1
|
Anguita-Ortiz N, Nogueira JJ. Role of Hydration and Amino Acid Interactions on the Ion Permeation Mechanism in the hNa V1.5 Channel. Biochemistry 2025; 64:47-56. [PMID: 39688400 PMCID: PMC11713869 DOI: 10.1021/acs.biochem.4c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
This study explores the ion selectivity and conduction mechanisms of the hNaV1.5 sodium channel using classical molecular dynamics simulations under an externally applied electric field. Our findings reveal distinct conduction mechanisms for Na+ and K+, primarily driven by differences in their hydration states when they diffuse close to the channel's selective filter (DEKA) and extracellular ring (EEDD). The Na+ ions undergo partial dehydration in the EEDD region, followed by a rehydration step in the DEKA ring, resulting in longer retention times and a deeper free energy minimum compared to K+. Conversely, the K+ ions exhibit a continuous dehydration process, facilitating a smoother passage through these key regions. These results indicate that ion selectivity and conductance are primarily governed by solvation dynamics, which, in turn, depend on the interactions with key charged residues within the channel. Additionally, we show that the delicate energetic balance between the interactions of the ions with the protein residues and with their solvation shells during the dehydration and rehydration processes is not properly captured by the force field. As a consequence, the selectivity of the channel is not well described, indicating that more accurate computational models must be applied to simulate ion conduction through eukaryotic NaV channels.
Collapse
Affiliation(s)
- Nuria Anguita-Ortiz
- Department
of Chemistry, Universidad Autónoma
de Madrid, Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | - Juan J. Nogueira
- Department
of Chemistry, Universidad Autónoma
de Madrid, Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
- IADCHEM,
Institute for Advanced Research in Chemistry, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| |
Collapse
|
2
|
Kumar D, Harris AL, Luo YL. Molecular permeation through large pore channels: computational approaches and insights. J Physiol 2024:10.1113/JP285198. [PMID: 39373834 PMCID: PMC11973239 DOI: 10.1113/jp285198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Computational methods such as molecular dynamics (MD) have illuminated how single-atom ions permeate membrane channels and how selectivity among them is achieved. Much less is understood about molecular permeation through eukaryotic channels that mediate the flux of small molecules (e.g. connexins, pannexins, LRRC8s, CALHMs). Here we describe computational methods that have been profitably employed to explore the movements of molecules through wide pores, revealing mechanistic insights, guiding experiments, and suggesting testable hypotheses. This review illustrates MD techniques such as voltage-driven flux, potential of mean force, and mean first-passage-time calculations, as applied to molecular permeation through wide pores. These techniques have enabled detailed and quantitative modeling of molecular interactions and movement of permeants at the atomic level. We highlight novel contributors to the transit of molecules through these wide pathways. In particular, the flexibility and anisotropic nature of permeant molecules, coupled with the dynamics of pore-lining residues, lead to bespoke permeation dynamics. As more eukaryotic large-pore channel structures and functional data become available, these insights and approaches will be important for understanding the physical principles underlying molecular permeation and as guides for experimental design.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Biotechnology and Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Andrew L. Harris
- Department of Pharmacology, Physiology, and Neuroscience. New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Yun Lyna Luo
- Department of Biotechnology and Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
3
|
|
4
|
Chen AY, Brooks BR, Damjanovic A. Determinants of conductance of a bacterial voltage-gated sodium channel. Biophys J 2021; 120:3050-3069. [PMID: 34214541 DOI: 10.1016/j.bpj.2021.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/22/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022] Open
Abstract
Through molecular dynamics (MD) and free energy simulations in electric fields, we examine the factors influencing conductance of bacterial voltage-gated sodium channel NavMs. The channel utilizes four glutamic acid residues in the selectivity filter (SF). Previously, we have shown, through constant pH and free energy calculations of pKa values, that fully deprotonated, singly protonated, and doubly protonated states are all feasible at physiological pH, depending on how many ions are bound in the SF. With 173 MD simulations of 450 or 500 ns and additional free energy simulations, we determine that the conductance is highest for the deprotonated state and decreases with each additional proton bound. We also determine that the pKa value of the four glutamic residues for the transition between deprotonated and singly protonated states is close to the physiological pH and that there is a small voltage dependence. The pKa value and conductance trends are in agreement with experimental work on bacterial Nav channels, which show a decrease in maximal conductance with lowering of pH, with pKa in the physiological range. We examine binding sites for Na+ in the SF, compare with previous work, and note a dependence on starting structures. We find that narrowing of the gate backbone to values lower than the crystal structure's backbone radius reduces the conductance, whereas increasing the gate radius further does not affect the conductance. Simulations with some amount of negatively charged lipids as opposed to purely neutral lipids increases the conductance, as do simulations at higher voltages.
