1
|
Morato LFDC, Ruiz GCM, Lessa CJA, Olivier DDS, Amaral MSD, Gomes OP, Pazin WM, Batagin-Neto A, Oliveira ON, Constantino CJL. Combined impact of pesticides on mono- and bilayer lipid membranes. Chem Phys Lipids 2025; 268:105474. [PMID: 39909297 DOI: 10.1016/j.chemphyslip.2025.105474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
The increased use of agrochemicals in crop production raises concerns about the risk of combined pesticide exposure through water and food, potentially leading to a 'cocktail effect' with synergistic impacts on human health. To investigate such effects, we used the pesticides acephate and diuron interacting with a mimetic system of the cell membrane, composed of lipid monolayers. These mimetic systems were composed by a mixture of POPC, cholesterol and sphingomyelin (70/20/10 mol%), respectively, close to the composition found in mammalian membranes. Results from Langmuir monolayers, including surface pressure-area isotherms, polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM), showed that the pesticides interact predominantly with the polar head region of the lipids, a finding supported by density functional theory (DFT) calculations and molecular dynamics simulations. The cocktail had a similar effect in π-A isotherms; however, PM-IRRAS data suggests a stronger effect of the cocktail on the ternary monolayer at the molecular level, once the pesticide mixture changed the conformation and orientation of the headgroup and disturbed the hydrocarbon chain. These results evidence the impact of the 'cocktail effect' on lipid membranes, highlighting potential health risks associated with pesticide mixtures.
Collapse
Affiliation(s)
| | - Gilia Cristine Marques Ruiz
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, Brazil
| | - Carlos Junior Amorim Lessa
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, Brazil
| | - Danilo da Silva Olivier
- Integrated Sciences Center, Campus Cimba, Federal University of North of Tocantins, Araguaína, TO, Brazil
| | | | - Orisson Ponce Gomes
- São Paulo State University (UNESP), School of Sciences, Campus Bauru, SP, Brazil
| | | | - Augusto Batagin-Neto
- São Paulo State University (UNESP), Institute of Sciences and Engineering, Campus Itapeva, SP, Brazil
| | - Osvaldo N Oliveira
- Sao Carlos Institute of Physics, University of Sao Paulo (USP), Sao Carlos, SP, Brazil
| | | |
Collapse
|
2
|
Giri RP, Chowdhury S, Mukhopadhyay MK, Chakrabarti A, Sanyal MK. Ganglioside GM1 Drives Hemin and Protoporphyrin Adsorption in Phospholipid Membranes: A Structural Study. J Phys Chem B 2024; 128:2745-2754. [PMID: 38447189 DOI: 10.1021/acs.jpcb.3c08239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Monosialoganglioside (GM1), a ubiquitous component of lipid rafts, and hemin, an integral part of heme proteins such as hemoglobin, are essential to the cell membranes of brain neurons and erythrocyte red blood cells for regulating cellular communication and oxygen transport. Protoporphyrin IX (PPIX) and its derivative hemin, on the contrary, show significant cytotoxic effects when in excess causing hematological diseases, such as thalassemia, anemia, malaria, and neurodegeneration. However, the in-depth molecular etiology of their interactions with the cell membrane has so far been poorly understood. Herein, the structure of the polymer cushion-supported lipid bilayer (SLB) of the binary mixture of phospholipid and GM1 in the presence of PPIX and its derivative hemin has been investigated to predict the molecular interactions in model phospholipid membranes. A high-resolution synchrotron-based X-ray scattering technique has been employed to explore the out-of-plane structure of the assembly at different compositions and concentrations. The structural changes have been complemented with the isobaric changes in the mean molecular area obtained from the Langmuir monolayer isotherm to predict the additive-induced membrane condensation and fluidization. PPIX-induced fluidization of phospholipid SLB without GM1 was witnessed, which was reversed to condensation with 2-fold higher structural changes in the presence of GM1. A hemin concentration-dependent linear condensing effect was observed in the pristine SLB. The effect was significantly reduced, and the linearity was observed to be lost in the mixed SLB containing GM1. Our study shows that GM1 alters the interaction of hemin and PPIX with the membrane, which could be explained with the aid of hydrophobic and electrostatic interactions. Our study indicates favorable and unfavorable interactions of GM1 with PPIX and hemin, respectively, in the membrane. The observed structural changes in both SLB and the underlying polymer cushion layer lead to the proposal of a molecule-specific interaction model that can benefit the pharmaceutical industries specialized for drug designing. Our study potentially enriches our fundamental biophysical understanding of neurodegenerative diseases and drug-membrane interactions.
