1
|
Garcia-Daga S, Roy SJ, Gilliham M. Redefining the role of sodium exclusion within salt tolerance. TRENDS IN PLANT SCIENCE 2025; 30:137-146. [PMID: 39462719 DOI: 10.1016/j.tplants.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
Salt contamination of soils and irrigation water is a significant environmental concern for crop production. Leaf sodium (Na+) exclusion is commonly proposed to be a key subtrait of salt tolerance for many crop plants. High-Affinity Potassium (K+) Transporter 1 (HKT1) proteins have previously been identified as major controllers of leaf Na+ exclusion across diverse species. However, leaf Na+ exclusion does not always correlate with salt tolerance. We discuss literature which shows leaf Na+ accumulation can, in some circumstances, be tolerated without a detrimental effect on yield when HKT1 still functions to exclude Na+ from reproductive tissues. We conclude that, by having an ultimate role in the protection of reproductive performance, HKT1s' role in adaptation to salinity warrants redefinition.
Collapse
Affiliation(s)
- Sebastian Garcia-Daga
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Urrbrae, SA 5064, Australia; School of Biosciences, University of Nottingham, Sutton Bonnington, LE12 5RD, UK; ARC Centre of Excellence in Plants for Space, University of Adelaide, Urrbrae, SA 5064, Australia
| | - Stuart J Roy
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Urrbrae, SA 5064, Australia; ARC Industrial Transformation Training Centre for Future Crops Development, University of Adelaide, Urrbrae, SA 5064, Australia
| | - Matthew Gilliham
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Urrbrae, SA 5064, Australia; ARC Centre of Excellence in Plants for Space, University of Adelaide, Urrbrae, SA 5064, Australia; ARC Industrial Transformation Training Centre for Future Crops Development, University of Adelaide, Urrbrae, SA 5064, Australia.
| |
Collapse
|
2
|
Henderson SW, Nourmohammadi S, Hrmova M. Protein Structural Modeling and Transport Thermodynamics Reveal That Plant Cation-Chloride Cotransporters Mediate Potassium-Chloride Symport. Int J Mol Sci 2024; 25:12955. [PMID: 39684666 DOI: 10.3390/ijms252312955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/17/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Plant cation-chloride cotransporters (CCCs) are proposed to be Na+-K+-2Cl- transporting membrane proteins, although evolutionarily, they associate more closely with K+-Cl- cotransporters (KCCs). Here, we investigated grapevine (Vitis vinifera L.) VvCCC using 3D protein modeling, bioinformatics, and electrophysiology with a heterologously expressed protein. The 3D protein modeling revealed that the signatures of ion binding sites in plant CCCs resembled those of animal KCCs, which was supported by phylogenomic analyses and ancestral sequence reconstruction. The conserved features of plant CCCs and animal KCCs included predicted K+ and Cl--binding sites and the absence of a Na+-binding site. Measurements with VvCCC-injected Xenopus laevis oocytes with VvCCC localizing to plasma membranes indicated that the oocytes had depleted intracellular Cl- and net 86Rb fluxes, which agreed with thermodynamic predictions for KCC cotransport. The 86Rb uptake by VvCCC-injected oocytes was Cl--dependent, did not require external Na+, and was partially inhibited by the non-specific CCC-blocker bumetanide, implying that these properties are typical of KCC transporters. A loop diuretic-insensitive Na+ conductance in VvCCC-injected oocytes may account for earlier observations of Na+ uptake by plant CCC proteins expressed in oocytes. Our data suggest plant CCC membrane proteins are likely to function as K+-Cl- cotransporters, which opens the avenues to define their biophysical properties and roles in plant physiology.
