul D, Bartenschlager R. Architecture and biogenesis of plus-strand RNA virus replication factories. World J Virol 2013; 2:32-48. [PMID: 24175228 PMCID: PMC3785047 DOI: 10.5501/wjv.v2.i2.32] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/18/2013] [Accepted: 01/24/2013] [Indexed: 02/05/2023] Open
Abstract
Plus-strand RNA virus replication occurs in tight association with cytoplasmic host cell membranes. Both, viral and cellular factors cooperatively generate distinct organelle-like structures, designated viral replication factories. This compartmentalization allows coordination of the different steps of the viral replication cycle, highly efficient genome replication and protection of the viral RNA from cellular defense mechanisms. Electron tomography studies conducted during the last couple of years revealed the three dimensional structure of numerous plus-strand RNA virus replication compartments and highlight morphological analogies between different virus families. Based on the morphology of virus-induced membrane rearrangements, we propose two separate subclasses: the invaginated vesicle/spherule type and the double membrane vesicle type. This review discusses common themes and distinct differences in the architecture of plus-strand RNA virus-induced membrane alterations and summarizes recent progress that has been made in understanding the complex interplay between viral and co-opted cellular factors in biogenesis and maintenance of plus-strand RNA virus replication factories.
Collapse
|
8
|
Palomares-Jerez MF, Nemesio H, Franquelim HG, Castanho MARB, Villalaín J. N-terminal AH2 segment of protein NS4B from hepatitis C virus. Binding to and interaction with model biomembranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1938-52. [PMID: 23639583 DOI: 10.1016/j.bbamem.2013.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 01/30/2023]
Abstract
HCV NS4B, a highly hydrophobic protein involved in the alteration of the intracellular host membranes forming the replication complex, plays a critical role in the HCV life cycle. NS4B is a multifunctional membrane protein that possesses different regions where diverse and significant functions are located. One of these important regions is the AH2 segment, which besides being highly conserved has been shown to play a significant role in NS4B functioning. We have carried out an in-depth biophysical study aimed at the elucidation of the capacity of this region to interact, modulate and disrupt membranes, as well as to study the structural and dynamic features relevant for that disruption. We show that a peptide derived from this region, NS4BAH2, is capable of specifically binding phosphatidyl inositol phosphates with high affinity, and its interfacial properties suggest that this segment could behave similarly to a pre-transmembrane domain partitioning into and interacting with the membrane depending on the membrane composition and/or other proteins. Moreover, NS4BAH2 is capable of rupturing membranes even at very low peptide-to-lipid ratios and its membrane-activity is modulated by lipid composition. NS4BAH2 is located in a shallow position in the membrane but it is able to affect the lipid environment from the membrane surface down to the hydrophobic core. The NS4B region where peptide NS4BAH2 resides might have an essential role in the membrane replication and/or assembly of the viral particle through the modulation of the membrane structure and hence the replication complex.
Collapse
|