Collapse
Affiliation(s)
- Rajendra P Giri
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, West Bengal 700064, India
- Department of Physics, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India
| | - Subhadip Chowdhury
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, West Bengal 700064, India
| | - Mrinmay K Mukhopadhyay
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, West Bengal 700064, India
| | - Abhijit Chakrabarti
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, West Bengal 700064, India
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational & Research Institute, Narendrapur, Kolkata 700103, India
| | - Milan K Sanyal
- Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, West Bengal 700064, India
| |
Collapse
|
3
|
Alkafaas SS, Abdallah AM, Hassan MH, Hussien AM, Elkafas SS, Loutfy SA, Mikhail A, Murad OG, Elsalahaty MI, Hessien M, Elshazli RM, Alsaeed FA, Ahmed AE, Kamal HK, Hafez W, El-Saadony MT, El-Tarabily KA, Ghosh S. Molecular docking as a tool for the discovery of novel insight about the role of acid sphingomyelinase inhibitors in SARS- CoV-2 infectivity. BMC Public Health 2024; 24:395. [PMID: 38321448 PMCID: PMC10848368 DOI: 10.1186/s12889-024-17747-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Recently, COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, caused > 6 million deaths. Symptoms included respiratory strain and complications, leading to severe pneumonia. SARS-CoV-2 attaches to the ACE-2 receptor of the host cell membrane to enter. Targeting the SARS-CoV-2 entry may effectively inhibit infection. Acid sphingomyelinase (ASMase) is a lysosomal protein that catalyzes the conversion of sphingolipid (sphingomyelin) to ceramide. Ceramide molecules aggregate/assemble on the plasma membrane to form "platforms" that facilitate the viral intake into the cell. Impairing the ASMase activity will eventually disrupt viral entry into the cell. In this review, we identified the metabolism of sphingolipids, sphingolipids' role in cell signal transduction cascades, and viral infection mechanisms. Also, we outlined ASMase structure and underlying mechanisms inhibiting viral entry 40 with the aid of inhibitors of acid sphingomyelinase (FIASMAs). In silico molecular docking analyses of FIASMAs with inhibitors revealed that dilazep (S = - 12.58 kcal/mol), emetine (S = - 11.65 kcal/mol), pimozide (S = - 11.29 kcal/mol), carvedilol (S = - 11.28 kcal/mol), mebeverine (S = - 11.14 kcal/mol), cepharanthine (S = - 11.06 kcal/mol), hydroxyzin (S = - 10.96 kcal/mol), astemizole (S = - 10.81 kcal/mol), sertindole (S = - 10.55 kcal/mol), and bepridil (S = - 10.47 kcal/mol) have higher inhibition activity than the candidate drug amiodarone (S = - 10.43 kcal/mol), making them better options for inhibition.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Abanoub Mosaad Abdallah
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza, 11561, Egypt
| | - Mai H Hassan
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Aya Misbah Hussien
- Biotechnology department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Abanoub Mikhail
- Department of Physics, Faculty of Science, Minia University, Minia, Egypt
- Faculty of Physics, ITMO University, Saint Petersburg, Russia
| | - Omnia G Murad
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed I Elsalahaty
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University - Egypt, New Damietta, 34517, Egypt
| | - Fatimah A Alsaeed
- Department of Biology, College of Science, King Khalid University, Muhayl, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Hani K Kamal
- Anatomy and Histology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Wael Hafez
- NMC Royal Hospital, 16Th Street, 35233, Khalifa City, Abu Dhabi, United Arab Emirates
- Medical Research Division, Department of Internal Medicine, The National Research Centre, 12622, 33 El Buhouth St, Ad Doqi, Dokki, Cairo Governorate, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
- Natural & Medical Science Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
4
|
Płachta Ł, Mach M, Kowalska M, Wydro P. The effect of trans-resveratrol on the physicochemical properties of lipid membranes with different cholesterol content. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184212. [PMID: 37774995 DOI: 10.1016/j.bbamem.2023.184212] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 10/01/2023]
Abstract
