1
|
Pathak A, Nowell RW, Wilson CG, Ryan MJ, Barraclough TG. Comparative genomics of Alexander Fleming's original Penicillium isolate (IMI 15378) reveals sequence divergence of penicillin synthesis genes. Sci Rep 2020; 10:15705. [PMID: 32973216 PMCID: PMC7515868 DOI: 10.1038/s41598-020-72584-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 09/03/2020] [Indexed: 11/18/2022] Open
Abstract
Antibiotics were derived originally from wild organisms and therefore understanding how these compounds evolve among different lineages might help with the design of new antimicrobial drugs. We report the draft genome sequence of Alexander Fleming's original fungal isolate behind the discovery of penicillin, now classified as Penicillium rubens Biourge (1923) (IMI 15378). We compare the structure of the genome and genes involved in penicillin synthesis with those in two 'high producing' industrial strains of P. rubens and the closely related species P. nalgiovense. The main effector genes for producing penicillin G (pcbAB, pcbC and penDE) show amino acid divergence between the Fleming strain and both industrial strains, whereas a suite of regulatory genes are conserved. Homologs of penicillin N effector genes cefD1 and cefD2 were also found and the latter displayed amino acid divergence between the Fleming strain and industrial strains. The draft assemblies contain several partial duplications of penicillin-pathway genes in all three P. rubens strains, to differing degrees, which we hypothesise might be involved in regulation of the pathway. The two industrial strains are identical in sequence across all effector and regulatory genes but differ in duplication of the pcbAB-pcbC-penDE complex and partial duplication of fragments of regulatory genes. We conclude that evolution in the wild encompassed both sequence changes of the effector genes and gene duplication, whereas human-mediated changes through mutagenesis and artificial selection led to duplication of the penicillin pathway genes.
Collapse
Affiliation(s)
- Ayush Pathak
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
| | - Reuben W Nowell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
- Department of Zoology, University of Oxford, 11a Mansfield Rd, Oxford, OX1 3SZ, UK
| | - Christopher G Wilson
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
- Department of Zoology, University of Oxford, 11a Mansfield Rd, Oxford, OX1 3SZ, UK
| | | | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK.
- Department of Zoology, University of Oxford, 11a Mansfield Rd, Oxford, OX1 3SZ, UK.
| |
Collapse
|
2
|
Law BJC, Zhuo Y, Winn M, Francis D, Zhang Y, Samborskyy M, Murphy A, Ren L, Leadlay PF, Micklefield J. A vitamin K-dependent carboxylase orthologue is involved in antibiotic biosynthesis. Nat Catal 2018. [DOI: 10.1038/s41929-018-0178-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Substrate-Induced Conformational Changes of the Tyrocidine Synthetase 1 Adenylation Domain Probed by Intrinsic Trp Fluorescence. Protein J 2017; 36:202-211. [DOI: 10.1007/s10930-017-9714-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Sieber SA, Marahiel MA. Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 2005; 105:715-38. [PMID: 15700962 DOI: 10.1021/cr0301191] [Citation(s) in RCA: 455] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stephan A Sieber
- Philipps-Universität Marburg, Fachbereich Chemie/Biochemie, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | |
Collapse
|