1
|
Kim GC, Cheon DH, Lee Y. Challenge to overcome current limitations of cell-penetrating peptides. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140604. [PMID: 33453413 DOI: 10.1016/j.bbapap.2021.140604] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
The penetration of biological membranes is a prime obstacle for the delivery of pharmaceutical drugs. Cell-penetrating peptide (CPP) is an efficient vehicle that can deliver various cargos across the biological membranes. Since the discovery, CPPs have been rigorously studied to unveil the underlying penetrating mechanism as well as to exploit CPPs for various biomedical applications. This review will focus on the various strategies to overcome current limitations regarding stability, selectivity, and efficacy of CPPs.
Collapse
Affiliation(s)
- Gyu Chan Kim
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dae Hee Cheon
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yan Lee
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
2
|
Affiliation(s)
- James E. Keener
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Guozhi Zhang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Wang L, Xue Y, Xing J, Song K, Lin J. Exploring the Spatiotemporal Organization of Membrane Proteins in Living Plant Cells. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:525-551. [PMID: 29489393 DOI: 10.1146/annurev-arplant-042817-040233] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plasma membrane proteins have important roles in transport and signal transduction. Deciphering the spatiotemporal organization of these proteins provides crucial information for elucidating the links between the behaviors of different molecules. However, monitoring membrane proteins without disrupting their membrane environment remains difficult. Over the past decade, many studies have developed single-molecule techniques, opening avenues for probing the stoichiometry and interactions of membrane proteins in their native environment by providing nanometer-scale spatial information and nanosecond-scale temporal information. In this review, we assess recent progress in the development of labeling and imaging technology for membrane protein analysis. We focus in particular on several single-molecule techniques for quantifying the dynamics and assembly of membrane proteins. Finally, we provide examples of how these new techniques are advancing our understanding of the complex biological functions of membrane proteins.
Collapse
Affiliation(s)
- Li Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China;
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yiqun Xue
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jingjing Xing
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Kai Song
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China;
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
4
|
Ambrose S, Housden NG, Gupta K, Fan J, White P, Yen H, Marcoux J, Kleanthous C, Hopper JTS, Robinson CV. Native Desorption Electrospray Ionization Liberates Soluble and Membrane Protein Complexes from Surfaces. Angew Chem Int Ed Engl 2017; 56:14463-14468. [PMID: 28884954 PMCID: PMC5813186 DOI: 10.1002/anie.201704849] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/07/2017] [Indexed: 12/19/2022]
Abstract
Mass spectrometry (MS) applications for intact protein complexes typically require electrospray (ES) ionization and have not been achieved via direct desorption from surfaces. Desorption ES ionization (DESI) MS has however transformed the study of tissue surfaces through release and characterisation of small molecules. Motivated by the desire to screen for ligand binding to intact protein complexes we report the development of a native DESI platform. By establishing conditions that preserve non-covalent interactions we exploit the surface to capture a rapid turnover enzyme-substrate complex and to optimise detergents for membrane protein study. We demonstrate binding of lipids and drugs to membrane proteins deposited on surfaces and selectivity from a mix of related agonists for specific binding to a GPCR. Overall therefore we introduce this native DESI platform with the potential for high-throughput ligand screening of some of the most challenging drug targets including GPCRs.