Resveratrol is one of the most popular phytoalexins, which naturally occurs in grapes and red wine. This compound not only has beneficial effects on the human body, especially on the cardiovascular system, but also has antiviral, antibacterial and antifungal properties. In addition, resveratrol may have therapeutic effects against various types of cancer. The mechanism of action of resveratrol is not fully understood, but it is suspected that one of the most important steps is its interaction with the cell membrane and changing its molecular organization. Therefore, in the present study, we investigated the effects of resveratrol at different concentrations (0-75 μM) on model membranes composed of POPC, SM and cholesterol, in systems with different cholesterol contents and a constant POPC/SM molar ratio (1:1). Our tests included systems containing 5, 15 and 33.3 mol% cholesterol. Tests were carried out for monolayers using the Langmuir monolayer technique supported by Brewster angle microscopy and penetration experiments. Bilayer (liposome) experiments included calcein release, steady-state DPH fluorescence anisotropy and partition coefficients. The results showed that resveratrol interacts with model cell membranes (lipid monolayers and lipid bilayers), and its incorporation into membranes is accompanied by changes in their physicochemical parameters, such as lipid packing, fluidity and permeability. Furthermore, we showed that the cholesterol content of the membrane significantly affects the degree of incorporation of resveratrol into the model membrane, which may indicate that the molecular mechanism of action of this compound is closely related to its interactions with lipid rafts, domains responsible for regulating various cellular functions.
Collapse
Affiliation(s)
- Łukasz Płachta
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Prof. Łojasiewicza 11, 30-348 Kraków, Poland
| | - Marzena Mach
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Magdalena Kowalska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Paweł Wydro
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
5
|
Dynarowicz-Latka P, Wnętrzak A, Chachaj-Brekiesz A. Advantages of the classical thermodynamic analysis of single-and multi-component Langmuir monolayers from molecules of biomedical importance-theory and applications. J R Soc Interface 2024; 21:20230559. [PMID: 38196377 PMCID: PMC10777166 DOI: 10.1098/rsif.2023.0559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
The Langmuir monolayer technique has been successfully used for decades to model biological membranes and processes occurring at their interfaces. Classically, this method involves surface pressure measurements to study interactions within membrane components as well as between external bioactive molecules (e.g. drugs) and the membrane. In recent years, surface-sensitive techniques were developed to investigate monolayers in situ; however, the obtained results are in many cases insufficient for a full characterization of biomolecule-membrane interactions. As result, description of systems using parameters such as mixing or excess thermodynamic functions is still relevant, valuable and irreplaceable in biophysical research. This review article summarizes the theory of thermodynamics of single- and multi-component Langmuir monolayers. In addition, recent applications of this approach to characterize surface behaviour and interactions (e.g. orientation of bipolar molecules, drug-membrane affinity, lateral membrane heterogeneity) are presented.
Collapse
Affiliation(s)
| | - Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Anna Chachaj-Brekiesz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
6
|
Wang J, Wang X, Feng S, Liu X, Wang Z. Effect of Trastuzumab on the thermodynamic behavior and roughness of fluid membrane using unsaturated phospholipid/cholesterol mixed monolayer model. Arch Biochem Biophys 2023; 742:109641. [PMID: 37209765 DOI: 10.1016/j.abb.2023.109641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 05/22/2023]
Abstract
The microenvironment near the receptor on biological membrane plays an important role in regulating drug-receptor interaction, and the interaction between drugs and lipids on membrane can also affect the microenvironment of membrane, which may affect drugs' efficacy or cause the drug resistance. Trastuzumab (Tmab) is a monoclonal antibody, used to treat early breast cancer associated with the overexpression of Human Epidermal growth factor Receptor 2 (HER2). But its effectiveness is limited due to its tendency to make tumor cells resistant to the drug. In this work, the monolayer mixed by unsaturated phospholipids (DOPC, DOPE and DOPS) and cholesterol were used as a model to simulate the fluid membrane region on biological membrane. The phospholipid/cholesterol mixed monolayers in molar ratio 7:3 and 1:1, were respectively used to simulate the one layer of simplified normal cell membrane and tumor cell membrane. The influence of this drug on the phase behavior, elastic modulus, intermolecular force, relaxation and the surface roughness of the unsaturated phospholipid/cholesterol monolayer was investigated. The results show that at 30 mN/m the increase or decrease of the elastic modulus and surface roughness of the mixed monolayer caused by Tamb depends on the type of phospholipid, but the intensity of the effect depends on the content of cholesterol, and the intensity of influence is more significant at the presence of 50% cholesterol. However, the effect of Tmab on the ordering of the DOPC/cholesterol or DOPS/cholesterol mixed monolayer is stronger when the content of cholesterol is 30%, but it was stronger for the DOPE/cholesterol mixed monolayer when the content of cholesterol is 50%. This study is helpful to understand the effects of anticancer drugs on microenvironment of cell membrane, and it has a certain reference value for the design of drug delivery system and drug target identification.
