1
|
Liu S, Ding Y, Yu Q, Wang X, Cheng D. Comparative study of aluminum speciation on brain-type creatine kinase: Enzyme kinetic, molecular docking, cellular experiment, and mouse model study. J Inorg Biochem 2023; 238:112032. [PMID: 36327498 DOI: 10.1016/j.jinorgbio.2022.112032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
Brain-type Creatine kinase (CK-BB), which has a high affinity for Aluminum (Al), and its abnormality is closely related to neurodegenerative diseases. In this study, the comparative effect of Al speciation on the bioactivity of CK-BB has been studied by the inhibition kinetics method, molecular docking, cellular experiment, and mouse model study. Results showed that the half-inhibitory concentration of AlCl3 was 0.67 mM, while Al(mal)3 was 3.81 mM. Fluorescence spectra showed that Al(mal)3 had a more substantial effect on the endogenous fluorescence of CK-BB than AlCl3. Molecular docking showed that AlCl3 was closer to the active site of CK-BB. C6 cells were used to explore the enzyme activity and intracellular distribution of CK-BB by AlCl3 or Al(mal)3. AlCl3 treatment may directly affect CK-BB activity and cause insufficient local ATP supply in cells which affected the formation of F-actin and cell morphology. The change in the hydrophobicity of CK-BB induced by Al(mal)3 affected the movement of CK-BB, which subsequently activated thecytochrome C (Cyt C)/Caspase 9/Caspase 3 pathway. Similar results have been found in vivo experiments. This study demonstrated that interaction between Al and CK-BB might be related to the process of Al-induced energy metabolism disorders, in which the Al speciation revealed differentiated toxicity mechanisms.
Collapse
Affiliation(s)
- Sijia Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yixin Ding
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qianqian Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xuerui Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Dai Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Vraneš M, Ostojić S, Podlipnik Č, Tot A. Molecular docking and density functional theory studies on creatine, guanidinoacetic acid, and their phosphorylated analogues binding to muscle creatine kinase. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820978583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Comparative molecular docking studies on creatine and guanidinoacetic acid, as well as their phosphorylated analogues, creatine phosphate, and phosphorylated guanidinoacetic acid, are investigated. Docking and density functional theory studies are carried out for muscle creatine kinase. The changes in the geometries of the ligands before and after binding to the enzyme are investigated to explain the better binding of guanidinoacetic acid and phosphorylated guanidinoacetic acid compared to creatine and creatine phosphate.
Collapse
Affiliation(s)
- M Vraneš
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Novi Sad, Serbia
| | - S Ostojić
- Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Č Podlipnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - A Tot
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
3
|
Summerton JC, Martin GM, Evanseck JD, Chapman MS. Common hydrogen bond interactions in diverse phosphoryl transfer active sites. PLoS One 2014; 9:e108310. [PMID: 25238155 PMCID: PMC4169622 DOI: 10.1371/journal.pone.0108310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/27/2014] [Indexed: 11/18/2022] Open
Abstract
Phosphoryl transfer reactions figure prominently in energy metabolism, signaling, transport and motility. Prior detailed studies of selected systems have highlighted mechanistic features that distinguish different phosphoryl transfer enzymes. Here, a top-down approach is developed for comparing statistically the active site configurations between populations of diverse structures in the Protein Data Bank, and it reveals patterns of hydrogen bonding that transcend enzyme families. Through analysis of large samples of structures, insights are drawn at a level of detail exceeding the experimental precision of an individual structure. In phosphagen kinases, for example, hydrogen bonds with the O3β of the nucleotide substrate are revealed as analogous to those in unrelated G proteins. In G proteins and other enzymes, interactions with O3β have been understood in terms of electrostatic favoring of the transition state. Ground state quantum mechanical calculations on model compounds show that the active site interactions highlighted in our database analysis can affect substrate phosphate charge and bond length, in ways that are consistent with prior experimental observations, by modulating hyperconjugative orbital interactions that weaken the scissile bond. Testing experimentally the inference about the importance of O3β interactions in phosphagen kinases, mutation of arginine kinase Arg280 decreases kcat, as predicted, with little impact upon KM.