Collapse
Affiliation(s)
- Sam W Henderson
- School of Agriculture, Food and Wine, Waite Research Institute, Faculty of Sciences, Engineering and Technology, University of Adelaide, Waite Campus Precinct, Glen Osmond, Adelaide, SA 5064, Australia
| | - Saeed Nourmohammadi
- School of Agriculture, Food and Wine, Waite Research Institute, Faculty of Sciences, Engineering and Technology, University of Adelaide, Waite Campus Precinct, Glen Osmond, Adelaide, SA 5064, Australia
| | - Maria Hrmova
- School of Agriculture, Food and Wine, Waite Research Institute, Faculty of Sciences, Engineering and Technology, University of Adelaide, Waite Campus Precinct, Glen Osmond, Adelaide, SA 5064, Australia
| |
Collapse
|
3
|
Venkataraghavan A, Schwerdt JG, Tyerman SD, Hrmova M. Barley Nodulin 26-like intrinsic protein permeates water, metalloids, saccharides, and ion pairs due to structural plasticity and diversification. J Biol Chem 2023; 299:105410. [PMID: 37913906 PMCID: PMC10716587 DOI: 10.1016/j.jbc.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023] Open
Abstract
Aquaporins can facilitate the passive movement of water, small polar molecules, and some ions. Here, we examined solute selectivity for the barley Nodulin 26-like Intrinsic Protein (HvNIP2;1) embedded in liposomes and examined through stopped-flow light scattering spectrophotometry and Xenopus laevis oocyte swelling assays. We found that HvNIP2;1 permeates water, boric and germanic acids, sucrose, and lactose but not d-glucose or d-fructose. Other saccharides, such as neutral (d-mannose, d-galactose, d-xylose, d-mannoheptaose) and charged (N-acetyl d-glucosamine, d-glucosamine, d-glucuronic acid) aldoses, disaccharides (cellobiose, gentiobiose, trehalose), trisaccharide raffinose, and urea, glycerol, and acyclic polyols, were permeated to a much lower extent. We observed apparent permeation of hydrated KCl and MgSO4 ions, while CH3COONa and NaNO3 permeated at significantly lower rates. Our experiments with boric acid and sucrose revealed no apparent interaction between solutes when permeated together, and AgNO3 or H[AuCl4] blocked the permeation of all solutes. Docking of sucrose in HvNIP2;1 and spinach water-selective SoPIP2;1 aquaporins revealed the structural basis for sucrose permeation in HvNIP2;1 but not in SoPIP2;1, and defined key residues interacting with this permeant. In a biological context, sucrose transport could constitute a novel element of plant saccharide-transporting machinery. Phylogenomic analyses of 164 Viridiplantae and 2993 Archaean, bacterial, fungal, and Metazoan aquaporins rationalized solute poly-selectivity in NIP3 sub-clade entries and suggested that they diversified from other sub-clades to acquire a unique specificity of saccharide transporters. Solute specificity definition in NIP aquaporins could inspire developing plants for food production.
Collapse
Affiliation(s)
- Akshayaa Venkataraghavan
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Julian G Schwerdt
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Stephen D Tyerman
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Maria Hrmova
- School of Agriculture, Food and Wine, and Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, South Australia, Australia.
| |
Collapse
|
4
|
Xu T, Meng S, Zhu X, Di J, Zhu Y, Yang X, Yan W. Integrated GWAS and transcriptomic analysis reveal the candidate salt-responding genes regulating Na +/K + balance in barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2023; 13:1004477. [PMID: 36777542 PMCID: PMC9910287 DOI: 10.3389/fpls.2022.1004477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/29/2022] [Indexed: 06/18/2023]
Abstract
Salt stress is one of the main abiotic stresses affecting crop yield and quality. Barley has strong salt tolerance, however, the underlying genetic basis is not fully clear, especially in the seedling stage. This study examined the ionic changes in barley core germplasms under the control and salt conditions. Genome-wide association study (GWAS) analysis revealed 54 significant SNPs from a pool of 25,342 SNPs distributed in 7 chromosomes (Chr) of the Illumina Barley 50K SNP array. These SNPs are associated with ion homeostasis traits, sodium (Na+) and potassium (K+) content, and Na+/K+ ratio representing five genomic regions on Chr 2, 4, 5, 6, and 7 in the leaves of worldwide barley accessions. And there are 3 SNP peaks located on the Chr 4, 6, and 7, which could be the "hot spots" regions for mining and identifying candidate genes for salt tolerance. Furthermore, 616 unique candidate genes were screened surrounding the significant SNPs, which are associated with transport proteins, protein kinases, binding proteins, and other proteins of unknown function. Meanwhile, transcriptomic analysis (RNA-Seq) was carried out to compare the salt-tolerant (CM72) and salt-sensitive (Gairdner) genotypes subjected to salt stress. And there was a greater accumulation of differentially expressed genes(DEGs) in Gairdner compared to CM72, mainly enriched in metabolic pathway, biosynthesis of secondary metabolites, photosynthesis, signal transduction,emphasizing the different transcriptional response in both genotypes following salt exposure. Combined GWAS and RNA-Seq analysis revealed 5 promising salt-responding genes (PGK2, BASS3, SINAT2, AQP, and SYT3) from the hot spot regions, which were verified between the salt-tolerant and salt-sensitive varieties by qRT-PCR. In all, these results provide candidate SNPs and genes responsible for salinity responding in barley, and a new idea for studying such genetic basis in similar crops.