Collapse
Affiliation(s)
- Stephen Ambrose
- Department of Chemistry, Physical & Theoretical Chemistry LaboratoryUniversity of OxfordOxfordOX1 3QZUK
| | | | - Kallol Gupta
- Department of Chemistry, Physical & Theoretical Chemistry LaboratoryUniversity of OxfordOxfordOX1 3QZUK
| | - Jieyuan Fan
- Department of Chemistry, Physical & Theoretical Chemistry LaboratoryUniversity of OxfordOxfordOX1 3QZUK
| | - Paul White
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Hsin‐Yung Yen
- Department of Chemistry, Physical & Theoretical Chemistry LaboratoryUniversity of OxfordOxfordOX1 3QZUK
| | - Julien Marcoux
- Department of Chemistry, Physical & Theoretical Chemistry LaboratoryUniversity of OxfordOxfordOX1 3QZUK
- Current address: IPBSCNRS, UMR 5089205 Route de Narbonne31077ToulouseFrance
| | | | - Jonathan T. S. Hopper
- Department of Chemistry, Physical & Theoretical Chemistry LaboratoryUniversity of OxfordOxfordOX1 3QZUK
| | - Carol V. Robinson
- Department of Chemistry, Physical & Theoretical Chemistry LaboratoryUniversity of OxfordOxfordOX1 3QZUK
| |
Collapse
|
5
|
Ambrose S, Housden NG, Gupta K, Fan J, White P, Yen HY, Marcoux J, Kleanthous C, Hopper JTS, Robinson CV. Native Desorption Electrospray Ionization Liberates Soluble and Membrane Protein Complexes from Surfaces. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Stephen Ambrose
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory; University of Oxford; Oxford OX1 3QZ UK
| | | | - Kallol Gupta
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory; University of Oxford; Oxford OX1 3QZ UK
| | - Jieyuan Fan
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory; University of Oxford; Oxford OX1 3QZ UK
| | - Paul White
- Department of Biochemistry; University of Oxford; Oxford UK
| | - Hsin-Yung Yen
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory; University of Oxford; Oxford OX1 3QZ UK
| | - Julien Marcoux
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory; University of Oxford; Oxford OX1 3QZ UK
- Current address: IPBS; CNRS, UMR 5089; 205 Route de Narbonne 31077 Toulouse France
| | | | - Jonathan T. S. Hopper
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory; University of Oxford; Oxford OX1 3QZ UK
| | - Carol V. Robinson
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory; University of Oxford; Oxford OX1 3QZ UK
| |
Collapse
|
6
|
Peripheral membrane associations of matrix metalloproteinases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1964-1973. [PMID: 28442379 DOI: 10.1016/j.bbamcr.2017.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022]
Abstract
Water soluble matrix metalloproteinases (MMPs) have been regarded as diffusing freely in the extracellular matrix. Yet multiple MMPs are also observed at cell surfaces. Their membrane-proximal activities include sheddase activities, collagenolysis, bacterial killing, and intracellular trafficking reaching as far as the nucleus. The catalytic domains of MMP-7 and MMP-12 bind bilayers peripherally, each in two different orientations, by presenting positive charges and a few hydrophobic groups to the surface. Related peripheral membrane associations are predicted for other soluble MMPs. The peripheral membrane associations may support pericellular proteolysis and endocytosis. The isolated soluble domains of MT1-MMP can also associate with membranes. NMR assays suggest transient association of the hemopexin-like domains of MT1-MMP and MMP-12 with lipid bilayers. Peripheral association of soluble MMP domains with bilayers or heparin sulfate proteoglycans probably concentrates them near the membrane. This could increase the probability of forming complexes with membrane-associated proteins, such as those targeted for proteolysis. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
|
7
|
Min Y. Phase dynamics and domain interactions in biological membranes. Curr Opin Chem Eng 2017. [DOI: 10.1016/j.coche.2016.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Abstract
Membrane proteins play critical physiological roles and make up the majority of drug targets. Due to their generally low expression levels and amphipathic nature, membrane proteins represent challenging molecular entities for biophysical study. Mass spectrometry offers several sensitive approaches to study the biophysics of membrane proteins. By preserving noncovalent interactions in the gas phase and using collisional activation to remove solubilization agents inside the mass spectrometer, native mass spectrometry (MS) is capable of studying isolated assemblies that would be insoluble in aqueous solution, such as membrane protein oligomers and protein-lipid complexes. Conventional methods use detergent to solubilize the protein prior to electrospray ionization. Gas-phase activation inside the mass spectrometer removes the detergent to yield the isolated proteins with bound ligands. This approach has proven highly successful for ionizing membrane proteins. With the appropriate choice of detergents, membrane proteins with bound lipid species can be observed, which allows characterization of protein-lipid interactions. However, detergents have several limitations. They do not necessarily replicate the native lipid bilayer environment, and only a small number of protein-lipid interactions can be resolved. In this Account, we summarize the development of different membrane mimetics as cassettes for MS analysis of membrane proteins. Examples include amphipols, bicelles, and picodiscs with a special emphasis on lipoprotein nanodiscs. Polydispersity and heterogeneity of the membrane mimetic cassette is a critical issue for study by MS. Ever more complex data sets consisting of overlapping protein charge states and multiple lipid-bound entities have required development of new computational, theoretical, and experimental approaches to interpret both mass and ion mobility spectra. We will present the rationale and limitations of these approaches. Starting with the early work on empty nanodiscs, we chart developments that culminate in recent high-resolution studies of membrane protein-lipid complexes ejected from nanodiscs. For the latter, increasing collision energies allowed progressive removal of nanodisc components, beginning with the scaffold proteins and continuing through successive shells of lipids, allowing direct characterization of the stoichiometry of the annular lipid belt that surrounds the membrane protein. We consider future directions for the study of membrane proteins in membrane mimetics, including the development of mixed lipid systems and native bilayer environments. Unambiguous assignment of these heterogeneous systems will rely heavily upon further enhancements in both data analysis protocols and instrumental resolution. We anticipate that these developments will provide new insights into the factors that control dynamic protein-lipid interactions in a variety of tailored and natural lipid environments.