Collapse
Affiliation(s)
- Jean C. Summerton
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Gregory M. Martin
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jeffrey D. Evanseck
- Center for Computational Sciences and the Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Michael S. Chapman
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
4
|
Wu CL, Li YH, Lin HC, Yeh YH, Yan HY, Hsiao CD, Hui CF, Wu JL. Activity and function of rabbit muscle-specific creatine kinase at low temperature by mutation at gly268 to asn268. Comp Biochem Physiol B Biochem Mol Biol 2010; 158:189-98. [PMID: 21130895 DOI: 10.1016/j.cbpb.2010.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 11/19/2022]
Abstract
Carp muscle-specific creatine kinase M1 isoenzyme (M1-CK) seems to have evolved to adapt to synchronized changes in body temperature and intracellular pH. When gly(268) in rabbit muscle-specific creatine kinase was substituted with asn(268) as found in carp M1-CK, the rabbit muscle-specific CK G286N mutant specific activity at pH 8.0 and 10°C was more than 2-fold higher than that in the wild-type rabbit enzyme. Kinetic studies showed that K(m) values of the rabbit CK G268N mutant were similar to those of the wild-type rabbit enzyme, yet circular dichroism spectra showed that the overall secondary structures of the mutant enzyme, at pH 8.0 and 5°C, were almost identical to the carp M1-CK enzyme. The X-ray diffraction pattern of the mutant enzyme crystal revealed that amino acid residues involved in substrate binding are closer to one another than in the rabbit enzyme, and the cysteine283 active site of the mutant enzyme points away from the ADP binding site. At pH 7.4-8.0 and 35-10°C, with a smaller substrate, dADP, specific activities of the mutant enzyme were consistently higher than the wild-type rabbit enzyme and more similar to the carp M1-CK enzyme. Thus, the smaller active site of the RM-CK G268N mutant may be one of the reasons for its improved activity at low temperature.
Collapse
Affiliation(s)
- Chih-Lu Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Morasso C, Bellini T, Monti D, Bassi M, Prosperi D, Riva S. Dispersed Phantom Scatterer Technique Reveals Subtle Differences in Substrate Recognition by Phospholipase D Inactive Mutants. Chembiochem 2009; 10:639-44. [DOI: 10.1002/cbic.200800718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Structural studies of human brain-type creatine kinase complexed with the ADP-Mg2+-NO3- -creatine transition-state analogue complex. FEBS Lett 2008; 582:3959-65. [PMID: 18977227 DOI: 10.1016/j.febslet.2008.10.039] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/15/2008] [Accepted: 10/21/2008] [Indexed: 11/22/2022]
Abstract
Creatine kinase is a member of the phosphagen kinase family, which catalyzes the reversible phosphoryl transfer reaction that occurs between ATP and creatine to produce ADP and phosphocreatine. Here, three structural aspects of human-brain-type-creatine-kinase (hBB-CK) were identified by X-ray crystallography: the ligand-free-form at 2.2A; the ADP-Mg2+, nitrate, and creatine complex (transition-state-analogue complex; TSAC); and the ADP-Mg2+-complex at 2.0A. The structures of ligand-bound hBB-CK revealed two different monomeric states in a single homodimer. One monomer is a closed form, either bound to TSAC or the ADP-Mg2+-complex, and the second monomer is an unliganded open form. These structural studies provide a detailed mechanism indicating that the binding of ADP-Mg2+ alone may trigger conformational changes in hBB-CK that were not observed with muscle-type-CK.
Collapse
|
7
|
O'Brien PJ, Lassila JK, Fenn TD, Zalatan JG, Herschlag D. Arginine coordination in enzymatic phosphoryl transfer: evaluation of the effect of Arg166 mutations in Escherichia coli alkaline phosphatase. Biochemistry 2008; 47:7663-72. [PMID: 18627128 PMCID: PMC2587100 DOI: 10.1021/bi800545n] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arginine residues are commonly found in the active sites of enzymes catalyzing phosphoryl transfer reactions. Numerous site-directed mutagenesis experiments establish the importance of these residues for efficient catalysis, but their role in catalysis is not clear. To examine the role of arginine residues in the phosphoryl transfer reaction, we have measured the consequences of mutations to arginine 166 in Escherichia coli alkaline phosphatase on hydrolysis of ethyl phosphate, on individual reaction steps in the hydrolysis of the covalent enzyme-phosphoryl intermediate, and on thio substitution effects. The results show that the role of the arginine side chain extends beyond its positive charge, as the Arg166Lys mutant is as compromised in activity as Arg166Ser. Through measurement of individual reaction steps, we construct a free energy profile for the hydrolysis of the enzyme-phosphate intermediate. This analysis indicates that the arginine side chain strengthens binding by approximately 3 kcal/mol and provides an additional 1-2 kcal/mol stabilization of the chemical transition state. A 2.1 A X-ray diffraction structure of Arg166Ser AP is presented, which shows little difference in enzyme structure compared to the wild-type enzyme but shows a significant reorientation of the bound phosphate. Altogether, these results support a model in which the arginine contributes to catalysis through binding interactions and through additional transition state stabilization that may arise from complementarity of the guanidinum group to the geometry of the trigonal bipyramidal transition state.