Collapse
Affiliation(s)
- Juan Wang
- Shaanxi Engineering Research Center of Controllable Neutron Source, School of Electronic Information, Xijing University, Xi'an, 710123, PR China; Xi'an Key Laboratory of Human-Machine Integration and Control Technology for Intelligent Rehabilitation School of Computer Science, Xijing University, Xi'an, 710123, PR China.
| | - Xinzhong Wang
- Shaanxi Engineering Research Center of Controllable Neutron Source, School of Electronic Information, Xijing University, Xi'an, 710123, PR China
| | - Shun Feng
- Shaanxi Engineering Research Center of Controllable Neutron Source, School of Electronic Information, Xijing University, Xi'an, 710123, PR China
| | - Xiaoqin Liu
- Shaanxi Engineering Research Center of Controllable Neutron Source, School of Electronic Information, Xijing University, Xi'an, 710123, PR China
| | - Zhen Wang
- Xi'an Key Laboratory of Human-Machine Integration and Control Technology for Intelligent Rehabilitation School of Computer Science, Xijing University, Xi'an, 710123, PR China.
| |
Collapse
|
7
|
Pivetta TP, Jochelavicius K, Wrobel EC, Balogh DT, Oliveira ON, Ribeiro PA, Raposo M. Incorporation of acridine orange and methylene blue in Langmuir monolayers mimicking releasing nanostructures. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184156. [PMID: 37031871 DOI: 10.1016/j.bbamem.2023.184156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 04/11/2023]
Abstract
The efficiency of methylene blue (MB) and acridine orange (AO) for photodynamic therapy (PDT) is increased if encapsulated in liposomes. In this paper we determine the molecular-level interactions between MB or AO and mixed monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) and cholesterol (CHOL) using surface pressure isotherms and polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). To increase liposome stability, the effects from adding the surfactants Span® 80 and sodium cholate were also studied. Both MB and AO induce an expansion in the mixed monolayer, but this expansion is less significant in the presence of either Span® 80 or sodium cholate. The action of AO and MB occurred via coupling with phosphate groups of DPPC or DPPG. However, the levels of chain ordering and hydration of carbonyl and phosphate in headgroups depended on the photosensitizer and on the presence of Span® 80 or sodium cholate. From the PM-IRRAS spectra, we inferred that incorporation of MB and AO increased hydration of the monolayer headgroup, except for the case of the monolayer containing sodium cholate. This variability in behaviour offers an opportunity to tune the incorporation of AO and MB into liposomes which could be exploited in the release necessary for PDT.