Collapse
Affiliation(s)
- Michael T. Marty
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, OX1 3QZ (UK)
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85719 (USA)
| | - Kin Kuan Hoi
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, OX1 3QZ (UK)
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, OX1 3QZ (UK)
| |
Collapse
|
9
|
LeBarron J, London E. Highly Hydrophilic Segments Attached to Hydrophobic Peptides Translocate Rapidly across Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10752-10760. [PMID: 27649909 DOI: 10.1021/acs.langmuir.6b02597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hydrophilic segments attached to transmembrane helices often cross membranes. In an increasing number of cases, it has become apparent that this occurs in a biologically relevant post-translational event. In this study, we investigate whether juxta-membrane (JM) hydrophilic sequences attached to hydrophobic helices are able to rapidly cross lipid bilayers via their ability or inability to block hydrophobic helix interconversion between a transmembrane (TM) and non-TM membrane-associated state. Interconversion was triggered by changing the protonation state of an Asp residue in the hydrophobic core of the peptides, and peptide configuration was monitored by the fluorescence of a Trp residue at the center of the hydrophobic sequence. In POPC vesicles, conversion of the TM to non-TM state at high pH and the non-TM to TM state at low pH was rapid (seconds or less) for KK, KKNN, and the KKNNNNNN flanking sequences on both N- and C-termini and the KLFAGHQ sequence that flanks the spontaneously TM-inserting 3A protein of polio virus. In vesicles composed of 6:4 (mol/mol) POPC/cholesterol, interconversion was still rapid, with the exception of the peptide flanked by KKNNNNNN sequences, for which the half time of interconversion slowed to minutes. This behavior suggests that, at least in membranes with low levels of cholesterol, movement of hydrophilic JM segments (and analogous hydrophobic loops in multipass TM proteins) across membranes may be more facile than previously thought. This may have important biological implications.
Collapse
Affiliation(s)
- Jamie LeBarron
- Stony Brook University Stony Brook, New York 11794-5215, United States
| | - Erwin London
- Stony Brook University Stony Brook, New York 11794-5215, United States
| |
Collapse
|
10
|
Wessels HJCT, de Almeida NM, Kartal B, Keltjens JT. Bacterial Electron Transfer Chains Primed by Proteomics. Adv Microb Physiol 2016; 68:219-352. [PMID: 27134025 DOI: 10.1016/bs.ampbs.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electron transport phosphorylation is the central mechanism for most prokaryotic species to harvest energy released in the respiration of their substrates as ATP. Microorganisms have evolved incredible variations on this principle, most of these we perhaps do not know, considering that only a fraction of the microbial richness is known. Besides these variations, microbial species may show substantial versatility in using respiratory systems. In connection herewith, regulatory mechanisms control the expression of these respiratory enzyme systems and their assembly at the translational and posttranslational levels, to optimally accommodate changes in the supply of their energy substrates. Here, we present an overview of methods and techniques from the field of proteomics to explore bacterial electron transfer chains and their regulation at levels ranging from the whole organism down to the Ångstrom scales of protein structures. From the survey of the literature on this subject, it is concluded that proteomics, indeed, has substantially contributed to our comprehending of bacterial respiratory mechanisms, often in elegant combinations with genetic and biochemical approaches. However, we also note that advanced proteomics offers a wealth of opportunities, which have not been exploited at all, or at best underexploited in hypothesis-driving and hypothesis-driven research on bacterial bioenergetics. Examples obtained from the related area of mitochondrial oxidative phosphorylation research, where the application of advanced proteomics is more common, may illustrate these opportunities.
