1
|
Clemente I, D’Aria F, Giancola C, Bonechi C, Slouf M, Pavlova E, Rossi C, Ristori S. Structuring and de-structuring of nanovectors from algal lipids. Part 1: physico-chemical characterization. Colloids Surf B Biointerfaces 2022; 220:112939. [DOI: 10.1016/j.colsurfb.2022.112939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/13/2022] [Accepted: 10/13/2022] [Indexed: 11/27/2022]
|
2
|
Kumar M, Patil N, Ambade AV, Kumaraswamy G. Large PAMAM Dendron Induces Formation of Unusual P4 332 Mesophase in Monoolein/Water Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6827-6834. [PMID: 29775311 DOI: 10.1021/acs.langmuir.8b00551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Compact macromolecular dendrons have previously been shown to induce the formation of discontinuous inverse micellar assemblies with Fd3 m symmetry in monoolein/water systems. Here, we demonstrate that a large PAMAM dendron (G5: fifth generation) induces the formation of a very unusual mesophase with P4332 symmetry. This mesophase had previously been observed in monoolein/water systems only on addition of cytochrome c. The P4332 mesophase can be considered an intermediate phase between the bicontinuous Ia3 d and discontinuous micellar mesophases. We present a detailed investigation of the phase behavior of monoolein/water as a function of G5 concentration and temperature. Addition of 1% G5 in 85/15 monoolein/water system induces a transition from the Lα to Ia3 d phase. Further increase in G5 concentration to above 2% induces the formation of the P4332 phase. In contrast to this, incorporation of lower generation PAMAM dendrons (G2-G4) in monoolein/water yields a qualitatively different phase diagram with the formation of the reverse micellar Fd3 m phase. PAMAM dendrons of all generations, G2-G5, bear terminal amine groups that interact with the monoolein headgroup. The compact molecular architecture of the dendrons and these attractive interactions induce bending of the monoolein bilayer structure. For smaller dendrons, G2-G4, this results in the formation of the Fd3 m phase. However, the large size of the G5 dendron precludes this and a rare intermediate phase between the Ia3 d and discontinuous micellar phase, and the P4332 mesophase forms instead.
Collapse
|
3
|
Nazaruk E, Majkowska-Pilip A, Bilewicz R. Lipidic Cubic-Phase Nanoparticles-Cubosomes for Efficient Drug Delivery to Cancer Cells. Chempluschem 2017; 82:570-575. [PMID: 31961592 DOI: 10.1002/cplu.201600534] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/15/2016] [Indexed: 12/18/2022]
Abstract
Self-assembled lipid liquid-crystalline nanoparticles, known as cubosomes, were used for the delivery of the anticancer drug doxorubicin (DOX). Several properties make cubosomes a promising alternative in the development of controlled-release systems for drug delivery. They have a larger internal surface area than other carriers, hence deliver more drug molecules to the affected cells and maintain the cubic symmetry of the parent lipidic cubic phase, but at the same time they have a lower viscosity thereby facilitating transport of the drug. The pH-dependent drug release profiles, evaluated by voltammetry, demonstrated triggered drug release from the cubosome carrier to the environment of the cancer cells, where pH is lower. The anticancer effect of a DOX-loaded cubosome on the glioblastoma T98G cell line was found to be highly efficient and required lower concentrations of DOX to inhibit the proliferation of cancer cells than the effective concentrations of free DOX.
