1
|
Pye ES, Wallace SE, Marangoni DG, Foo ACY. Albumin Proteins as Delivery Vehicles for PFAS Contaminants into Respiratory Membranes. ACS OMEGA 2023; 8:44036-44043. [PMID: 38027323 PMCID: PMC10666230 DOI: 10.1021/acsomega.3c06239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are a family of chemicals that have been used in a wide range of commercial products. While their use is declining, the prevalence of PFAS, combined with their chemical longevity, ensures that detectable levels will remain in the environment for years to come. As such, there is a pressing need to understand how PFAS contaminants interact with other elements of the human exposome and the consequences of these interactions for human health. Using serum albumin as a model system, we show that proteins can bind PFAS contaminants and facilitate their incorporation into model pulmonary surfactant systems and lipid bilayers. Protein-mediated PFAS delivery significantly altered the structure and function of both model membrane systems, potentially contributing to respiratory dysfunction and airway diseases in vivo. These results provide valuable insights into the synergistic interaction between PFAS contaminants and other elements of the human exposome and their potential consequences for human health.
Collapse
Affiliation(s)
- Evan S. Pye
- Dept. of Chemistry, St. Francis Xavier University, 2321 Notre Dame Avenue, Antigonish B2G 2W5, Nova Scotia, Canada
| | - Shannon E. Wallace
- Dept. of Chemistry, St. Francis Xavier University, 2321 Notre Dame Avenue, Antigonish B2G 2W5, Nova Scotia, Canada
| | - D. Gerrard Marangoni
- Dept. of Chemistry, St. Francis Xavier University, 2321 Notre Dame Avenue, Antigonish B2G 2W5, Nova Scotia, Canada
| | - Alexander C. Y. Foo
- Dept. of Chemistry, St. Francis Xavier University, 2321 Notre Dame Avenue, Antigonish B2G 2W5, Nova Scotia, Canada
| |
Collapse
|
2
|
Deal AM. Infrared Reflection Absorption Spectroscopy (IRRAS) of Water-Soluble Surfactants: Is it Surface-Specific? APPLIED SPECTROSCOPY 2023; 77:1280-1288. [PMID: 37743797 DOI: 10.1177/00037028231200903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Infrared reflection absorption spectroscopy (IRRAS) is commonly used to study the structure and chemistry of molecules residing at surfaces, including water surfaces, which has far-reaching applications including atmospheric chemistry and food science. However, there is some debate regarding the surface-specificity of IRRAS when examining soluble surfactants on aqueous solutions, and there is some evidence that the surface-specificity may differ between IRRAS of ionic surfactants and soluble organic acids. This paper presents infrared reflection absorption (IRRA) spectra of soluble organic acids underneath monolayers of insoluble surfactants, where the contributions from the insoluble surfactants are subtracted from the spectra to capture "subsurface effects". These "subsurface" spectra demonstrate that IRRA spectra of soluble organic acids are surface specific, and this observation is supported by a simplified model for reflections from "subsurface" layers. Finally, the observations presented here are compared to literature observations regarding the surface-specificity of IRRAS when studying ionic surfactants. Overall, this work demonstrates the utility of IRRAS for studying the structures and chemistry of soluble organic acids at aqueous surfaces.
Collapse
Affiliation(s)
- Alexandra M Deal
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
3
|
Abstract
Caveolae are cholesterol-enriched membrane invaginations linked to severe muscle and lipid disorders. Their formation is dependent on assembly of the protein Cavin1 at the lipid membrane interface driving membrane curvature. In this work, we dissect the mechanism for how Cavin1 binds and inserts into membranes using a combination of biochemical and biophysical characterization as well as computational modeling. The proposed model for membrane assembly potentiates dynamic switching between shielded and exposed hydrophobic helices used for membrane insertion and clarifies how Cavin1 can drive membrane curvature and the formation of caveolae. Caveolae are small plasma membrane invaginations, important for control of membrane tension, signaling cascades, and lipid sorting. The caveola coat protein Cavin1 is essential for shaping such high curvature membrane structures. Yet, a mechanistic understanding of how Cavin1 assembles at the membrane interface is lacking. Here, we used model membranes combined with biophysical dissection and computational modeling to show that Cavin1 inserts into membranes. We establish that initial phosphatidylinositol (4, 5) bisphosphate [PI(4,5)P2]–dependent membrane adsorption of the trimeric helical region 1 (HR1) of Cavin1 mediates the subsequent partial separation and membrane insertion of the individual helices. Insertion kinetics of HR1 is further enhanced by the presence of flanking negatively charged disordered regions, which was found important for the coassembly of Cavin1 with Caveolin1 in living cells. We propose that this intricate mechanism potentiates membrane curvature generation and facilitates dynamic rounds of assembly and disassembly of Cavin1 at the membrane.
Collapse
|
4
|
Tempra C, Ollila OHS, Javanainen M. Accurate Simulations of Lipid Monolayers Require a Water Model with Correct Surface Tension. J Chem Theory Comput 2022; 18:1862-1869. [PMID: 35133839 PMCID: PMC8908734 DOI: 10.1021/acs.jctc.1c00951] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lipid monolayers provide our lungs and eyes their functionality and serve as proxy systems in biomembrane research. Therefore, lipid monolayers have been studied intensively including using molecular dynamics simulations, which are able to probe their lateral structure and interactions with, e.g., pharmaceuticals or nanoparticles. However, such simulations have struggled in describing the forces at the air-water interface. Particularly, the surface tension of water and long-range van der Waals interactions have been considered critical, but their importance in monolayer simulations has been evaluated only separately. Here, we combine the recent C36/LJ-PME lipid force field that includes long-range van der Waals forces with water models that reproduce experimental surface tensions to elucidate the importance of these contributions in monolayer simulations. Our results suggest that a water model with correct surface tension is necessary to reproduce experimental surface pressure-area isotherms and monolayer phase behavior. The latter includes the liquid expanded and liquid condensed phases, their coexistence, and the opening of pores at the correct area per lipid upon expansion. Despite these improvements of the C36/LJ-PME with certain water models, the standard cutoff-based CHARMM36 lipid model with the 4-point OPC water model still provides the best agreement with experiments. Our results emphasize the importance of using high-quality water models in applications and parameter development in molecular dynamics simulations of biomolecules.
Collapse
Affiliation(s)
- Carmelo Tempra
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00 Prague 6, Czech Republic
| | - O H Samuli Ollila
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Matti Javanainen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00 Prague 6, Czech Republic.,Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| |
Collapse
|
5
|
Strati F, Mukhina T, Neubert RH, Opalka L, Hause G, Schmelzer CE, Menzel M, Brezesinski G. Cerosomes as skin repairing agent: Mode of action studies with a model stratum corneum layer at liquid/air and liquid/solid interfaces. BBA ADVANCES 2022; 2:100039. [PMID: 37082599 PMCID: PMC10074917 DOI: 10.1016/j.bbadva.2021.100039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The stratum corneum (SC) is the largest physical barrier of the human body. It protects against physical, chemical and biological damages, and avoids evaporation of water from the deepest skin layers. For its correct functioning, the homeostasis of the SC lipid matrix is fundamental. An alteration of the lipid matrix composition and in particular of its ceramide (CER) fraction can lead to the development of pathologies such as atopic dermatitis and psoriasis. Different studies showed that the direct replenishment of SC lipids on damaged skin had positive effects on the recovery of its barrier properties. In this work, cerosomes, i.e. liposomes composed of SC lipids, have been successfully prepared in order to investigate the mechanism of interaction with a model SC lipid matrix. The cerosomes contain CER[NP], D-CER[AP], stearic acid and cholesterol. In addition, hydrogenated soybean phospholipids have been added to one of the formulations leading to an increased stability at neutral pH. For the mode of action studies, monolayer models at the air-water interface and on solid support have been deployed. The results indicated that a strong interaction occurred between SC monolayers and the cerosomes. Since both systems were negatively charged, the driving force for the interaction must be based on the ability of CERs head groups to establish intermolecular hydrogen bonding networks that energetically prevailed against the electrostatic repulsion. This work proved for the first time the mode of action by which cerosomes exploit their function as skin barrier repairing agents on the SC.