Collapse
Affiliation(s)
- H J C T Wessels
- Nijmegen Center for Mitochondrial Disorders, Radboud Proteomics Centre, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N M de Almeida
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - B Kartal
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands; Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - J T Keltjens
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
11
|
Chen Z, Xu Y, Bujalowski P, Oberhauser AF, Boor PJ. N-(2-Aminoethyl) Ethanolamine-Induced Morphological, Biochemical, and Biophysical Alterations in Vascular Matrix Associated With Dissecting Aortic Aneurysm. Toxicol Sci 2015; 148:421-32. [PMID: 26443843 DOI: 10.1093/toxsci/kfv194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dissecting aortic aneurysm (DAA) is an extended tear in the wall of the aorta along the plane of the vascular media. Our previous studies indicated in a developmental animal model, that DAA was related to pathological alteration in collagen, especially collagen type III. Accordingly, in the present studies, neonatal aortic vascular smooth muscle cells (VSMC) and timed pregnant Sprague-Dawley rat dams were treated with N-(2-aminoethyl) ethanolamine (AEEA), which, as shown previously, causes DAA in offspring. Morphological changes in extracellular matrix (ECM) produced by VSMC in vitro were detailed with scanning electron microscopy (SEM), and biochemical changes in cells and ECM produced by VSMCs were defined by Western blotting. Biophysical changes of the collagen extracted from both the ECM produced by VSMC and extracted from fetal rat aortas were studied with atomic force microscopy (AFM). ECM disruption and irregularities were observed in VSMCs treated with AEEA by SEM. Western blotting showed that collagen type I was much more extractable, accompanied by a decrease of the pellet size after urea buffer extraction in the AEEA-treated VSMC when compared with the control. AFM found that collagen samples extracted from the fetal rat aortas of the AEEA-treated dam, and in the in vitro formed ECM prepared by decellularization, became stiffer, or more brittle, indicating that the 3D organization associated with elasticity was altered by AEEA exposure. Our results show that AEEA causes significant morphological, biochemical, and biomechanical alterations in the ECM. These in vitro and in vivo strategies are advantageous in elucidating the underlying mechanisms of DAA.
Collapse
Affiliation(s)
| | | | | | - Andres F Oberhauser
- Department of Neuroscience and Cell Biology; and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555
| | | |
Collapse
|
12
|
Xiong H, Zhou Y, Zhou Q, He D, Wan S, Tan Q, Zhang M, Deng X, Zhang J. Nanosomal Microassemblies for Highly Efficient and Safe Delivery of Therapeutic Enzymes. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20255-20263. [PMID: 26325262 DOI: 10.1021/acsami.5b05758] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Enzyme therapy has unique advantages over traditional chemotherapies for the treatment of hyperuricemia, but overcoming the delivery obstacles of therapeutic enzymes is still a significant challenge. Here, we report a novel and superior system to effectively and safely deliver therapeutic enzymes. Nanosomal microassemblies loaded with uricase (NSU-MAs) are assembled with many individual nanosomes. Each nanosome contains uricase within the alkaline environment, which is beneficial for its catalytic reactions and keeps the uricase separate from the bloodstream to retain its high activity. Compared to free uricase, NSU-MAs exhibited much higher catalytic activity under physiological conditions and when subjected to different temperatures, pH values and trypsin. NSU-MAs displayed increased circulation time, improved bioavailability, and enhanced uric acid-lowering efficacy, while decreasing the immunogenicity. We also described the possible favorable conformational changes occurring in NSU-MAs that result in favorable outcomes. Thus, nanosomal microassemblies could serve as a valuable tool in constructing delivery systems for therapeutic enzymes that treat various diseases.
Collapse
Affiliation(s)
- Huarong Xiong
- Medicine Engineering Research Center, Chongqing Medical University , Chongqing 400016, China
| | - Yunli Zhou
- Medicine Engineering Research Center, Chongqing Medical University , Chongqing 400016, China
| | - Qixin Zhou
- Medicine Engineering Research Center, Chongqing Medical University , Chongqing 400016, China
| | - Dan He
- Medicine Engineering Research Center, Chongqing Medical University , Chongqing 400016, China
| | - Shengli Wan
- Medicine Engineering Research Center, Chongqing Medical University , Chongqing 400016, China
| | - Qunyou Tan
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University , Chongqing 400042, China
| | - Mi Zhang
- Medicine Engineering Research Center, Chongqing Medical University , Chongqing 400016, China
| | - Xue Deng
- Medicine Engineering Research Center, Chongqing Medical University , Chongqing 400016, China
| | - Jingqing Zhang
- Medicine Engineering Research Center, Chongqing Medical University , Chongqing 400016, China
| |
Collapse
|