Collapse
|
5
|
Venkataraman G, Shabala S, Véry AA, Hariharan GN, Somasundaram S, Pulipati S, Sellamuthu G, Harikrishnan M, Kumari K, Shabala L, Zhou M, Chen ZH. To exclude or to accumulate? Revealing the role of the sodium HKT1;5 transporter in plant adaptive responses to varying soil salinity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:333-342. [PMID: 34837866 DOI: 10.1016/j.plaphy.2021.11.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Arid/semi-arid and coastal agricultural areas of the world are especially vulnerable to climate change-driven soil salinity. Salinity tolerance in plants is a complex trait, with salinity negatively affecting crop yield. Plants adopt a range of mechanisms to combat salinity, with many transporter genes being implicated in Na+-partitioning processes. Within these, the high-affinity K+ (HKT) family of transporters play a critical role in K+ and Na+ homeostasis in plants. Among HKT transporters, Type I transporters are Na+-specific. While Arabidopsis has only one Na + -specific HKT (AtHKT1;1), cereal crops have a multiplicity of Type I and II HKT transporters. AtHKT1; 1 (Arabidopsis thaliana) and HKT1; 5 (cereal crops) 'exclude' Na+ from the xylem into xylem parenchyma in the root, reducing shoot Na+ and hence, confer sodium tolerance. However, more recent data from Arabidopsis and crop species show that AtHKT1;1/HKT1;5 alleles have a strong genetic association with 'shoot sodium accumulation' and concomitant salt tolerance. The review tries to resolve these two seemingly contradictory effects of AtHKT1;1/HKT1;5 operation (shoot exclusion vs shoot accumulation), both conferring salinity tolerance and suggests that contrasting phenotypes are attributable to either hyper-functional or weak AtHKT1;1/HKT1;5 alleles/haplotypes and are under strong selection by soil salinity levels. It also suggests that opposite balancing mechanisms involving xylem ion loading in these contrasting phenotypes exist that require transporters such as SOS1 and CCC. While HKT1; 5 is a crucial but not sole determinant of salinity tolerance, investigation of the adaptive benefit(s) conferred by naturally occurring intermediate HKT1;5 alleles will be important under a climate change scenario.
Collapse
Affiliation(s)
- Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India.
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas, 7001, Australia; International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China.
| | - Anne-Aliénor Véry
- Biochimie & Physiologie Moléculaire des Plantes, UMR Univ. Montpellier, CNRS, INRAE, Institut Agro, 34060, Montpellier Cedex 2, France.
| | - Gopalasamudram Neelakantan Hariharan
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India
| | - Suji Somasundaram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 600124, India
| | - Shalini Pulipati
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India
| | - Gothandapani Sellamuthu
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India; Forest Molecular Entomology Laboratory, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague (CZU), Kamycka 129, Praha, 16500, Czech Republic
| | - Mohan Harikrishnan
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India
| | - Kumkum Kumari
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai, 600113, India
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas, 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas, 7001, Australia
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| |
Collapse
|