Collapse
|
6
|
Biliškov N. Infrared spectroscopic monitoring of solid-state processes. Phys Chem Chem Phys 2022; 24:19073-19120. [DOI: 10.1039/d2cp01458k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We put a spotlight on IR spectroscopic investigations in materials science by providing a critical insight into the state of the art, covering both fundamental aspects, examples of its utilisation, and current challenges and perspectives focusing on the solid state.
Collapse
Affiliation(s)
- Nikola Biliškov
- Rudjer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada
| |
Collapse
|
7
|
Claro B, Goormaghtigh E, Bastos M. Attenuated total reflection-Fourier transform infrared spectroscopy: a tool to characterize antimicrobial cyclic peptide-membrane interactions. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:629-639. [PMID: 33743025 DOI: 10.1007/s00249-020-01495-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/16/2020] [Accepted: 12/31/2020] [Indexed: 11/24/2022]
Abstract
Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) has been used for the structural characterization of peptides and their interactions with membranes. Antimicrobial peptides (AMPs) are part of our immune system and widely studied in recent years. Many linear AMPs have been studied, but their cyclization was shown to enhance the peptide's activity. We have used cyclic peptides (CPs) of an even number of alternating D- and L-α-amino acids, an emerging class of potential AMPs. These CPs can adopt a flat-ring shape that can stack into an antiparallel structure, forming intermolecular hydrogen bonds between different units, creating a tubular β-sheet structure - self-assembled cyclic peptide nanotubes (SCPNs). To get the structural information on peptides in solution and/or in contact with membranes, Amide I and II absorptions are used as they can adopt frequency and shape band characteristics that are influenced by the strength of existing hydrogen bonds between the amide CO and NH involved in secondary structures such as helix, β-sheet or aperiodic structures. The combination of polarized lens with ATR-FTIR provides an important tool to study the orientation of peptides when interacting with lipid membranes as the information can be derived on the position relative to the membrane normal. This work shows how ATR-FTIR used together with polarized light was successfully used to characterize structurally two CPs (RSKSWPgKQ and RSKSWXC10KQ) in solution and upon interaction with negatively charged membranes of DMPG, assessing the formation and orientation of tubular structures (SCPNs) that were shown to be enhanced by the presence of the lipid membrane.
Collapse
Affiliation(s)
- Bárbara Claro
- Departamento de Química e Bioquímica, Centro de Investigação em Química, Faculdade de Ciências, CIQUP, Universidade do Porto, Porto, Portugal
| | - Erik Goormaghtigh
- Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, ULB, Brussels, Belgium
| | - Margarida Bastos
- Departamento de Química e Bioquímica, Centro de Investigação em Química, Faculdade de Ciências, CIQUP, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
8
|
Strati F, Neubert RHH, Opálka L, Kerth A, Brezesinski G. Non-ionic surfactants as innovative skin penetration enhancers: insight in the mechanism of interaction with simple 2D stratum corneum model system. Eur J Pharm Sci 2021; 157:105620. [PMID: 33122012 DOI: 10.1016/j.ejps.2020.105620] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022]
Abstract
Transdermal drug delivery is a passive diffusion process of an active compound through the skin which is affected by drug solubility in the multilamellar lipidic matrix of the stratum corneum (SC). Widely used non-ionic surfactants (NIS) can be added into transdermal formulations to enhance the penetration of drugs by influencing the packing of the stratum corneum lipidic matrix. Objective of our study was to analyse the interaction between selected NIS and a simple SC lipidic matrix model system using a variety of surface-sensitive techniques based on the application of Langmuir monolayers. In this work, the well-known surfactant Polysorbate 80 was compared with a modern surfactant Sucrose monolaurate. Infrared reflection-absorption spectroscopy (IRRAS) and epifluorescence microscopy provide information about the effects of those surfactants on the SC model system. Monolayer isotherms of the SC model mixture indicate a very stiff and well-packed layer, however, packing defects are evidenced in epifluorescence studies. The injection of the two NIS underneath the SC monolayers proved their potential to penetrate into the SC model at the air-water interface having a maximum insertion pressure (MIP) above the assumed lateral pressure of biological membranes. The NIS adsorbed preferentially into packing defects seen in epifluorescence microscopy studies with Sucrose monolaurate being more active than Polysorbate 80 in disordering the SC monolayer.
Collapse
Affiliation(s)
- Fabio Strati
- Institute of Applied Dermatopharmacy at Martin Luther University Halle-Wittenberg, Weinbergweg 23, D-06120 Halle (Saale), Germany.
| | - Reinhard H H Neubert
- Institute of Applied Dermatopharmacy at Martin Luther University Halle-Wittenberg, Weinbergweg 23, D-06120 Halle (Saale), Germany
| | - Lukáš Opálka
- Charles University, Faculty of Pharmacy in Hradec Kralove, Akademika Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Andreas Kerth
- Institute of Chemistry - Physical Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - Gerald Brezesinski
- Institute of Applied Dermatopharmacy at Martin Luther University Halle-Wittenberg, Weinbergweg 23, D-06120 Halle (Saale), Germany
| |
Collapse
|
9
|
Rodrigues RT, Siqueira JR, Caseli L. Structural and viscoelastic properties of floating monolayers of a pectinolytic enzyme and their influence on the catalytic properties. J Colloid Interface Sci 2021; 589:568-577. [PMID: 33497895 DOI: 10.1016/j.jcis.2021.01.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 01/10/2021] [Indexed: 11/18/2022]
Abstract
HYPOTHESIS The catalytic activity of enzymes immobilized in self-assembly systems as Langmuir-Blodgett (LB) films is influenced by molecular interactions dictated by the composition and viscoelasticity of the previous floating monolayers. We believe that the insertion of carbon nanotubes (CNT) in mixed polygalacturonase/lipid monolayers may influence intermolecular interactions and viscoelastic properties, being then possible to tune system stability and rheological properties, driving catalytic properties of the films for biosensing. EXPERIMENTS The physicochemical properties of the monolayers were investigated by tensiometry, surface potential, Brewster angle microscopy, infrared spectroscopy, and dilatational rheology. The monolayers were transferred to solid supports LB films and characterized by atomic force microscopy, quartz crystal microbalance, and fluorescence spectroscopy. The catalytic activity of the LB films was verified by colorimetric assay. FINDINGS The enzyme-CNT-lipid film had a catalytic activity at least twice as high as the pure enzyme owing to the synergy between the components, with the lipid acting as a protector matrix for the enzyme and the CNTs acting as an energy transfer facilitator. These results point to a proof-of-concept system, through which we can propose an alternative to achieve enhanced bio-inspired films with high control of the molecular architecture by using the LB approach.
Collapse
Affiliation(s)
- Raul T Rodrigues
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), 09913-030 Diadema, SP, Brazil
| | - José R Siqueira
- Laboratory of Applied Nanomaterials and Nanostructures (LANNA), Institute of Exact Sciences, Natural and Education, Federal University of Triângulo Mineiro (UFTM), 38064-200 Uberaba, MG, Brazil.
| | - Luciano Caseli
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), 09913-030 Diadema, SP, Brazil.
| |
Collapse
|
10
|
Krajewska M, Dopierała K, Wydro P, Broniatowski M, Prochaska K. Interfacial complex of α-lactalbumin with oleic acid: effect of protein concentration and PM-IRRAS study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Hoffmann M, Drescher S, Ihling C, Hinderberger D, Schwieger C. An Azidolipid Monolayer - Transitions, Miscibility, and UV Reactivity Studied by Infrared Reflection Absorption Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12804-12815. [PMID: 33090001 DOI: 10.1021/acs.langmuir.0c01726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we characterized monolayers of an azide-modified lipid at the air-water interface, pure and in its mixtures with the model lipid DPPC, with the aim of proving its potential to be applied for photo-cross-linking with other molecules. We chose a phospholipid bearing a terminal azide group in one of its hydrophobic tails to study its monolayer characteristics with the Langmuir film balance technique. Furthermore, we performed infrared reflection absorption spectroscopy (IRRAS) to get detailed insights into the organization of those monolayers as well as high-resolution mass spectrometry (HRMS) to see the effects of UV-irradiation on the lipids' chemical structure and organization. Our results suggest that in expanded monolayers of pure azide-modified membrane lipids, the azido-terminated chain folds back toward the air-water interface. Above the LE/LC (liquid-expanded/liquid-condensed) phase transition, the chains stretched, and thus, the azide group detaches from the interface. From temperature-dependent monolayer compressions, we evaluated all relevant thermodynamic parameters of the monolayers, such as the phase transition pressure, the critical temperature, and the triple point, and compare them to those of model lipids. For future applications, we studied the miscibility of the azide-modified lipid with DPPC in monolayers and found at least a certain miscibility over all investigated mixing ratios ranging from 10 to 75% of the azidolipid. Finally, we irradiated the azidolipid monolayer with UV light at 305 nm and measured photodissociation of the azide, leading to chemical cross-linking with other lipids, which shows the potential to be used as a cross-linking agent within self-assembled lipid or lipid/protein layers.
