1
|
Yuan Y, Wang F. A comparison of three DFT exchange-correlation functionals and two basis sets for the prediction of the conformation distribution of hydrated polyglycine. J Chem Phys 2021; 155:094104. [PMID: 34496578 DOI: 10.1063/5.0059669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The performance of three density functional theory (DFT) exchange-correlation functionals, namely, Perdew-Burke-Ernzerhof (PBE), BP86, and B3LYP, in predicting conformational distributions of a hydrated glycine peptide is tested with two different basis sets in the framework of adaptive force matching (AFM). The conformational distributions yielded the free energy profiles of the DFT functional and basis set combinations. Unlike traditional validations of potential energy and structural parameters, our approach allows the free energy of DFT to be validated. When compared to experimental distributions, the def2-TZVP basis set provides better agreement than a slightly trimmed aug-cc-pVDZ basis set. B3LYP is shown to be better than BP86 and PBE. The glycine model fitted against B3LYP-D3(BJ) with the def2-TZVP basis set is the most accurate and named the AFM2021 model for glycine. The AFM2021 glycine model provides better agreement with experimental J-coupling constants than C36m and ff14SB, although the margin is very small when compared to C36m. Our previously published alanine model is also refitted with the slightly simplified AFM2021 energy expression. This work shows good promise of AFM for developing force fields for a range of proteinogenic peptides using only DFT as reference.
Collapse
Affiliation(s)
- Ying Yuan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Feng Wang
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
2
|
Groves K, Ashcroft AE, Cryar A, Sula A, Wallace BA, Stocks BB, Burns C, Cooper-Shepherd D, De Lorenzi E, Rodriguez E, Zhang H, Ault JR, Ferguson J, Phillips JJ, Pacholarz K, Thalassinos K, Luckau L, Ashton L, Durrant O, Barran P, Dalby P, Vicedo P, Colombo R, Davis R, Parakra R, Upton R, Hill S, Wood V, Soloviev Z, Quaglia M. Reference Protocol to Assess Analytical Performance of Higher Order Structural Analysis Measurements: Results from an Interlaboratory Comparison. Anal Chem 2021; 93:9041-9048. [PMID: 34165299 DOI: 10.1021/acs.analchem.0c04625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Measurements of protein higher order structure (HOS) provide important information on stability, potency, efficacy, immunogenicity, and biosimilarity of biopharmaceuticals, with a significant number of techniques and methods available to perform these measurements. The comparison of the analytical performance of HOS methods and the standardization of the results is, however, not a trivial task, due to the lack of reference protocols and reference measurement procedures. Here, we developed a protocol to structurally alter and compare samples of somatropin, a recombinant biotherapeutic, and describe the results obtained by using a number of techniques, methods and in different laboratories. This, with the final aim to provide tools and generate a pool of data to compare and benchmark analytical platforms and define method sensitivity to structural changes. Changes in somatropin HOS, induced by the presence of zinc at increasing concentrations, were observed, both globally and at more localized resolution, across many of the methods utilized in this study and with different sensitivities, suggesting the suitability of the protocol to improve understanding of inter- and cross-platform measurement comparability and assess analytical performance as appropriate.
Collapse
Affiliation(s)
- K Groves
- National Measurement Laboratory, LGC Ltd. Queens Road, Teddington, Middlesex TW11 0LY, U.K
| | - A E Ashcroft
- Astbury Centre for Structural Molecular Biology & School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - A Cryar
- National Measurement Laboratory, LGC Ltd. Queens Road, Teddington, Middlesex TW11 0LY, U.K
| | - A Sula
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, U.K
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, U.K
| | - B B Stocks
- National Research Council Canada, 1200 Montreal Road, Ottawa K1A 0R6, Canada
| | - C Burns
- Biotherapeutics Division, National Institute for Biological Standards and Control, Blanche Lane South Mimms, Potters Bar, Hertfordshire EN6 3QG, U.K
| | - D Cooper-Shepherd
- National Measurement Laboratory, LGC Ltd. Queens Road, Teddington, Middlesex TW11 0LY, U.K
| | - E De Lorenzi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - E Rodriguez
- UCB Celltech, 216 Bath Road, Slough, Berkshire SL1 3WE, U.K
| | - H Zhang
- Department of Biochemical Engineering, University College London, London WC1E 6BT, U.K
| | - J R Ault
- Astbury Centre for Structural Molecular Biology & School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - J Ferguson
- Biotherapeutics Division, National Institute for Biological Standards and Control, Blanche Lane South Mimms, Potters Bar, Hertfordshire EN6 3QG, U.K
| | - J J Phillips
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, , U.K
| | - K Pacholarz
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - K Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6AR, U.K
| | - L Luckau
- National Measurement Laboratory, LGC Ltd. Queens Road, Teddington, Middlesex TW11 0LY, U.K
| | - L Ashton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K
| | - O Durrant
- UCB Celltech, 216 Bath Road, Slough, Berkshire SL1 3WE, U.K
| | - P Barran
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - P Dalby
- Department of Biochemical Engineering, University College London, London WC1E 6BT, U.K
| | - P Vicedo
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - R Colombo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - R Davis
- UCB Celltech, 216 Bath Road, Slough, Berkshire SL1 3WE, U.K
| | - R Parakra
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, , U.K
| | - R Upton
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - S Hill
- National Measurement Laboratory, LGC Ltd. Queens Road, Teddington, Middlesex TW11 0LY, U.K