Collapse
Affiliation(s)
- Patrick J O'Brien
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
8
|
Wang S, Wang X, Shi W, Wang K, Ma H. Detection of local polarity and conformational changes at the active site of rabbit muscle creatine kinase with a new arginine-specific fluorescent probe. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:415-22. [PMID: 18082150 DOI: 10.1016/j.bbapap.2007.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 11/12/2007] [Accepted: 11/13/2007] [Indexed: 11/18/2022]
Abstract
A new polarity-sensitive fluorescent probe, 3-(4-chloro-6-p-glyoxal-phenoxy-1,3,5-triazinylamino)-7-(dimethylamino)-2-methylphenazine (CGTDP), is synthesized for selective labeling of active-site arginine residues. The probe comprises a neutral red moiety as a polarity-sensitive fluorophore and a phenylglyoxal unit as an arginine-specific labeling group. The probe exhibits a sensitive response of shift of fluorescence maximum emission wavelength to solvent polarity only instead of pH or temperature, which leads to the use of the probe in detecting the local polarity and conformational changes of the active site of rabbit muscle creatine kinase (CK) denatured by pH or temperature. The polarity of the active site domain has been first found to correspond to a dielectric constant of about 44, and the conformational change of the active site directly revealed by CGTDP occurs far before that of CK as a whole disclosed by the intrinsic tryptophan fluorescence during acid or thermal denaturation. The present strategy may provide a useful method to detect the local polarity and conformational changes of the active sites of many enzymes that employ arginine residues as anion recognition sites under different denaturation conditions.
Collapse
Affiliation(s)
- Shujuan Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | |
Collapse
|
9
|
Jourden MJ, Clarke CN, Palmer AK, Barth EJ, Prada RC, Hale RN, Fraga D, Snider MJ, Edmiston PL. Changing the substrate specificity of creatine kinase from creatine to glycocyamine: evidence for a highly evolved active site. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1519-27. [PMID: 17976392 DOI: 10.1016/j.bbapap.2007.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/01/2007] [Accepted: 10/02/2007] [Indexed: 11/16/2022]
Abstract
Eight variants of creatine kinase were created to switch the substrate specificity from creatine to glycocyamine using a rational design approach. Changes to creatine kinase involved altering several residues on the flexible loops that fold over the bound substrates including a chimeric replacement of the guanidino specificity loop from glycocyamine kinase into creatine kinase. A maximal 2,000-fold change in substrate specificity was obtained as measured by a ratio of enzymatic efficiency (k(cat)/K(M).K(d)) for creatine vs. glycocyamine. In all cases, a change in specificity was accompanied by a large drop in enzymatic efficiency. This data, combined with evidence from other studies, indicate that substrate specificity in the phosphagen kinase family is obtained by precise alignment of substrates in the active site to maximize k(cat)/K(M).K(d) as opposed to selective molecular recognition of one guanidino substrate over another. A model for the evolution of the dimeric forms of phosphagen kinases is proposed in which these enzymes radiated from a common ancestor that may have possessed a level of catalytic promiscuity. As mutational events occurred leading to greater degrees of substrate specificity, the dimeric phosphagen kinases became evolutionary separated such that the substrate specificity could not be interchanged by a small number of mutations.
Collapse
Affiliation(s)
- Michael J Jourden
- Department of Chemistry, College of Wooster, 943 College Mall, Wooster, OH 44691, USA
| | | | | | | | | | | | | | | | | |
Collapse
|