Collapse
Affiliation(s)
- Matthias Hoffmann
- Institute of Chemistry - Complex Self-Organizing Systems, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology - Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Simon Drescher
- Institute of Pharmacy - Biophysical Pharmacy, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
- Phospholipid Research Center, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Christian Ihling
- Institute of Pharmacy - Pharmaceutical Chemistry and Bioanalytics, Charles Tanford Protein Center, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Dariush Hinderberger
- Institute of Chemistry - Complex Self-Organizing Systems, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology - Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Christian Schwieger
- Institute of Chemistry - Complex Self-Organizing Systems, Martin Luther University (MLU) Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology - Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| |
Collapse
|
12
|
Contribution of Secondary Structure Changes to the Surface Activity of Proteins. J Biotechnol 2020; 323:208-220. [DOI: 10.1016/j.jbiotec.2020.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/13/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
|
13
|
Rabe M, Kerth A, Blume A, Garidel P. Albumin displacement at the air-water interface by Tween (Polysorbate) surfactants. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2020; 49:533-547. [PMID: 32915248 PMCID: PMC7666296 DOI: 10.1007/s00249-020-01459-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/16/2020] [Accepted: 08/16/2020] [Indexed: 12/23/2022]
Abstract
Tween (polysorbate) 20 and 80 are surfactants used for the development of parenteral protein drugs, due to their beneficial safety profile and stabilisation properties. To elucidate the mechanism by which Tween 20 and 80 stabilise proteins in aqueous solutions, either by a "direct" protein to surfactant interaction and/or by an interaction with the protein film at the air-water interface, we used spectroscopic (Infrared Reflection Absorption Spectroscopy, IRRAS) and microscopic techniques (Brewster Angle Microscopy, BAM) in combination with surface pressure measurements. To this end, the impact of both types of Tweens with regard to the displacement of the protein from the air-water interface was studied. As a model protein, human serum albumin (HSA) was used. The results for the displacement of the adsorbed HSA films by Tweens 20 and 80 can partially be understood on the basis of an orogenic displacement mechanism, which depends on the critical surface pressure of the adsorbed protein film. With increasing concentration of Tween in the sub-phase, BAM images showed the formation of different domain morphologies. IRRA-spectra supported the finding that at high protein concentration in the sub-phase, the protein film could not be completely displaced by the surfactants. Comparing the impact of both surfactants, we found that Tween 20 adsorbed faster to the protein film than Tween 80. The adsorption kinetics of both Tweens and the speed of protein displacement increased with rising surfactant concentration. Tween 80 reached significant lower surface pressures than Tween 20, which led to an incomplete displacement of the observed HSA film.
Collapse
Affiliation(s)
- Martin Rabe
- Institute of Chemistry, Physical Chemistry, Martin-Luther-University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120, Halle/Saale, Germany
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237, Düsseldorf, Germany
| | - Andreas Kerth
- Institute of Chemistry, Physical Chemistry, Martin-Luther-University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120, Halle/Saale, Germany
| | - Alfred Blume
- Institute of Chemistry, Physical Chemistry, Martin-Luther-University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120, Halle/Saale, Germany.
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH and Co. KG, Innovation Unit, PDB, 88397, Biberach an der Riss, Germany
| |
Collapse
|
14
|
Shah SWH, Schwieger C, Kressler J, Blume A. Monolayer behavior of pure F-DPPC and mixed films with DPPC studied by epifluorescence microscopy and infrared reflection absorption spectroscopy. Chem Phys Lipids 2020; 230:104918. [PMID: 32417099 DOI: 10.1016/j.chemphyslip.2020.104918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/19/2020] [Accepted: 05/04/2020] [Indexed: 12/27/2022]
Abstract
The monolayer behavior of a l-DPPC derivative with a single fluorination in one of its terminal methyl groups (F-DPPC) at air-water interface was investigated by epifluorescence microscopy and infrared reflection absorption spectroscopy (IRRAS). Epifluorescence microscopy was utilized to study the shape and morphology of liquid-condensed (LC) domains observed upon compression of the film. IRRAS was employed for the determination of chain order and orientation. The shapes of LC-domains in a monolayer of F-DPPC are more dependent on the rate of compression than those of DPPC. The LC domains of F-DPPC display pronounced fractal growth patterns depending on the compression speed. The evolution of LC domain occurs under dominating electrostatic dipolar forces in F-DPPC. IRRAS measurements with the analysis of the frequency of the methylene stretching vibrations as a function of film compression show that the acyl chains in an F-DPPC monolayer in the LE-phase are more disordered than those in a DPPC film. The reason for the higher chain disorder in LE phase F-DPPC monolayers is a back folding of the fluorinated sn-2 chain terminus towards the air-water interface leading to larger molecular area requirement. Angular dependent IRRA spectra of monolayers at a surface pressure of 30 mN m-1 show that in the LC phase DPPC and F-DPPC exhibit a similar tilt of the acyl chains of ca. 28-30 ° relative to the surface normal. F-DPPC is ideally miscible with l-DPPC-d62 having the same chirality, as indicated by epifluorescence images and by IRRAS. However, the LC domains in an equimolar mixture of d-DPPC and F-DPPC having opposite chirality show multi-lobed complex domain patterns indicating chiral phase separation within LC domains.
Collapse
Affiliation(s)
- Syed W H Shah
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany; Department of Chemistry, Hazara University, 21120, Mansehra, Pakistan.
| | - Christian Schwieger
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany; Integrative Research Center HALOmem, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jörg Kressler
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alfred Blume
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| |
Collapse
|
15
|
Langeveld SAG, Schwieger C, Beekers I, Blaffert J, van Rooij T, Blume A, Kooiman K. Ligand Distribution and Lipid Phase Behavior in Phospholipid-Coated Microbubbles and Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3221-3233. [PMID: 32109064 PMCID: PMC7279639 DOI: 10.1021/acs.langmuir.9b03912] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phospholipid-coated targeted microbubbles are ultrasound contrast agents that can be used for molecular imaging and enhanced drug delivery. However, a better understanding is needed of their targeting capabilities and how they relate to microstructures in the microbubble coating. Here, we investigated the ligand distribution, lipid phase behavior, and their correlation in targeted microbubbles of clinically relevant sizes, coated with a ternary mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), with PEG40-stearate and DSPE-PEG2000. To investigate the effect of lipid handling prior to microbubble production in DSPC-based microbubbles, the components were either dispersed in aqueous medium (direct method) or first dissolved and mixed in an organic solvent (indirect method). To determine the lipid-phase behavior of all components, experiments were conducted on monolayers at the air/water interface. In comparison to pure DSPC and DPPC, the ternary mixtures had an additional transition plateau around 10-12 mN/m. As confirmed by infrared reflection absorption spectroscopy (IRRAS), this plateau was due to a transition in the conformation of the PEGylated components (mushroom to brush). While the condensed phase domains had a different morphology in the ternary DPPC and DSPC monolayers on the Langmuir trough, the domain morphology was similar in the coating of both ternary DPPC and DSPC microbubbles (1.5-8 μm diameter). The ternary DPPC microbubbles had a homogenous ligand distribution and significantly less liquid condensed (LC) phase area in their coating than the DSPC-based microbubbles. For ternary DSPC microbubbles, the ligand distribution and LC phase area in the coating depended on the lipid handling. The direct method resulted in a heterogeneous ligand distribution, less LC phase area than the indirect method, and the ligand colocalizing with the liquid expanded (LE) phase area. The indirect method resulted in a homogenous ligand distribution with the largest LC phase area. In conclusion, lipid handling prior to microbubble production is of importance for a ternary mixture of DSPC, PEG40-stearate, and DSPE-PEG2000.