Collapse
Affiliation(s)
- Thais P Pivetta
- CEFITEC, Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Karen Jochelavicius
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
| | - Ellen C Wrobel
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
| | - Debora T Balogh
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
| | - Osvaldo N Oliveira
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil
| | - Paulo A Ribeiro
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Maria Raposo
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
8
|
Golan H, Mechoulam R, Smoum R, Cohen-Zada E, Pri-Chen S, Wiener S, Grinberg I, Bar-Lev DD, Haj CG, Fisher T, Toren A. Anti-Tumorigenic Effect of a Novel Derivative of 2-Hydroxyoleic Acid and the Endocannabinoid Anandamide on Neuroblastoma Cells. Biomedicines 2022; 10:biomedicines10071552. [PMID: 35884854 PMCID: PMC9312959 DOI: 10.3390/biomedicines10071552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
Modulation of the endogenous cannabinoid system has been suggested as a potential anticancer strategy. In the search for novel and less toxic therapeutic options, structural modifications of the endocannabinoid anandamide and the synthetic derivative of oleic acid, Minerval (HU-600), were done to obtain 2-hydroxy oleic acid ethanolamide (HU-585), which is an HU-600 derivative with the anandamide side chain. We showed that treatment of SK-N-SH neuroblastoma cells with HU-585 induced a better anti-tumorigenic effect in comparison to HU-600 as evidenced by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide assay, colony-forming assay, and migration assay. Moreover, HU-585 demonstrated pro-apoptotic properties shown by increased levels of activated caspase-3 following treatment and a better senescence induction effect in comparison to HU-600, as demonstrated by increased activity of lysosomal β-galactosidase. Finally, we observed that combined treatment of HU-585 with the senolytic drugs ABT-263 in vitro, and ABT-737 in vivo resulted in enhanced anti-proliferative effects and reduced neuroblastoma xenograft growth in comparison to treatment with HU-585 alone. Based on these results, we suggest that HU-585 is a pro-apoptotic and senescence-inducing compound, better than HU-600. Hence, it may be a beneficial option for the treatment of resistant neuroblastoma especially when combined with senolytic drugs that enhance its anti-tumorigenic effects.
Collapse
Affiliation(s)
- Hana Golan
- Pediatric Hematology Oncology Research Laboratory, Cancer Research Center, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel; (H.G.); (E.C.-Z.); (S.P.-C.); (S.W.); (I.G.); (D.D.B.-L.); (T.F.)
- Department of Pediatric Hematology Oncology, The Edmond and Lily Safra Children’s Hospital, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Raphael Mechoulam
- Medicinal Chemistry Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (R.M.); (R.S.); (C.G.H.)
| | - Reem Smoum
- Medicinal Chemistry Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (R.M.); (R.S.); (C.G.H.)
| | - Efrat Cohen-Zada
- Pediatric Hematology Oncology Research Laboratory, Cancer Research Center, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel; (H.G.); (E.C.-Z.); (S.P.-C.); (S.W.); (I.G.); (D.D.B.-L.); (T.F.)
| | - Sara Pri-Chen
- Pediatric Hematology Oncology Research Laboratory, Cancer Research Center, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel; (H.G.); (E.C.-Z.); (S.P.-C.); (S.W.); (I.G.); (D.D.B.-L.); (T.F.)
| | - Sapir Wiener
- Pediatric Hematology Oncology Research Laboratory, Cancer Research Center, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel; (H.G.); (E.C.-Z.); (S.P.-C.); (S.W.); (I.G.); (D.D.B.-L.); (T.F.)
| | - Igor Grinberg
- Pediatric Hematology Oncology Research Laboratory, Cancer Research Center, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel; (H.G.); (E.C.-Z.); (S.P.-C.); (S.W.); (I.G.); (D.D.B.-L.); (T.F.)
| | - Dekel D. Bar-Lev
- Pediatric Hematology Oncology Research Laboratory, Cancer Research Center, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel; (H.G.); (E.C.-Z.); (S.P.-C.); (S.W.); (I.G.); (D.D.B.-L.); (T.F.)
| | - Christeeneh G. Haj
- Medicinal Chemistry Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (R.M.); (R.S.); (C.G.H.)
| | - Tamar Fisher
- Pediatric Hematology Oncology Research Laboratory, Cancer Research Center, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel; (H.G.); (E.C.-Z.); (S.P.-C.); (S.W.); (I.G.); (D.D.B.-L.); (T.F.)
| | - Amos Toren
- Pediatric Hematology Oncology Research Laboratory, Cancer Research Center, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel; (H.G.); (E.C.-Z.); (S.P.-C.); (S.W.); (I.G.); (D.D.B.-L.); (T.F.)