Collapse
Affiliation(s)
- Ewa Nazaruk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| |
Collapse
|
4
|
Kulkarni CV, Yaghmur A, Steinhart M, Kriechbaum M, Rappolt M. Effects of High Pressure on Internally Self-Assembled Lipid Nanoparticles: A Synchrotron Small-Angle X-ray Scattering (SAXS) Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11907-11917. [PMID: 27782407 DOI: 10.1021/acs.langmuir.6b03300] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present the first report on the effects of hydrostatic pressure on colloidally stabilized lipid nanoparticles enveloping inverse nonlamellar self-assemblies in their interiors. These internal self-assemblies were systematically tuned into bicontinuous cubic (Pn3m and Im3m), micellar cubic (Fd3m), hexagonal (H2), and inverse micellar (L2) phases by regulating the lipid/oil ratio as the hydrostatic pressure was varied from atmospheric pressure to 1200 bar and back to atmospheric pressure. The effects of pressure on these lipid nanoparticles were compared with those on their equilibrium bulk, nondispersed counterparts, namely, inverse nonlamellar liquid-crystalline phases and micellar solutions under excess-water conditions, using the synchrotron small-angle X-ray scattering (SAXS) technique. In the applied pressure range, induced phase transitions were observed solely in fully hydrated bulk samples, whereas the internal self-assemblies of the corresponding lipid nanoparticles displayed only pressure-modulated single phases. Interestingly, both the lattice parameters and the linear pressure expansion coefficients were larger for the self-assemblies enveloped inside the lipid nanoparticles as compared to the bulk states. This behavior can, in part, be attributed to enhanced lipid layer undulations in the lipid particles in addition to induced swelling effects in the presence of the triblock copolymer F127. The bicontinuous cubic phases both in the bulk state and inside lipid cubosome nanoparticles swell on compression, even as both keep swelling further upon decompression at relatively high pressures before shrinking again at ambient pressures. The pressure dependence of the phases is also modulated by the concentration of the solubilized oil (tetradecane). These studies demonstrate the tolerance of lipid nanoparticles [cubosomes, hexosomes, micellar cubosomes, and emulsified microemulsions (EMEs)] for high pressures, confirming their robustness for various technological applications.
Collapse
Affiliation(s)
- Chandrashekhar V Kulkarni
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Centre for Materials Science, School of Physical Sciences and Computing, University of Central Lancashire , Preston PR1 2HE, United Kingdom
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , DK-2100 Copenhagen, Denmark
| | - Milos Steinhart
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , 162 06 Prague, Czech Republic
| | - Manfred Kriechbaum
- Institute of Inorganic Chemistry, Graz University of Technology , A-8010 Graz, Austria
| | - Michael Rappolt
- Institute of Inorganic Chemistry, Graz University of Technology , A-8010 Graz, Austria
- School of Food Science & Nutrition, University of Leeds , Leeds LS2 9JT, U.K
| |
Collapse
|
5
|
van 't Hag L, Knoblich K, Seabrook SA, Kirby NM, Mudie ST, Lau D, Li X, Gras SL, Mulet X, Call ME, Call MJ, Drummond CJ, Conn CE. Exploring the in meso crystallization mechanism by characterizing the lipid mesophase microenvironment during the growth of single transmembrane α-helical peptide crystals. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0125. [PMID: 27298442 PMCID: PMC4920275 DOI: 10.1098/rsta.2015.0125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/12/2016] [Indexed: 05/19/2023]
Abstract
The proposed mechanism for in meso crystallization of transmembrane proteins suggests that a protein or peptide is initially uniformly dispersed in the lipid self-assembly cubic phase but that crystals grow from a local lamellar phase, which acts as a conduit between the crystal and the bulk cubic phase. However, there is very limited experimental evidence for this theory. We have developed protocols to investigate the lipid mesophase microenvironment during crystal growth using standard procedures readily available in crystallography laboratories. This technique was used to characterize the microenvironment during crystal growth of the DAP12-TM peptide using synchrotron small angle X-ray scattering (SAXS) with a micro-sized X-ray beam. Crystal growth was found to occur from the gyroid cubic mesophase. For one in four crystals, a highly oriented local lamellar phase was observed, providing supporting evidence for the proposed mechanism for in meso crystallization. A new observation of this study was that we can differentiate diffraction peaks from crystals grown in meso, from peaks originating from the surrounding lipid matrix, potentially opening up the possibility of high-throughput SAXS analysis of in meso grown crystals.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.