Collapse
Affiliation(s)
- Simone A. G. Langeveld
- Department
of Biomedical Engineering, Thoraxcenter,
Erasmus MC, 3000 CA Rotterdam, The Netherlands
- E-mail: . Phone: +31107044041
| | - Christian Schwieger
- Physical
Chemistry, Institute of Chemistry, Martin
Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
- Institute
for Biochemistry and Biotechnology, Interdisciplinary Research Center
HALOmem, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, 06120 Halle (Saale), Germany
| | - Inés Beekers
- Department
of Biomedical Engineering, Thoraxcenter,
Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Jacob Blaffert
- Physical
Chemistry, Institute of Chemistry, Martin
Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Tom van Rooij
- Department
of Biomedical Engineering, Thoraxcenter,
Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Alfred Blume
- Physical
Chemistry, Institute of Chemistry, Martin
Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Klazina Kooiman
- Department
of Biomedical Engineering, Thoraxcenter,
Erasmus MC, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
16
|
Träger J, Widder K, Kerth A, Harauz G, Hinderberger D. Effect of Cholesterol and Myelin Basic Protein (MBP) Content on Lipid Monolayers Mimicking the Cytoplasmic Membrane of Myelin. Cells 2020; 9:cells9030529. [PMID: 32106542 PMCID: PMC7140459 DOI: 10.3390/cells9030529] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Myelin basic protein (MBP) is located in the insulating covers of nerve cells in the brain and spinal cord. By interacting with lipid membranes, it is responsible for compaction of the myelin sheath in the central nervous system, which is weakened in demyelinating diseases. The lipid composition of the myelin leaflet has a high impact on the interaction between the membrane and MBP. Cholesterol is present in the cytoplasmic leaflet with a rather high amount of 44% (mol%). In this study, the focus is on the effect of cholesterol, mainly by varying its content, on the interaction of MBP with a lipid monolayer. Therefore, Langmuir lipid monolayers mimicking the cytoplasmic membrane of myelin and monolayers with variations of cholesterol content between 0% and 100% were measured at the air/water interface with additional imaging by fluorescence microscopy. All experiments were performed with and without bovine MBP to study the dependence of the interaction of the protein with the monolayers on the cholesterol content. The native amount of 44% cholesterol in the monolayer combines optima in the order of the monolayer (presumably correlating to compaction and thermodynamic stability) and protein interaction and shows unique features in comparison to lower or higher cholesterol contents.
Collapse
Affiliation(s)
- Jennica Träger
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (J.T.); (K.W.); (A.K.)
- Interdisciplinary Research Center HALOmem at the Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Katharina Widder
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (J.T.); (K.W.); (A.K.)
- Interdisciplinary Research Center HALOmem at the Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Andreas Kerth
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (J.T.); (K.W.); (A.K.)
- Interdisciplinary Research Center HALOmem at the Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Dariush Hinderberger
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (J.T.); (K.W.); (A.K.)
- Interdisciplinary Research Center HALOmem at the Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
- Correspondence: ; Tel.: +49-345-55-25230
| |
Collapse
|
17
|
Peñaflor Galindo TG, Tagaya M. Interfacial Effect of Hydration Structures of Hydroxyapatite Nanoparticle Films on Protein Adsorption and Cell Adhesion States. ACS APPLIED BIO MATERIALS 2019; 2:5559-5567. [PMID: 35021551 DOI: 10.1021/acsabm.9b00629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesized elliptical hydroxyapatite (E-HAp) and needle-like HAp (N-HAp) nanoparticles (NPs) were electrophoretically deposited on a gold (Au) substrate. A comparative study of the hydration layers on E-HAp, N-HAp, and Au films was achieved to investigate the interfacial effect of the hydration layers on the conformation of the adsorbed fibrinogen (Fgn) and fibroblast adhesion properties. As a result, the ratios of three types of hydration layer states (free water, intermediate water, nonfreezing water) analyzed by a Fourier transform infrared (FT-IR) spectral deconvolution of the O-H stretching absorption band were investigated. The ratio of the bonding water state (i.e., intermediate and nonfreezing water molecules) is almost the same between two HAp films, and the E-HAp film with an elliptical shape and smaller particle size exhibited the smallest ratio of nonfreezing water, which can suppress the denaturation of the adsorbed protein. Subsequently, FT-IR spectral deconvolution results of the amide I band of the adsorbed Fgn on the E-HAp film indicated the higher proportion of α-helix and β-sheet structures as compared with those on the N-HAp and Au films, suggesting that the smaller proportion of nonfreezing waters would play a significant role in the stereoscopic Fgn conformation. In the culture of fibroblasts, FT-IR spectra of the adhered cells on the E-HAp, N-HAp, and Au films exhibited different absorbance intensities of the amide A, I, II, and III bands, suggesting a different amount of collagen-producing states by the cells, which were also supported by immunostaining results of the collagen type I. Therefore, the different hydration structures on the films clearly influenced the conformation of the adsorbed protein, and the preferential conformation was found at the interfaces between the fibroblasts and the underground E-HAp films.
Collapse
Affiliation(s)
- Tania Guadalupe Peñaflor Galindo
- Department of Materials Science and Technology, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan
| | - Motohiro Tagaya
- Department of Materials Science and Technology, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
18
|
Tarazona NA, Machatschek R, Schulz B, Prieto MA, Lendlein A. Molecular Insights into the Physical Adsorption of Amphiphilic Protein PhaF onto Copolyester Surfaces. Biomacromolecules 2019; 20:3242-3252. [DOI: 10.1021/acs.biomac.9b00069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Natalia A. Tarazona
- Institute of Biomaterial
Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstraße 55, 14513 Teltow, Germany
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Rainhard Machatschek
- Institute of Biomaterial
Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstraße 55, 14513 Teltow, Germany
| | - Burkhard Schulz
- Institute of Biomaterial
Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstraße 55, 14513 Teltow, Germany
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14469 Potsdam, Germany
| | - M. Auxiliadora Prieto
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Andreas Lendlein
- Institute of Biomaterial
Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstraße 55, 14513 Teltow, Germany
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14469 Potsdam, Germany
| |
Collapse
|
19
|
Ulaganathan V, Del Castillo L, Webber JL, Ho TT, Ferri JK, Krasowska M, Beattie DA. The influence of pH on the interfacial behaviour of Quillaja bark saponin at the air-solution interface. Colloids Surf B Biointerfaces 2019; 176:412-419. [DOI: 10.1016/j.colsurfb.2019.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/29/2018] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
|
20
|
Casein interaction with lipid membranes: Are the phase state or charge density of the phospholipids affecting protein adsorption? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2588-2598. [DOI: 10.1016/j.bbamem.2018.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/11/2018] [Accepted: 09/26/2018] [Indexed: 01/03/2023]
|
21
|
Vezočnik V, Hodnik V, Sitar S, Okur HI, Tušek-Žnidarič M, Lütgebaucks C, Sepčić K, Kogej K, Roke S, Žagar E, Maček P. Kinetically Stable Triglyceride-Based Nanodroplets and Their Interactions with Lipid-Specific Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8983-8993. [PMID: 29983071 DOI: 10.1021/acs.langmuir.8b02180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding of the interactions between proteins and natural and artificially prepared lipid membrane surfaces and embedded nonpolar cores is important in studies of physiological processes and their pathologies and is applicable to nanotechnologies. In particular, rapidly growing interest in cellular droplets defines the need for simplified biomimetic lipid model systems to overcome in vivo complexity and variability. We present a protocol for the preparation of kinetically stable nanoemulsions with nanodroplets composed of sphingomyelin (SM) and cholesterol (Chol), as amphiphilic surfactants, and trioleoylglycerol (TOG), at various molar ratios. To prepare stable SM/Chol-coated monodisperse lipid nanodroplets, we modified a reverse phase evaporation method and combined it with ultrasonication. Lipid composition, ζ-potential, gyration and hydrodynamic radius, shape, and temporal stability of the lipid nanodroplets were characterized and compared to extruded SM/Chol large unilamellar vesicles. Lipid nanodroplets and large unilamellar vesicles with theoretical SM/Chol/TOG molar ratios of 1/1/4.7 and 4/1/11.7 were further investigated for the orientational order of their interfacial water molecules using a second harmonic scattering technique, and for interactions with the SM-binding and Chol-binding pore-forming toxins equinatoxin II and perfringolysin O, respectively. The surface characteristics (ζ-potential, orientational order of interfacial water molecules) and binding of these proteins to the nanodroplet SM/Chol monolayers were similar to those for the SM/Chol bilayers of the large unilamellar vesicles and SM/Chol Langmuir monolayers, in terms of their surface structures. We propose that such SM/Chol/TOG nanoparticles with the required lipid compositions can serve as experimental models for monolayer membrane to provide a system that imitates the natural lipid droplets.