- Department of Pediatric Hematology Oncology, The Edmond and Lily Safra Children’s Hospital, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Correspondence:
| |
Collapse
|
9
|
Oliveira ON, Caseli L, Ariga K. The Past and the Future of Langmuir and Langmuir-Blodgett Films. Chem Rev 2022; 122:6459-6513. [PMID: 35113523 DOI: 10.1021/acs.chemrev.1c00754] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Langmuir-Blodgett (LB) technique, through which monolayers are transferred from the air/water interface onto a solid substrate, was the first method to allow for the controlled assembly of organic molecules. With its almost 100 year history, it has been the inspiration for most methods to functionalize surfaces and produce nanocoatings, in addition to serving to explore concepts in molecular electronics and nanoarchitectonics. This paper provides an overview of the history of Langmuir monolayers and LB films, including the potential use in devices and a discussion on why LB films are seldom considered for practical applications today. Emphasis is then given to two areas where these films offer unique opportunities, namely, in mimicking cell membrane models and exploiting nanoarchitectonics concepts to produce sensors, investigate molecular recognitions, and assemble molecular machines. The most promising topics for the short- and long-term prospects of the LB technique are also highlighted.
Collapse
Affiliation(s)
- Osvaldo N Oliveira
- São Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 Sao Carlos, SP, Brazil
| | - Luciano Caseli
- Department of Chemistry, Federal University of São Paulo, 09913-030 Diadema, SP, Brazil
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044 Tsukuba, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827, Japan
| |
Collapse
|
10
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
11
|
Zaborowska M, Dziubak D, Matyszewska D, Sek S, Bilewicz R. Designing a Useful Lipid Raft Model Membrane for Electrochemical and Surface Analytical Studies. Molecules 2021; 26:5483. [PMID: 34576954 PMCID: PMC8467995 DOI: 10.3390/molecules26185483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/04/2022] Open
Abstract
A model biomimetic system for the study of protein reconstitution or drug interactions should include lipid rafts in the mixed lipid monolayer, since they are usually the domains embedding membrane proteins and peptides. Four model lipid films composed of three components: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), cholesterol (Chol) and sphingomyelin (SM) mixed in different molar ratios were proposed and investigated using surface pressure measurements and thermodynamic analysis of the monolayers at the air-water interface and imaged by Brewster angle microscopy. The ternary monolayers were transferred from the air-water onto the gold electrodes to form bilayer films and were studied for the first time by electrochemical methods: alternative current voltammetry and electrochemical impedance spectroscopy and imaged by atomic force microscopy. In excess of DOPC, the ternary systems remained too liquid for the raft region to be stable, while in the excess of cholesterol the layers were too solid. The layers with SM in excess lead to the formation of Chol:SM complexes but the amount of the fluid matrix was very low. The equimolar content of the three components lead to the formation of a stable and well-organized assembly with well-developed raft microdomains of larger thickness, surrounded by the more fluid part of the bilayer. The latter is proposed as a convenient raft model membrane for further physicochemical studies of interactions with drugs or pollutants or incorporation of membrane proteins.
Collapse
Affiliation(s)
| | - Damian Dziubak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland; (D.D.); (S.S.)
| | - Dorota Matyszewska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland; (D.D.); (S.S.)
| | - Slawomir Sek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland; (D.D.); (S.S.)