Collapse
Affiliation(s)
- Leonie van 't Hag
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3052, Australia Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3052, Australia CSIRO Manufacturing Flagship, Private Bag 10, Clayton, Victoria 3169, Australia
| | - Konstantin Knoblich
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Shane A Seabrook
- CSIRO Manufacturing Flagship, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Nigel M Kirby
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Stephen T Mudie
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Deborah Lau
- CSIRO Manufacturing Flagship, Private Bag 10, Clayton, Victoria 3169, Australia
| | - Xu Li
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3052, Australia Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3052, Australia
| | - Sally L Gras
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3052, Australia Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3052, Australia The ARC Dairy Innovation Hub, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xavier Mulet
- CSIRO Manufacturing Flagship, Private Bag 10, Clayton, Victoria 3169, Australia
| | - Matthew E Call
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Melissa J Call
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Calum J Drummond
- CSIRO Manufacturing Flagship, Private Bag 10, Clayton, Victoria 3169, Australia School of Applied Sciences, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Charlotte E Conn
- School of Applied Sciences, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| |
Collapse
|
6
|
Verma SK, Ghosh KK, Verma R, Verma S, N. GH, Zhao X. Activity of α-Chymotrypsin in Cationic and Nonionic Micellar Media: Ultraviolet and Fluorescence Spectroscopic Approach. INT J CHEM KINET 2015. [DOI: 10.1002/kin.20972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Santosh K. Verma
- State Key Laboratory of Silicate Materials for Architectures; Wuhan University of Technology; Wuhan 430070 People's Republic of China
- School of Studies in Chemistry; Pt. Ravishankar Shukla University; Raipur India
| | - Kallol K. Ghosh
- School of Studies in Chemistry; Pt. Ravishankar Shukla University; Raipur India
| | - Rameshwari Verma
- State Key Laboratory of Silicate Materials for Architectures; Wuhan University of Technology; Wuhan 430070 People's Republic of China
- School of Studies in Chemistry; Pt. Ravishankar Shukla University; Raipur India
| | - Shekhar Verma
- Faculty of Pharmaceutical Sciences; Shri Shankaracharya Group of Institutions; Bhilai India
| | - Girish H. N.
- State Key Laboratory of Advance Technology for Material Synthesis and Processing; Wuhan University of Technology; Wuhan 430070 People's Republic of China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures; Wuhan University of Technology; Wuhan 430070 People's Republic of China
| |
Collapse
|
7
|
Nazaruk E, Landau EM, Bilewicz R. Membrane Bound Enzyme Hosted in Liquid Crystalline Cubic Phase for Sensing and Fuel Cells. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.05.130] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Nazaruk E, Szlęzak M, Górecka E, Bilewicz R, Osornio YM, Uebelhart P, Landau EM. Design and assembly of pH-sensitive lipidic cubic phase matrices for drug release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1383-1390. [PMID: 24443890 DOI: 10.1021/la403694e] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bicontinuous lipidic cubic phases (LCPs) exhibit a combination of material properties that make them highly interesting for various biomaterial applications: they are nontoxic, biodegradable, optically transparent, thermodynamically stable in excess water, and can incorporate active molecules of virtually any polarity. Here we present a molecular system comprising host lipid, water, and designed lipidic additive, which form a structured, pH-sensitive lipidic matrix for hydrophilic as well as hydrophobic drug incorporation and release. The model drug doxorubicin (Dox) was loaded into the LCP. Tunable interactions with the lipidic matrix led to the observed pH-dependent drug release from the phase. The rate of Dox release from the cubic phase at pH 7.4 was low but increased significantly at more acidic pH. A small amount of a tailored diacidic lipid (lipid 1) added to the monoolein LCP modified the release rate of the drug. Phase identity and structural parameters of pure and doped mesophases were characterized by small-angle X-ray scattering (SAXS), and release profiles from the matrix were monitored electrochemically. Analysis of the release kinetics revealed that the total amount of drug released from the LCP matrix is linearly dependent on the square root of time, implying that the release mechanism proceeds according to the Higuchi model.