Collapse
Affiliation(s)
- Valerija Vezočnik
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| | - Simona Sitar
- Department of Polymer Chemistry and Technology , National Institute of Chemistry , Hajdrihova 19 , Ljubljana 1000 , Slovenia
| | - Halil I Okur
- Laboratory for Fundamental BioPhotonics, Institute of Bio-Engineering, and Institute of Material Science, School of Engineering, and Lausanne Centre for Ultrafast Science , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | | | - Cornelis Lütgebaucks
- Laboratory for Fundamental BioPhotonics, Institute of Bio-Engineering, and Institute of Material Science, School of Engineering, and Lausanne Centre for Ultrafast Science , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| | - Ksenija Kogej
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , Ljubljana 1000 , Slovenia
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics, Institute of Bio-Engineering, and Institute of Material Science, School of Engineering, and Lausanne Centre for Ultrafast Science , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Ema Žagar
- Department of Polymer Chemistry and Technology , National Institute of Chemistry , Hajdrihova 19 , Ljubljana 1000 , Slovenia
| | - Peter Maček
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| |
Collapse
|
22
|
Widder K, Träger J, Kerth A, Harauz G, Hinderberger D. Interaction of Myelin Basic Protein with Myelin-like Lipid Monolayers at Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6095-6108. [PMID: 29722987 DOI: 10.1021/acs.langmuir.8b00321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Interaction of myelin basic protein (MBP) and the cytoplasmic leaflets of the oligodendrocyte membrane is essential for the formation and compaction of the myelin sheath of the central nervous system and is altered aberrantly and implicated in the pathogenesis of neurodegenerative diseases like multiple sclerosis. To gain more detailed insights into this interaction, the adsorption of MBP to model lipid monolayers of similar composition to the myelin of the central nervous system was studied at the air-water interface with monolayer adsorption experiments. Measuring the surface pressure and the related maximum insertion pressure of MBP for different myelin-like lipid monolayers provided information about the specific role of each of the single lipids in the myelin. Depending on the ratio of negatively charged lipids to uncharged lipids and the distance between charges, the adsorption process was found to be determined by two counteracting effects: (i) protein incorporation, resulting in an increasing surface pressure and (ii) lipid condensation due to electrostatic interaction between the positively charged protein and negatively charged lipids, resulting in a decreasing surface pressure. Although electrostatic interactions led to high insertion pressures, the associated lipid condensation lowered the fluidity of the myelin-like monolayer.
Collapse
Affiliation(s)
- Katharina Widder
- Institut für Chemie , Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4 , 06120 Halle (Saale) , Germany
| | - Jennica Träger
- Institut für Chemie , Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4 , 06120 Halle (Saale) , Germany
| | - Andreas Kerth
- Institut für Chemie , Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4 , 06120 Halle (Saale) , Germany
| | - George Harauz
- Department of Molecular and Cellular Biology , University of Guelph , 50 Stone Road East , Guelph , Ontario , Canada N1G 2W1
| | - Dariush Hinderberger
- Institut für Chemie , Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4 , 06120 Halle (Saale) , Germany
| |
Collapse
|
23
|
|
24
|
Binding of the GTPase Sar1 to a Lipid Membrane Monolayer: Insertion and Orientation Studied by Infrared Reflection⁻Absorption Spectroscopy. Polymers (Basel) 2017; 9:polym9110612. [PMID: 30965916 PMCID: PMC6418733 DOI: 10.3390/polym9110612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 01/15/2023] Open
Abstract
Membrane-interacting proteins are polyphilic polymers that engage in dynamic protein–protein and protein–lipid interactions while undergoing changes in conformation, orientation and binding interfaces. Predicting the sites of interactions between such polypeptides and phospholipid membranes is still a challenge. One example is the small eukaryotic GTPase Sar1, which functions in phospholipid bilayer remodeling and vesicle formation as part of the multimeric coat protein complex (COPII). The membrane interaction of Sar1 is strongly dependent on its N-terminal 23 amino acids. By monolayer adsorption experiments and infrared reflection-absorption spectroscopy (IRRAS), we elucidate the role of lipids in inducing the amphipathicity of this N-terminal stretch, which inserts into the monolayer as an amphipathic helix (AH). The AH inserting angle is determined and is consistent with the philicities and spatial distribution of the amino acid monomers. Using an advanced method of IRRAS data evaluation, the orientation of Sar1 with respect to the lipid layer prior to the recruitment of further COPII proteins is determined. The result indicates that only a slight reorientation of the membrane-bound Sar1 is needed to allow coat assembly. The time-course of the IRRAS analysis corroborates a role of slow GTP hydrolysis in Sar1 desorption from the membrane.
Collapse
|
25
|
Hädicke A, Schwieger C, Blume A. Cospreading of Anionic Phospholipids with Peptides of the Structure (KX) 4K at the Air-Water Interface: Influence of Lipid Headgroup Structure and Hydrophobicity of the Peptide on Monolayer Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12204-12217. [PMID: 28968121 DOI: 10.1021/acs.langmuir.7b02255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mixtures of anionic phospholipids (PG, PA, PS, and CL) with cationic peptides were cospread from a common organic solvent at the air-water interface. The compression of the mixed film was combined with epifluorescence microscopy or infrared reflection adsorption spectroscopy (IRRAS) to gain information on the interactions of the peptide with the different lipids. To evaluate the influence of the amino acid X of peptides with the sequence (KX)4K on the binding, 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) was mixed with different peptides with increasing hydrophobicity of the uncharged amino acid X. The monolayer isotherms of DPPG/(KX)4K mixtures show an increased area for the lift-off due to incorporation of the peptide into the liquid-expanded (LE) state of the lipid. The surface pressure for the transition from LE to the liquid-condensed (LC) state is slightly increased for peptides with amino acids X with moderate hydrophobicity. For the most hydrophobic peptide (KL)4K two plateaus are seen at a charge ratio PG to K of 5:1, and a strongly increased transition pressure is observed for a charge ratio of 1:1. Epifluorescence microscopy images and infrared spectroscopy show that the lower plateau corresponds to the LE-LC phase transition of the lipid. The upper plateau is connected with a squeeze-out of the peptide into the subphase. To test the influence of the lipid headgroup structure on peptide binding (KL)4K was cospread with different anionic phospholipids. The shift of the isotherm to larger areas for lift-off and to higher surface pressure for the LE-LC phase transition was observed for all tested anionic lipids. Epifluorescence microscopy reveals the formation of LC domains with extended filaments indicating a decrease in line tension due to accumulation of the peptides at the LC-domain boundaries. This effect depends on the size of the headgroup of the anionic phospholipid.