| | - V Wood
- Department of Biochemical Engineering, University College London, London WC1E 6BT, U.K
| | - Z Soloviev
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6AR, U.K
| | - M Quaglia
- National Measurement Laboratory, LGC Ltd. Queens Road, Teddington, Middlesex TW11 0LY, U.K
| |
Collapse
|
3
|
Townsend DJ, Middleton DA, Ashton L. Raman Spectroscopy with 2D Perturbation Correlation Moving Windows for the Characterization of Heparin-Amyloid Interactions. Anal Chem 2020; 92:13822-13828. [PMID: 32935978 DOI: 10.1021/acs.analchem.0c02390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It has been shown extensively that glycosaminoglycan (GAG)-protein interactions can induce, accelerate, and impede the clearance of amyloid fibrils associated with systemic and localized amyloidosis. Obtaining molecular details of these interactions is fundamental to our understanding of amyloid disease. Consequently, there is a need for analytical approaches that can identify protein conformational transitions and simultaneously characterize heparin interactions. By combining Raman spectroscopy with two-dimensional (2D) perturbation correlation moving window (2DPCMW) analysis, we have successfully identified changes in protein secondary structure during pH- and heparin-induced fibril formation of apolipoprotein A-I (apoA-I) associated with atherosclerosis. Furthermore, from the 2DPCMW, we have identified peak shifts and intensity variations in Raman peaks arising from different heparan sulfate moieties, indicating that protein-heparin interactions vary at different heparin concentrations. Raman spectroscopy thus reveals new mechanistic insights into the role of GAGs during amyloid fibril formation.
Collapse
Affiliation(s)
- David J Townsend
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - David A Middleton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Lorna Ashton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
6
|
High-pressure NMR reveals close similarity between cold and alcohol protein denaturation in ubiquitin. Proc Natl Acad Sci U S A 2013; 110:E368-76. [PMID: 23284170 DOI: 10.1073/pnas.1212222110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins denature not only at high, but also at low temperature as well as high pressure. These denatured states are not easily accessible for experiment, because usually heat denaturation causes aggregation, whereas cold or pressure denaturation occurs at temperatures well below the freezing point of water or pressures above 5 kbar, respectively. Here we have obtained atomic details of the pressure-assisted, cold-denatured state of ubiquitin at 2,500 bar and 258 K by high-resolution NMR techniques. Under these conditions, a folded, native-like and a disordered state exist in slow exchange. Secondary chemical shifts show that the disordered state has structural propensities for a native-like N-terminal β-hairpin and α-helix and a nonnative C-terminal α-helix. These propensities are very similar to the previously described alcohol-denatured (A-)state. Similar to the A-state, (15)N relaxation data indicate that the secondary structure elements move as independent segments. The close similarity of pressure-assisted, cold-denatured, and alcohol-denatured states with native and nonnative secondary elements supports a hierarchical mechanism of folding and supports the notion that similar to alcohol, pressure and cold reduce the hydrophobic effect. Indeed, at nondenaturing concentrations of methanol, a complete transition from the native to the A-state can be achieved at ambient temperature by varying the pressure from 1 to 2,500 bar. The methanol-assisted pressure transition is completely reversible and can also be induced in protein G. This method should allow highly detailed studies of protein-folding transitions in a continuous and reversible manner.
Collapse
|
11
|
Grdadolnik J, Grdadolnik SG, Avbelj F. Determination of conformational preferences of dipeptides using vibrational spectroscopy. J Phys Chem B 2008; 112:2712-8. [PMID: 18260662 DOI: 10.1021/jp7096313] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The NMR coupling constants ((3)J(H(N), H(alpha))) of dipeptides indicate that the backbone conformational preferences vary strikingly among dipeptides. These preferences are similar to those of residues in small peptides, denatured proteins, and the coil regions of native proteins. Detailed characterization of the conformational preferences of dipeptides is therefore of fundamental importance for understanding protein structure and folding. Here, we studied the conformational preferences of 13 dipeptides using infrared and Raman spectroscopy. The main advantage of vibrational spectroscopy over NMR spectroscopy is in its much shorter time scale, which enables the determination of the conformational preferences of short-lived states. Accuracy of structure determination using vibrational spectroscopy depends critically on identification of the vibrational parameters that are sensitive to changes in conformation. We show that the frequencies of the amide I band and the A12 ratio of the amide I components of dipeptides correlate with the (3)J(H(N), H(alpha)). These two infrared vibrational parameters are thus analogous to (3)J(H(N), H(alpha)), indicators for the preference for the dihedral angle phi. We also show that the intensities of the components of the amide III bands in infrared spectra and the intensities of the skeletal vibrations in Raman spectra are indicators of populations of the P(II), beta, and alpha(R) conformations. The results show that alanine dipeptide adopts predominantly a PII conformation. The population of the beta conformation increases in valine dipeptides. The populations of the alpha(R) conformation are generally small. These data are in accord with the electrostatic screening model of conformational preferences.
Collapse
Affiliation(s)
- Joze Grdadolnik
- National Institute of Chemistry, Hajdrihova 19, SI 1000 Ljubljana, Slovenia.
| | | | | |
Collapse
|