Collapse
Affiliation(s)
- Ewa Nazaruk
- Department of Chemistry, University of Warsaw , Pasteura 1, PL 02-093 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
9
|
Recent Developments in the Production, Analysis, and Applications of Cubic Phases Formed by Lipids. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-411515-6.00006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
Nanostructured self assembled lipid materials for drug delivery and tissue engineering. Ther Deliv 2012; 2:1485-516. [PMID: 22826876 DOI: 10.4155/tde.11.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Every living organism comprises of lipids as basic building blocks in addition to other components. Utilizing these lipids for pharmaceutical and biomedical applications can overcome biocompatibility and biodegradability issues. A well known example is liposomes (lipids arranged in lamellar structures), but other than that there are additional unique mesophasic structures of lipids formed as a result of lipid polymorphisms, which include cubic-, hexagonal- or sponge-phase structures. These structures provide the advantages of stability and production feasibility compared with liposomes. Cubosomes, which exist in a cubic structure, have improved stability, bioadhesivity and biocompatibility. Hexagonal phases or hexosomes exhibit hexagonal arrangements and can encapsulate different drugs with high stability. Lipids also forms tube-like structures known as tubules and ribbons that are also utilized in different biomedical applications, especially in tissue engineering. Immune stimulating complexes are nanocage-like structures formed as a result of interactions of lipid, antigen and Quillaja saponin. These lipidic mesophasic structures have been utilized for gene, vaccine and drug delivery. This article addresses lipid self-assembled supramolecular nanostructures, including cubosomes, hexosomes, tubules, ribbons, cochleates, lipoplexes and immune stimulating complexes and their biomedical applications.
Collapse
|
11
|
Misiūnas A, Niaura G, Barauskas J, Meškys R, Rutkienė R, Razumas V, Nylander T. Horse heart cytochrome c entrapped into the hydrated liquid-crystalline phases of phytantriol: X-ray diffraction and Raman spectroscopic characterization. J Colloid Interface Sci 2012; 378:232-40. [DOI: 10.1016/j.jcis.2012.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
|
12
|
Kumar A, Venkatesu P. Overview of the stability of α-chymotrypsin in different solvent media. Chem Rev 2012; 112:4283-307. [PMID: 22506806 DOI: 10.1021/cr2003773] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Kulkarni CV. Nanostructural studies on monoelaidin-water systems at low temperatures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:11790-11800. [PMID: 21846133 DOI: 10.1021/la201235h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In recent years, lipid based nanostructures have increasingly been used as model membranes to study various complex biological processes. For better understanding of such phenomena, it is essential to gain as much information as possible for model lipid structures under physiological conditions. In this paper, we focus on one of such lipids--monoelaidin (ME)--for its polymorphic nanostructures under varying conditions of temperature and water content. In the recent contribution (Soft Matter, 2010, 6, 3191), we have reported the phase diagram of ME above 30 °C and compared with the phase behavior of other lipids including monoolein (MO), monovaccenin (MV), and monolinolein (ML). Remarkable phase behavior of ME, stabilizing three bicontinuous cubic phases, motivates its study at low temperatures. Current studies concentrate on the low-temperature (<30 °C) behavior of ME and subsequent reconstruction of its phase diagram over the entire temperature-water composition space (temperature, 0-76 °C; and water content, 0-70%). The polymorphs found for the monoelaidin-water system include three bicontinuous cubic phases, i.e., Ia3d, Pn3m, and Im3m, and lamellar phases which exhibit two crystalline (L(c1) and L(c0)), two gel (L(β) and L(β*)), and a fluid lamellar (L(α)) states. The fluid isotropic phase (L(2)) was observed only for lower hydrations (<20%), whereas hexagonal phase (H(2)) was not found under studied conditions. Nanostructural parameters of these phases as a function of temperature and water content are presented together with some molecular level calculations. This study might be crucial for perception of the lyotropic phase behavior as well as for designing nanostructural assemblies for potential applications.