Collapse
Affiliation(s)
- André Hädicke
- Institute of Chemistry , MLU Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle/Saale, Germany
| | - Christian Schwieger
- Institute of Chemistry , MLU Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle/Saale, Germany
| | - Alfred Blume
- Institute of Chemistry , MLU Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle/Saale, Germany
| |
Collapse
|
26
|
Janich C, Hädicke A, Bakowsky U, Brezesinski G, Wölk C. Interaction of DNA with Cationic Lipid Mixtures-Investigation at Langmuir Lipid Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10172-10183. [PMID: 28873311 DOI: 10.1021/acs.langmuir.7b02014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Four different binary lipid mixtures composed of a cationic lipid and the zwitterionic colipids DOPE or DPPC, which show different DNA transfer activities in cell culture models, were investigated at the soft air/water interface to identify transfection efficiency determining characteristics. Langmuir films are useful models to investigate the interaction between DNA and lipid mixtures in a two-dimensional model system by using different surface sensitive techniques, namely, epifluorescence microscopy and infrared reflection-absorption spectroscopy. Especially, the effect of adsorbed DNA on the properties of the lipid mixtures has been examined. Distinct differences between the lipid composites were found which are caused by the different colipids of the mixtures. DOPE containing lipid mixtures form fluid monolayers with a uniform distribution of the fluorescent probe in the presence and absence of DNA at physiologically relevant surface pressures. Only at high nonphysiological pressures, the lipid monolayer collapses and phase separation was observed if DNA was present in the subphase. In contrast, DPPC containing lipid mixtures show domains in the liquid condensed phase state in the presence and absence of DNA in the subphase. The adsorption of DNA at the positively charged mixed lipid monolayer induces phase separation which is expressed in the morphology and the point of appearance of these domains.
Collapse
Affiliation(s)
- Christopher Janich
- Martin Luther University Halle-Wittenberg , Institute of Pharmacy, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - André Hädicke
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval , Québec, Québec, Canada
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University Marburg , Ketzerbach 63, 35037 Marburg, Germany
| | - Gerald Brezesinski
- Max-Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm , Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Christian Wölk
- Martin Luther University Halle-Wittenberg , Institute of Pharmacy, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| |
Collapse
|
27
|
Vázquez RF, Daza Millone MA, Pavinatto FJ, Herlax VS, Bakás LS, Oliveira ON, Vela ME, Maté SM. Interaction of acylated and unacylated forms of E. coli alpha-hemolysin with lipid monolayers: a PM-IRRAS study. Colloids Surf B Biointerfaces 2017; 158:76-83. [PMID: 28683345 DOI: 10.1016/j.colsurfb.2017.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 11/18/2022]
Abstract
Uropathogenic strains of Escherichia coli produce virulence factors, such as the protein toxin alpha-hemolysin (HlyA), that enable the bacteria to colonize the host and establish an infection. HlyA is synthetized as a protoxin (ProHlyA) that is transformed into the active form in the bacterial cytosol by the covalent linkage of two fatty-acyl moieties to the polypeptide chain before the secretion of HlyA into the extracellular medium. The aim of this work was to investigate the effect of the fatty acylation of HlyA on protein conformation and protein-membrane interactions. Polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) experiments were performed at the air-water interface, and lipid monolayers mimicking the outer leaflet of red-blood-cell membranes were used as model systems for the study of protein-membrane interaction. According to surface-pressure measurements, incorporation of the acylated protein into the lipid films was faster than that of the nonacylated form. PM-IRRAS measurements revealed that the adsorption of the proteins to the lipid monolayers induced disorder in the lipid acyl chains and also changed the elastic properties of the films independently of protein acylation. No significant difference was observed between HlyA and ProHlyA in the interaction with the model lipid monolayers; but when these proteins became adsorbed on a bare air-water interface, they adopted different secondary structures. The assumption of the correct protein conformation at a hydrophobic-hydrophilic interface could constitute a critical condition for biologic activity.
Collapse
Affiliation(s)
- Romina F Vázquez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET. Facultad de Ciencias Médicas. Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - María A Daza Millone
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT- La Plata, CONICET. Universidad Nacional de La Plata, Sucursal 4 Casilla de Correo 16, 1900, La Plata, Argentina
| | - Felippe J Pavinatto
- Instituto de Física de São Carlos (IFSC), Universidade de São Paulo, SP, Brazil
| | - Vanesa S Herlax
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET. Facultad de Ciencias Médicas. Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Laura S Bakás
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas. Universidad Nacional de La Plata. 47 y 115, 1900, La Plata, Argentina
| | - Osvaldo N Oliveira
- Instituto de Física de São Carlos (IFSC), Universidade de São Paulo, SP, Brazil
| | - María E Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT- La Plata, CONICET. Universidad Nacional de La Plata, Sucursal 4 Casilla de Correo 16, 1900, La Plata, Argentina
| | - Sabina M Maté
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET. Facultad de Ciencias Médicas. Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina.
| |
Collapse
|
28
|
Boisselier É, Demers É, Cantin L, Salesse C. How to gather useful and valuable information from protein binding measurements using Langmuir lipid monolayers. Adv Colloid Interface Sci 2017; 243:60-76. [PMID: 28372794 DOI: 10.1016/j.cis.2017.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 12/22/2022]
Abstract
This review presents data on the influence of various experimental parameters on the binding of proteins onto Langmuir lipid monolayers. The users of the Langmuir methodology are often unaware of the importance of choosing appropriate experimental conditions to validate the data acquired with this method. The protein Retinitis pigmentosa 2 (RP2) has been used throughout this review to illustrate the influence of these experimental parameters on the data gathered with Langmuir monolayers. The methods detailed in this review include the determination of protein binding parameters from the measurement of adsorption isotherms, infrared spectra of the protein in solution and in monolayers, ellipsometric isotherms and fluorescence micrographs.
Collapse
Affiliation(s)
- Élodie Boisselier
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada.
| | - Éric Demers
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Line Cantin
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Christian Salesse
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
29
|
Schwieger C, Liu X, Krafft MP. Self-assembled mesoscopic surface domains of fluorocarbon–hydrocarbon diblocks can form at zero surface pressure: tilting of solid-like hydrocarbon moieties compensates for cross-section mismatch with fluorocarbon moieties. Phys Chem Chem Phys 2017. [DOI: 10.1039/c7cp02432k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Surface domains of C8F17C16H33 exist at zero surface pressure with solid-like alkyl chains stretched in an all-trans configuration, shown using IRRAS.
Collapse
Affiliation(s)
- Christian Schwieger
- Institute of Chemistry
- Martin-Luther University Halle-Wittenberg
- D-06099 Halle (Saale)
- Germany
| | - Xianhe Liu
- Institut Charles Sadron (CNRS)
- University of Strasbourg
- F-67034 Strasbourg
- France
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS)
- University of Strasbourg
- F-67034 Strasbourg
- France
| |
Collapse
|
30
|
Lima LMC, Fu W, Jiang L, Kros A, Schneider GF. Graphene-stabilized lipid monolayer heterostructures: a novel biomembrane superstructure. NANOSCALE 2016; 8:18646-18653. [PMID: 27722521 DOI: 10.1039/c6nr05706c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Chemically defined and electronically benign interfaces are attractive substrates for graphene and other two-dimensional materials. Here, we introduce lipid monolayers as an alternative, structurally ordered, and chemically versatile support for graphene. Deposition of graphene on the lipids resulted in a more ordered monolayer than regions without graphene. The lipids also offered graphene a more uniform and smoother support, reducing graphene hysteresis loop and the average value of the charge neutrality point under applied voltages. Our approach promises to be effective towards measuring experimentally biochemical phenomena within lipid monolayers and bilayers.