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland;
| |
Collapse
|
12
|
Zaborowska M, Dziubak D, Matyszewska D, Bilewicz R. Surface and electrochemical properties of lipid raft model membranes and how they are affected by incorporation of statin. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Effects of insecticide acephate on membrane mimetic systems: The role played by electrostatic interactions with lipid polar headgroups. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Wang J, Zhu H. Influence of amphotericin B on the thermodynamic properties and surface morphology of saturated phospholipid monolayer with different polar head at the air-water interface. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Interaction of drugs with lipid raft membrane domains as a possible target. Drug Target Insights 2021; 14:34-47. [PMID: 33510571 PMCID: PMC7832984 DOI: 10.33393/dti.2020.2185] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/11/2020] [Indexed: 01/23/2023] Open
Abstract
Introduction Plasma membranes are not the homogeneous bilayers of uniformly distributed lipids but the lipid complex with laterally separated lipid raft membrane domains, which provide receptor, ion channel and enzyme proteins with a platform. The aim of this article is to review the mechanistic interaction of drugs with membrane lipid rafts and address the question whether drugs induce physicochemical changes in raft-constituting and raft-surrounding membranes. Methods Literature searches of PubMed/MEDLINE and Google Scholar databases from 2000 to 2020 were conducted to include articles published in English in internationally recognized journals. Collected articles were independently reviewed by title, abstract and text for relevance. Results The literature search indicated that pharmacologically diverse drugs interact with raft model membranes and cellular membrane lipid rafts. They could physicochemically modify functional protein-localizing membrane lipid rafts and the membranes surrounding such domains, affecting the raft organizational integrity with the resultant exhibition of pharmacological activity. Raft-acting drugs were characterized as ones to decrease membrane fluidity, induce liquid-ordered phase or order plasma membranes, leading to lipid raft formation; and ones to increase membrane fluidity, induce liquid-disordered phase or reduce phase transition temperature, leading to lipid raft disruption. Conclusion Targeting lipid raft membrane domains would open a new way for drug design and development. Since angiotensin-converting enzyme 2 receptors which are a cell-specific target of and responsible for the cellular entry of novel coronavirus are localized in lipid rafts, agents that specifically disrupt the relevant rafts may be a drug against coronavirus disease 2019.
Collapse
|
16
|
Xie B, Hao C, Sun R. Effect of fluoxetine at different concentrations on the adsorption behavior of Langmuir monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183418. [PMID: 32710849 DOI: 10.1016/j.bbamem.2020.183418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
Fluoxetine (FLX), approved for the treatment of depression and anxiety by the FDA in 2002, is an amphiphilic antidepressant. In general, amphiphilic drugs have high membrane permeability. Therefore, the interactions between these drugs and monolayers have been widely concerned. In this study, the adsorption of FLX on dipalmitoylphosphatidylcholine (DPPC) monolayers at different concentrations and surface pressures have been investigated by pressure-area isotherms (π-A), adsorption curves, compression-expansion curves, and atomic force microscopy (AFM). Our data showed that the adsorption behavior was related to the surface pressures and FLX concentrations in the subphase. The FLX that was added in the subphase under lower surface pressure (π = 10 mN/m) was easily adsorbed on DPPC monolayers. The stability of the monolayers was strong. The adsorption of FLX on DPPC monolayers and the stability decreased when π = 20 mN/m. In addition, the adsorption behavior and stability increased with increasing FLX concentrations. The AFM images of the monolayers confirmed the results of fitted adsorption curves. This study will be critical to our understanding of the interactions between drugs and lipid monolayers.
Collapse
Affiliation(s)
- Bin Xie
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.
| | - Changchun Hao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Runguang Sun
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
17
|
Bello G, Cavallini F, Dailey LA, Ehmoser EK. Supported polymer/lipid hybrid bilayers formation resembles a lipid-like dynamic by reducing the molecular weight of the polymer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183472. [PMID: 32941874 DOI: 10.1016/j.bbamem.2020.183472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Amphiphilic block copolymers form self-assembled bilayers even in combination with phospholipids. They represent an attractive alternative to native lipid-based membrane systems for supported bilayer formation with applications in biomedical research, sensoring and drug delivery. Their enhanced stability and excellent mechanical properties are linked to their higher molecular weight which generates thicker bilayers. Hypothesis: It is hypothesized that reducing the molecular weight of the polymer facilitates the formation of a thinner, more homogeneous polymer/lipid hybrid bilayer which would benefit the formation of supported bilayers on silicon oxide. Experiment: We investigated hybrid bilayers composed of mixtures of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine and increasing amounts of a low molecular weight polybutadiene-b-polyethylene oxide copolymer (1050 g/mol). By assessing the bilayer thickness and the molecular packing behavior we sought to demonstrate how reducing the polymer molecular weight increases the tendency to form supported hybrid bilayers in a lipid-like manner. Findings: The formation of a supported hybrid bilayers occurs at polymer contents <70 mol% in a lipid-like fashion and is proportional to the cohesive forces between the bilayer components and inversely related to the bilayer hydrophobic core thickness and the extended brush regime of the PEGylated polymeric headgroup.