Collapse
Affiliation(s)
- Chandrashekhar V Kulkarni
- Department of Chemistry, Imperial College London, Exhibition Road, London - SW7 2AZ, United Kingdom.
| |
Collapse
|
14
|
Zabara A, Amar-Yuli I, Mezzenga R. Tuning in-meso-crystallized lysozyme polymorphism by lyotropic liquid crystal symmetry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:6418-6425. [PMID: 21506575 DOI: 10.1021/la200710p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Lipid-based lyotropic liquid crystals (LLCs) show great potential for applications in fields as diverse as food technology, cosmetics, pharmaceutics, or structural biology. Recently, these systems have provided a viable alternative to the difficult process of membrane protein crystallization, owing to their similarities with cell membranes. Nonetheless, the process of in-meso crystallization of proteins still remains poorly understood. In this study, we demonstrate that in-meso crystal morphologies of lysozyme (LSZ), a model hydrophilic protein, can be controlled by both the composition and symmetry of the mesophase, inferring a possible general influence of the LLC space group on the protein crystal polymorphism. Lysozyme was crystallized in-meso from three common LLC phases (lamellar, inverse hexagonal, and inverse bicontinuous cubic) composed of monolinolein and water. Different mixing ratios of mesophase to crystallization buffer were used in order to tune crystallization both in the bulk mesophase and in excess water conditions. Two distinct mechanisms of crystallization were shown to take place depending on available water in the mesophases. In the bulk mesophases, protein nuclei form and grow within structural defects of the mesophase and partially dehydrate the system inducing order-to-order transitions of the liquid crystalline phase toward stable symmetries in conditions of lower hydration. The formed protein crystals eventually macrophase separate from the mesophase allowing the system to reach its final symmetry. On the other hand, when excess water is available, protein molecules diffuse from the water channels into the excess water, where the crystallization process can take place freely, and with little to no effect on the structure and symmetry of the lyotropic liquid crystals.
Collapse
Affiliation(s)
- Alexandru Zabara
- ETH Zurich, Food & Soft Materials Science, Institute of Food, Nutrition & Health Schmelzbergstrasse 9, LFO E23, 8092 Zürich, Switzerland
| | | | | |
Collapse
|
15
|
Libster D, Aserin A, Garti N. Interactions of biomacromolecules with reverse hexagonal liquid crystals: Drug delivery and crystallization applications. J Colloid Interface Sci 2011; 356:375-86. [DOI: 10.1016/j.jcis.2011.01.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 11/26/2022]
|
16
|
Kulkarni CV, Wachter W, Iglesias-Salto G, Engelskirchen S, Ahualli S. Monoolein: a magic lipid? Phys Chem Chem Phys 2011; 13:3004-21. [DOI: 10.1039/c0cp01539c] [Citation(s) in RCA: 295] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Achrai B, Libster D, Aserin A, Garti N. Solubilization of Gabapentin into HII Mesophases. J Phys Chem B 2010; 115:825-35. [DOI: 10.1021/jp108801d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ben Achrai
- Casali Institute of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Dima Libster
- Casali Institute of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Abraham Aserin
- Casali Institute of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Nissim Garti
- Casali Institute of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
18
|
Efrat R, Abramov Z, Aserin A, Garti N. Nonionic−Anionic Mixed Surfactants Cubic Mesophases. Part I: Structural Chaotropic and Kosmotropic Effect. J Phys Chem B 2010; 114:10709-16. [DOI: 10.1021/jp103799a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rivka Efrat
- Casali Institute of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Zoya Abramov
- Casali Institute of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Abraham Aserin
- Casali Institute of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Nissim Garti
- Casali Institute of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| |
Collapse
|
19
|