Collapse
Affiliation(s)
- Lia M C Lima
- Leiden University, Faculty of Science, Leiden Institute of Chemistry, Einsteinweg 55, 2333CC Leiden, The Netherlands.
| | - Wangyang Fu
- Leiden University, Faculty of Science, Leiden Institute of Chemistry, Einsteinweg 55, 2333CC Leiden, The Netherlands.
| | - Lin Jiang
- Leiden University, Faculty of Science, Leiden Institute of Chemistry, Einsteinweg 55, 2333CC Leiden, The Netherlands.
| | - Alexander Kros
- Leiden University, Faculty of Science, Leiden Institute of Chemistry, Einsteinweg 55, 2333CC Leiden, The Netherlands.
| | - Grégory F Schneider
- Leiden University, Faculty of Science, Leiden Institute of Chemistry, Einsteinweg 55, 2333CC Leiden, The Netherlands.
| |
Collapse
|
31
|
Mueller J, Oliveira J, Barker R, Trapp M, Schroeter A, Brezesinski G, Neubert R. The effect of urea and taurine as hydrophilic penetration enhancers on stratum corneum lipid models. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2006-2018. [DOI: 10.1016/j.bbamem.2016.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/08/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
|
32
|
Janich C, Taßler S, Meister A, Hause G, Schäfer J, Bakowsky U, Brezesinski G, Wölk C. Structures of malonic acid diamide/phospholipid composites and their lipoplexes. SOFT MATTER 2016; 12:5854-66. [PMID: 27328379 DOI: 10.1039/c6sm00807k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
As a continuation of previous work, the self-assembly process of cationic lipid formulations in the presence and absence of DNA was investigated with respect to binary lipid mixtures suitable as polynucleotide carrier systems. The lipid blends consist of one malonic-acid-based cationic lipid with a varying alkyl chain pattern, either N-{6-amino-1-[N-(9Z)-octadec-9-enylamino]-1-oxohexan-(2S)-2-yl}-N'-{2-[N,N-bis(2-aminoethyl)amino]ethyl}-2-hexadecylpropandiamide () or N-[6-amino-1-oxo-1-(N-tetradecylamino)hexan-(2S)-2-yl]-N'-{2-[N,N-bis(2-aminoethyl)amino]ethyl}-2-hexadecylpropandiamide (), and one neutral co-lipid, either 1,2-di-[(9Z)-octadec-9-enoyl]-sn-glycero-3-phosphocholine (DOPE) or 1,2-di-(hexadecanoyl)-sn-glycero-3-phosphocholine (DPPC). Although the cationic lipids exhibit only slight differences in their structure, the DNA transfer efficiency varies drastically. Therefore, self-assembly was studied in 3D systems by small- and wide-angle X-ray scattering (SAXS and WAXS) and transmission electron microscopy (TEM) as well as in 2D systems by infrared reflection-absorption spectroscopy (IRRAS) on Langmuir films. The investigated lipid mixtures show quite different self-assembly in the absence of DNA, with varying structures from vesicles (/DOPE; /DOPE) and tubes (/DOPE) to discoid structures (/DPPC; /DPPC). Twisted ribbons and sheets, which were stabilized due to hydrogen-bond networks, were found in all investigated lipid mixtures in the absence of DNA. The addition of DNA leads to the formation of lamellar lipoplexes for all the investigated lipid compositions. The lipoplexes differ in crucial parameters, such as the lamellar repeat distance and the spacing between the DNA strands, indicating differences in the binding strength between DNA and the lipid composition. The formation of associates with an ideal charge density might emerge as a key parameter for efficient DNA transfer. Furthermore, the structures observed for the different lipid compositions in the absence of DNA prepare the way for other applications besides gene therapy.
Collapse
Affiliation(s)
- Christopher Janich
- Martin Luther University Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Saale, Germany. and Philipps University Marburg, Department of Pharmaceutical Technology and Biopharmacy, Ketzerbach 63, 35037 Marburg, Germany
| | - Stephanie Taßler
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Annette Meister
- Martin Luther University Halle-Wittenberg, Institute of Chemistry, Physical Chemistry and Institute of Biochemistry and Biotechnology, von-Danckelmann-Platz 4, 06120 Halle, Saale, Germany
| | - Gerd Hause
- Martin Luther University Halle-Wittenberg, Biocenter, Weinbergweg 22, 06120 Halle, Saale, Germany
| | - Jens Schäfer
- Philipps University Marburg, Department of Pharmaceutical Technology and Biopharmacy, Ketzerbach 63, 35037 Marburg, Germany
| | - Udo Bakowsky
- Philipps University Marburg, Department of Pharmaceutical Technology and Biopharmacy, Ketzerbach 63, 35037 Marburg, Germany
| | - Gerald Brezesinski
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Christian Wölk
- Martin Luther University Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Saale, Germany.
| |
Collapse
|
33
|
Hädicke A, Blume A. Binding of the Cationic Peptide (KL)4K to Lipid Monolayers at the Air–Water Interface: Effect of Lipid Headgroup Charge, Acyl Chain Length, and Acyl Chain Saturation. J Phys Chem B 2016; 120:3880-7. [DOI: 10.1021/acs.jpcb.6b01558] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- André Hädicke
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, von-Danckelmann-Platz
4, 06120 Halle/Saale, Germany
| | - Alfred Blume
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, von-Danckelmann-Platz
4, 06120 Halle/Saale, Germany
| |
Collapse
|
34
|
Mid-infrared spectroscopy for protein analysis: potential and challenges. Anal Bioanal Chem 2016; 408:2875-89. [PMID: 26879650 DOI: 10.1007/s00216-016-9375-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/22/2016] [Accepted: 01/28/2016] [Indexed: 12/11/2022]
Abstract
Mid-infrared (MIR) spectroscopy investigates the interaction of MIR photons with both organic and inorganic molecules via the excitation of vibrational and rotational modes, providing inherent molecular selectivity. In general, infrared (IR) spectroscopy is particularly sensitive to protein structure and structural changes via vibrational resonances originating from the polypeptide backbone or side chains; hence information on the secondary structure of proteins can be obtained in a label-free fashion. In this review, the challenges for IR spectroscopy for protein analysis are discussed as are the potential and limitations of different IR spectroscopic techniques enabling protein analysis. In particular, the amide I spectral range has been widely used to study protein secondary structure, conformational changes, protein aggregation, protein adsorption, and the formation of amyloid fibrils. In addition to representative examples of the potential of IR spectroscopy in various fields related to protein analysis, the potential of protein analysis taking advantage of miniaturized MIR systems, including waveguide-enhanced MIR sensors, is detailed.
Collapse
|
35
|
Schwierz N, Krysiak S, Hugel T, Zacharias M. Mechanism of Reversible Peptide-Bilayer Attachment: Combined Simulation and Experimental Single-Molecule Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:810-821. [PMID: 26717083 DOI: 10.1021/acs.langmuir.5b03435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The binding of peptides and proteins to lipid membrane surfaces is of fundamental importance for many membrane-mediated cellular processes. Using closely matched molecular dynamics simulations and atomic force microscopy experiments, we study the force-induced desorption of single peptide chains from phospholipid bilayers to gain microscopic insight into the mechanism of reversible attachment. This approach allows quantification of desorption forces and decomposition of peptide-membrane interactions into energetic and entropic contributions. In both simulations and experiments, the desorption forces of peptides with charged and polar side chains are much smaller than those for hydrophobic peptides. The adsorption of charged/polar peptides to the membrane surface is disfavored by the energetic components, requires breaking of hydrogen bonds involving the peptides, and is favored only slightly by entropy. By contrast, the stronger adsorption of hydrophobic peptides is favored both by energy and by entropy and the desorption forces increase with increasing side-chain hydrophobicity. Interestingly, the calculated net adsorption free energies per residue correlate with experimental results of single residues, indicating that side-chain free energy contributions are largely additive. This observation can help in the design of peptides with tailored adsorption properties and in the estimation of membrane binding properties of peripheral membrane proteins.
Collapse
Affiliation(s)
- Nadine Schwierz
- Chemistry Department, University of California , Berkeley, California 94720, United States
| | | | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg , 79104 Freiburg, Germany
| | | |
Collapse
|
36
|
Harishchandra RK, Neumann BM, Gericke A, Ross AH. Biophysical methods for the characterization of PTEN/lipid bilayer interactions. Methods 2015; 77-78:125-35. [PMID: 25697761 PMCID: PMC4388815 DOI: 10.1016/j.ymeth.2015.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 12/22/2022] Open
Abstract
PTEN, a tumor suppressor protein that dephosphorylates phosphoinositides at the 3-position of the inositol ring, is a cytosolic protein that needs to associate with the plasma membrane or other subcellular membranes to exert its lipid phosphatase function. Upon membrane association PTEN interacts with at least three different lipid entities: An anionic lipid that is present in sufficiently high concentration to create a negative potential that allows PTEN to interact electrostatically with the membrane, phosphatidylinositol-4,5-bisphosphate, which interacts with PTEN's N-terminal end and the substrate, usually phosphatidylinositol-3,4,5-trisphosphate. Many parameters influence PTEN's interaction with the lipid bilayer, for example, the lateral organization of the lipids or the presence of other chemical species like cholesterol or other lipids. To investigate systematically the different steps of PTEN's complex binding mechanism and to explore its dynamic behavior in the membrane bound state, in vitro methods need to be employed that allow for a systematic variation of the experimental conditions. In this review we survey a variety of methods that can be used to assess PTEN lipid binding affinity, the dynamics of its membrane association as well as its dynamic behavior in the membrane bound state.