Collapse
Affiliation(s)
- Gianluca Bello
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria.
| | - Francesca Cavallini
- Department of Molecular Sciences and Nanosystems, Cà Foscari University of Venice, via Torino 155, 30172 Mestre-Venezia, (Italy)
| | - Lea Ann Dailey
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria
| | - Eva-Kathrin Ehmoser
- Department of Nanobiotechnology, Institute of Synthetic Bioarchitectures, University of Natural Resources and Life Science (BOKU), Muthgasse 11/2 OG, 1190 Vienna, (Austria).
| |
Collapse
|
18
|
Xie B, Hao C, Zhang Z, Sun R. Studies on the interfacial behavior of DPPC/DPPG mixed monolayers in the presence of fluoxetine. J Mol Model 2020; 26:167. [PMID: 32514762 DOI: 10.1007/s00894-020-04433-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/27/2020] [Indexed: 02/05/2023]
Abstract
In this study, the interfacial behavior of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPC/DPPG) mixed monolayers with fluoxetine (FLX) in the subphase was investigated by a combination of the Langmuir-Blodgett technique and atomic force microscopy (AFM). It was found that DPPC/DPPG mixed monolayers showed different interfacial behaviors before and after addition of FLX in the subphase. The electrostatic interaction between FLX and lipids molecules destroys the homogeneity of the mixed monolayers and changes the arrangement of lipids molecules at the interface after addition of FLX in the subphase, thereby leading to an increase of compressibility and miscibility and a decrease in the stability of the mixed monolayers. The surface morphology of the mixed monolayers observed by AFM was different between without and with FLX in the subphase, indicating the penetration of FLX into the mixed monolayers. The present study has provided detailed information for further understanding the interactions of drugs with membrane lipids in other lipid monolayers.
Collapse
Affiliation(s)
- Bin Xie
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.
| | - Changchun Hao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Ziyi Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Runguang Sun
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| |
Collapse
|
19
|
Olechowska K, Mach M, Ha C-Wydro K, Wydro P. Studies on the Interactions of 2-Hydroxyoleic Acid with Monolayers and Bilayers Containing Cationic Lipid: Searching for the Formulations for More Efficient Drug Delivery to Cancer Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9084-9092. [PMID: 31246038 DOI: 10.1021/acs.langmuir.9b01326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Drug delivery in cationic liposomes seems to be a promising therapeutic approach in cancer treatment. The rational design of the positively charged lipid vesicles as anticancer drug carriers should be supported by a detailed analysis of the interactions of the carrier components with anticancer drugs. In the present work, 2-hydroxyoleic acid (2OHOA; Minerval), a membrane lipid therapy drug, was incorporated into positively charged mono- and bilayer membranes containing 1-palmitoyl-2-oleoyl- sn-glycero-3-ethylphosphocholine (EPOPC), the synthetic cationic lipid, and 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC). The intermolecular interactions, fluidity, and miscibility of the studied monolayers were analyzed by utilizing Langmuir balance experiments. The morphology of two-dimensional films was inspected using a Brewster angle microscopy technique. The properties of the liposomes were investigated by dynamic light scattering (DLS) and zeta potential measurements, steady-state fluorescence anisotropy experiments, and the spectrofluorimetric titration of calcein-encapsulated vesicles with a lysis-inducing agent. According to the collected results, 2OHOA intercalation into films of pure phospholipids or a binary EPOPC/DOPC film is thermodynamically favorable. Surprisingly, no significant effect of the presence of unsaturated 2OHOA chains on the EPOPC/DOPC monolayer order was observed. The experiments carried out for 2OHOA-inserted cationic EPOPC/DOPC (1:4) liposomes indicate effective incorporation of the drug into the liposome bilayer and the formation of stable vesicles without affecting their properties markedly. On the basis of the obtained results, EPOPC/DOPC/2OHOA cationic liposomes with 15% 2OHOA content in the phospholipid bilayer seem to be the most suitable for potential biomedical applications.
Collapse
Affiliation(s)
- Karolina Olechowska
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Marzena Mach
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Katarzyna Ha C-Wydro
- Department of Environmental Chemistry, Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Paweł Wydro
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| |
Collapse
|
20
|
The influence of 2-hydroxyoleic acid – an anticancer drug – on model membranes of different fluidity modulated by the cholesterol content. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|