Collapse
Affiliation(s)
- Ada Y Chen
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland; Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Ana Damjanovic
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland; Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
5
|
Pieńko T, Trylska J. Computational Methods Used to Explore Transport Events in Biological Systems. J Chem Inf Model 2019; 59:1772-1781. [DOI: 10.1021/acs.jcim.8b00974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tomasz Pieńko
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
- Department of Drug Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, S. Banacha 1a, 02-097 Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
6
|
DeMarco KR, Bekker S, Vorobyov I. Challenges and advances in atomistic simulations of potassium and sodium ion channel gating and permeation. J Physiol 2018; 597:679-698. [PMID: 30471114 DOI: 10.1113/jp277088] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 10/15/2018] [Indexed: 12/19/2022] Open
Abstract
Ion channels are implicated in many essential physiological events such as electrical signal propagation and cellular communication. The advent of K+ and Na+ ion channel structure determination has facilitated numerous investigations of molecular determinants of their behaviour. At the same time, rapid development of computer hardware and molecular simulation methodologies has made computational studies of large biological molecules in all-atom representation tractable. The concurrent evolution of experimental structural biology with biomolecular computer modelling has yielded mechanistic details of fundamental processes unavailable through experiments alone, such as ion conduction and ion channel gating. This review is a short survey of the atomistic computational investigations of K+ and Na+ ion channels, focusing on KcsA and several voltage-gated channels from the KV and NaV families, which have garnered many successes and engendered several long-standing controversies regarding the nature of their structure-function relationship. We review the latest advancements and challenges facing the field of molecular modelling and simulation regarding the structural and energetic determinants of ion channel function and their agreement with experimental observations.
Collapse
Affiliation(s)
- Kevin R DeMarco
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA.,Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| | - Slava Bekker
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA.,Chemistry Department, American River College, Sacramento, CA, USA
| | - Igor Vorobyov
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA.,Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| |
Collapse
|
7
|
Ke S, Ulmschneider MB, Wallace BA, Ulmschneider JP. Role of the Interaction Motif in Maintaining the Open Gate of an Open Sodium Channel. Biophys J 2018; 115:1920-1930. [PMID: 30366630 DOI: 10.1016/j.bpj.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 01/09/2023] Open
Abstract
Voltage-gated sodium channels undergo transitions between open, closed, and inactivated states, enabling regulation of the translocation of sodium ions across membranes. A recently published crystal structure of the full-length prokaryotic NavMs crystal structure in the activated open conformation has revealed the presence of a novel motif consisting of an extensive network of salt bridges involving residues in the voltage sensor, S4-S5 linker, pore, and C-terminal domains. This motif has been proposed to be responsible for maintaining an open conformation that enables ion translocation through the channel. In this study, we have used long-time molecular dynamics calculations without artificial restraints to demonstrate that the interaction network of full-length NavMs indeed prevents a rapid collapse and closure of the gate, in marked difference to earlier studies of the pore-only construct in which the gate had to be restrained to remain open. Interestingly, a frequently discussed "hydrophobic gating" mechanism at nanoscopic level is also observed in our simulations, in which the discontinuous water wire close to the gate region leads to an energetic barrier for ion conduction. In addition, we demonstrate the effects of in silico mutations of several of the key residues in the motif on the open channel's stability and functioning, correlating them with existing functional studies on this channel and homologous disease-associated mutations in human sodium channels; we also examine the effects of truncating/removing the voltage sensor and C-terminal domains in maintaining an open gate.
Collapse
Affiliation(s)
- Song Ke
- Institute of Natural Sciences and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | | | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom.
| | - Jakob P Ulmschneider
- Institute of Natural Sciences and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|