Collapse
Affiliation(s)
- Rakesh K Harishchandra
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01605, USA
| | - Brittany M Neumann
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01605, USA
| | - Arne Gericke
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01605, USA
| | - Alonzo H Ross
- University of Massachusetts Medical School, Department of Biochemistry and Molecular Pharmacology, Worcester, MA 01605, USA.
| |
Collapse
|
37
|
Demers É, Boisselier É, Horchani H, Blaudez D, Calvez P, Cantin L, Belley N, Champagne S, Desbat B, Salesse C. Lipid Selectivity, Orientation, and Extent of Membrane Binding of Nonacylated RP2. Biochemistry 2015; 54:2560-70. [DOI: 10.1021/bi501517r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Éric Demers
- CUO-Recherche,
Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec
and Département d’ophtalmologie, Faculté de médecine,
and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Élodie Boisselier
- CUO-Recherche,
Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec
and Département d’ophtalmologie, Faculté de médecine,
and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Habib Horchani
- CUO-Recherche,
Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec
and Département d’ophtalmologie, Faculté de médecine,
and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Daniel Blaudez
- CBMN-UMR
5248 CNRS, Université de Bordeaux, IPB, Allée Geoffroy
Saint Hilaire, 33600 Pessac, France
| | - Philippe Calvez
- CUO-Recherche,
Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec
and Département d’ophtalmologie, Faculté de médecine,
and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Line Cantin
- CUO-Recherche,
Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec
and Département d’ophtalmologie, Faculté de médecine,
and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Nicolas Belley
- CUO-Recherche,
Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec
and Département d’ophtalmologie, Faculté de médecine,
and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Sophie Champagne
- CUO-Recherche,
Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec
and Département d’ophtalmologie, Faculté de médecine,
and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Bernard Desbat
- CBMN-UMR
5248 CNRS, Université de Bordeaux, IPB, Allée Geoffroy
Saint Hilaire, 33600 Pessac, France
| | - Christian Salesse
- CUO-Recherche,
Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec
and Département d’ophtalmologie, Faculté de médecine,
and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| |
Collapse
|
38
|
Lhor M, Méthot M, Horchani H, Salesse C. Structure of the N-terminal segment of human retinol dehydrogenase 11 and its preferential lipid binding using model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:878-85. [DOI: 10.1016/j.bbamem.2014.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 11/25/2022]
|
39
|
Bernier SC, Horchani H, Salesse C. Structure and binding of the C-terminal segment of R9AP to lipid monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1967-1979. [PMID: 25614992 DOI: 10.1021/la503867h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Phototransduction cascade takes place in disc membranes of photoreceptor cells. Following its activation by light, rhodopsin activates the G-protein transducin causing the dissociation of its GTP-bound α-subunit, which in turn activates phosphodiesterase 6 (PDE6) leading to the hyperpolarization of photoreceptor cells. PDE6 must then be inactivated to return to the dark state. This is achieved by a protein complex which is presumably anchored to photoreceptor disc membranes by means of the transmembrane C-terminal segment of RGS9-1-Anchor Protein (R9AP). Information on the secondary structure and membrane binding properties of the C-terminal segment of R9AP is not yet available to further support its role in the membrane anchoring of this protein. In the present study, circular dichroism and infrared spectroscopy measurements have allowed us to determine that the C-terminal segment of human and bovine R9AP adopts an α-helical structure in solution. Moreover, this C-terminal segment has shown affinity for most of the phospholipids typical of photoreceptor membranes. In fact, the physical state and the type of phospholipid as well as electrostatic interactions influence the binding of the human and bovine peptides to phospholipid monolayers. In addition, these measurements revealed that the human peptide has a high affinity for saturated phosphocholine, which may suggest a possible localization of R9AP in photoreceptor microdomains. Accordingly, infrared spectroscopy measurements have allowed determining that the C-terminal segment of R9AP adopts an ordered α-helical structure in the presence of saturated phospholipid monolayers. Altogether, these data are consistent with the typical α-helical secondary structure and behavior observed for transmembrane segments and with the proposed role of membrane anchoring of the C-terminal segment of human and bovine R9AP.
Collapse
Affiliation(s)
- Sarah C Bernier
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval , Québec (Québec) Canada
| | | | | |
Collapse
|
40
|
Amphiphilic macromolecules on cell membranes: from protective layers to controlled permeabilization. J Membr Biol 2014; 247:861-81. [PMID: 24903487 DOI: 10.1007/s00232-014-9679-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 05/09/2014] [Indexed: 12/13/2022]
Abstract
Antimicrobial and cell-penetrating peptides have inspired developments of abiotic membrane-active polymers that can coat, penetrate, or break lipid bilayers in model systems. Application to cell cultures is more recent, but remarkable bioactivities are already reported. Synthetic polymer chains were tailored to achieve (i) high biocide efficiencies, and selectivity for bacteria (Gram-positive/Gram-negative or bacterial/mammalian membranes), (ii) stable and mild encapsulation of viable isolated cells to escape immune systems, (iii) pH-, temperature-, or light-triggered interaction with cells. This review illustrates these recent achievements highlighting the use of abiotic polymers, and compares the major structural determinants that control efficiency of polymers and peptides. Charge density, sp. of cationic and guanidinium side groups, and hydrophobicity (including polarity of stimuli-responsive moieties) guide the design of new copolymers for the handling of cell membranes. While polycationic chains are generally used as biocidal or hemolytic agents, anionic amphiphilic polymers, including Amphipols, are particularly prone to mild permeabilization and/or intracell delivery.
Collapse
|
41
|
Lhor M, Bernier SC, Horchani H, Bussières S, Cantin L, Desbat B, Salesse C. Comparison between the behavior of different hydrophobic peptides allowing membrane anchoring of proteins. Adv Colloid Interface Sci 2014; 207:223-39. [PMID: 24560216 PMCID: PMC4028306 DOI: 10.1016/j.cis.2014.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Membrane binding of proteins such as short chain dehydrogenase reductases or tail-anchored proteins relies on their N- and/or C-terminal hydrophobic transmembrane segment. In this review, we propose guidelines to characterize such hydrophobic peptide segments using spectroscopic and biophysical measurements. The secondary structure content of the C-terminal peptides of retinol dehydrogenase 8, RGS9-1 anchor protein, lecithin retinol acyl transferase, and of the N-terminal peptide of retinol dehydrogenase 11 has been deduced by prediction tools from their primary sequence as well as by using infrared or circular dichroism analyses. Depending on the solvent and the solubilization method, significant structural differences were observed, often involving α-helices. The helical structure of these peptides was found to be consistent with their presumed membrane binding. Langmuir monolayers have been used as membrane models to study lipid-peptide interactions. The values of maximum insertion pressure obtained for all peptides using a monolayer of 1,2-dioleoyl-sn-glycero-3-phospho-ethanolamine (DOPE) are larger than the estimated lateral pressure of membranes, thus suggesting that they bind membranes. Polarization modulation infrared reflection absorption spectroscopy has been used to determine the structure and orientation of these peptides in the absence and in the presence of a DOPE monolayer. This lipid induced an increase or a decrease in the organization of the peptide secondary structure. Further measurements are necessary using other lipids to better understand the membrane interactions of these peptides.
Collapse
Affiliation(s)
- Mustapha Lhor
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sarah C Bernier
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Habib Horchani
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sylvain Bussières
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Line Cantin
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Bernard Desbat
- CBMN-UMR 5248 CNRS, Université de Bordeaux, IPB, Allée Geoffroy Saint Hilaire, 33600 Pessac, France
| | - Christian Salesse
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada.
| |
Collapse
|