Yaghmur A, Kriechbaum M, Amenitsch H, Steinhart M, Laggner P, Rappolt M. Effects of pressure and temperature on the self-assembled fully hydrated nanostructures of monoolein-oil systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:1177-1185. [PMID: 19681634 DOI: 10.1021/la9023019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Synchrotron small-angle X-ray scattering (SAXS) was applied for studying the effects of hydrostatic pressure and temperature on the structural behavior of fully hydrated tetradecane (TC)-loaded monoolein (MO) systems. Our main attention focused on investigating the impact of isobaric and isothermal changes on the stability of the inverted type discontinuous Fd3m cubic phase as compared to the inverted type hexagonal (H(2)) liquid crystalline phase. The present results show that compressing the TC-loaded Fd3m phase under isothermal conditions induces a significant increase of its lattice parameter: it approximately increases by 1 A per 75 bar. Further, the Fd3m phase is more pressure-sensitive as compared to the Pn3m and the H(2) phases. At ambient temperatures, we observed the following structural transitions as pressure increases: Fd3m --> H(2) --> Pn3m. Our findings under isobaric conditions reveal more complicated structural transitions. At high pressures, we recorded the interesting temperature-induced structural transition of (Pn3m + L(alpha)) --> (Pn3m + L(alpha) + H(2)) --> (L(alpha) + H(2)) --> H(2) --> Fd3m --> traces of Fd3m coexisting with L(2). At high pressures and low temperatures, the TC molecules partially crystallize as indicated by the appearance of an additional diffraction peak at q = 3.46 nm(-1). This crystallite disappears at high temperatures and also as the system gets decompressed. The appearance of the Pn3m and the L(alpha) phases during compressing the fully hydrated MO/TC samples at high pressures and low temperatures is generally related to a growing hydrocarbon chain condensation, which leads to membrane leaflets with less negative interfacial curvatures (decreasing the spontaneous curvatures |H(0)|). Both the effects of pressure and temperature are discussed in detail for all nonlamellar phases on the basis of molecular shape and packing concepts.
Collapse
Affiliation(s)
- Anan Yaghmur
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Graz, Austria.
| | | | | | | | | | | |
Collapse
|
20
|
Mishraki T, Libster D, Aserin A, Garti N. Lysozyme entrapped within reverse hexagonal mesophases: Physical properties and structural behavior. Colloids Surf B Biointerfaces 2010; 75:47-56. [DOI: 10.1016/j.colsurfb.2009.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 08/06/2009] [Accepted: 08/06/2009] [Indexed: 11/12/2022]
|
21
|
Characterization and potential applications of nanostructured aqueous dispersions. Adv Colloid Interface Sci 2009; 147-148:333-42. [PMID: 18804754 DOI: 10.1016/j.cis.2008.07.007] [Citation(s) in RCA: 256] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/18/2008] [Accepted: 07/30/2008] [Indexed: 11/23/2022]
Abstract
The present article highlights recent advances and current status in the characterization and the utilization of nanostructured aqueous dispersions in which the submicron-sized dispersed particles envelope a distinctive well-defined self-assembled interior. The scope of this review covers dispersions of both inverted-type liquid-crystalline particles (cubosomes, hexosomes, micellar cubosomes, and sponge phases), and microemulsion droplets (emulsified microemulsions, EMEs). Recent investigations that have attempted to shed light on the characterization and the control of confined nanostructures of aqueous dispersions are surveyed, as these nanoobjects are attractive for various pharmaceutical and food applications. The focus has been placed on three main subjects: (1) our findings on the formation of EMEs and the modulation of the internal nanostructure, exploring how variations in temperature, oil content, and lipid composition significantly affect the confined nanostructures; (2) recent developments in the field of electron microscopy: using the tilt-angle cryo-TEM method or cryo-field emission scanning electron microscopy (cryo-FESEM) for observing the three dimensional (3D) morphology of non-lamellar liquid-crystalline nanostructured particles (cubosome and hexosome particles); and (3) recent studies on the utilization of nanostructured dispersions as drug nanocarriers.
Collapse
|
22
|
Misiūnas A, Talaikytė Z, Niaura G, Razumas V, Nylander T. Thermomyces lanuginosus lipase in the liquid-crystalline phases of aqueous phytantriol: X-ray diffraction and vibrational spectroscopic studies. Biophys Chem 2008; 134:144-56. [DOI: 10.1016/j.bpc.2008.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 02/04/2008] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
|