1
|
Kamagata K, Murata A, Itoh Y, Takahashi S. Characterization of facilitated diffusion of tumor suppressor p53 along DNA using single-molecule fluorescence imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
2
|
Yao Z, Delorme-Axford E, Backues SK, Klionsky DJ. Atg41/Icy2 regulates autophagosome formation. Autophagy 2016; 11:2288-99. [PMID: 26565778 DOI: 10.1080/15548627.2015.1107692] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Macroautophagy (hereafter autophagy) is one of the major degradation systems in eukaryotic cells, and its dysfunction may result in diseases ranging from neurodegeneration to cancer. Although most of the autophagy-related (Atg) proteins that function in this pathway were first identified in yeast, many were subsequently shown to have homologs in higher eukaryotes including humans, and the overall mechanism of autophagy is highly conserved. The most prominent feature of autophagy is the formation of a double-membrane sequestering compartment, the phagophore; this transient organelle surrounds part of the cytoplasm and matures into an autophagosome, which subsequently fuses with the vacuole or lysosome to allow degradation of the cargo. Much attention has focused on the process involved in phagophore nucleation and expansion, but many questions remain. Here, we identified the yeast protein Icy2, which we now name Atg41, as playing a role in autophagosome formation. Atg41 interacts with the transmembrane protein Atg9, a key component involved in autophagosome biogenesis, and both proteins display a similar localization profile. Under autophagy-inducing conditions the expression level of Atg41 increases dramatically and is regulated by the transcription factor Gcn4. This work provides further insight into the mechanism of Atg9 function and the dynamics of sequestering membrane formation during autophagy.
Collapse
Affiliation(s)
- Zhiyuan Yao
- a Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology ; University of Michigan ; Ann Arbor , MI USA
| | - Elizabeth Delorme-Axford
- a Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology ; University of Michigan ; Ann Arbor , MI USA
| | - Steven K Backues
- b Department of Chemistry ; Eastern Michigan University ; Ypsilanti , MI USA
| | - Daniel J Klionsky
- a Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology ; University of Michigan ; Ann Arbor , MI USA
| |
Collapse
|
3
|
Banerjee A, Herman E, Serif M, Maestre-Reyna M, Hepp S, Pokorny R, Kroth PG, Essen LO, Kottke T. Allosteric communication between DNA-binding and light-responsive domains of diatom class I aureochromes. Nucleic Acids Res 2016; 44:5957-70. [PMID: 27179025 PMCID: PMC4937327 DOI: 10.1093/nar/gkw420] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022] Open
Abstract
The modular architecture of aureochrome blue light receptors, found in several algal groups including diatoms, is unique by having the LOV-type photoreceptor domain fused to the C-terminus of its putative effector, an N-terminal DNA-binding bZIP module. The structural and functional understanding of aureochromes’ light-dependent signaling mechanism is limited, despite their promise as an optogenetic tool. We show that class I aureochromes 1a and 1c from the diatom Phaeodactylum tricornutum are regulated in a light-independent circadian rhythm. These aureochromes are capable to form functional homo- and heterodimers, which recognize the ACGT core sequence within the canonical ‘aureo box’, TGACGT, in a light-independent manner. The bZIP domain holds a more folded and less flexible but extended conformation in the duplex DNA-bound state. FT-IR spectroscopy in the absence and the presence of DNA shows light-dependent helix unfolding in the LOV domain, which leads to conformational changes in the bZIP region. The solution structure of DNA bound to aureochrome points to a tilted orientation that was further validated by molecular dynamics simulations. We propose that aureochrome signaling relies on an allosteric pathway from LOV to bZIP that results in conformational changes near the bZIP-DNA interface without major effects on the binding affinity.
Collapse
Affiliation(s)
- Ankan Banerjee
- Structural Biochemistry - Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
| | - Elena Herman
- Physical and Biophysical Chemistry - Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Manuel Serif
- Plant Ecophysiology - Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Manuel Maestre-Reyna
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Sec. 2 Nankang, Taipei 11529, Taiwan
| | - Sebastian Hepp
- Structural Biochemistry - Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
| | - Richard Pokorny
- Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Peter G Kroth
- Plant Ecophysiology - Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Lars-Oliver Essen
- Structural Biochemistry - Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, 35032 Marburg, Germany
| | - Tilman Kottke
- Physical and Biophysical Chemistry - Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
4
|
Sánchez MI, Vázquez O, Vázquez ME, Mascareñas JL. Sequence-selective DNA recognition with peptide-bisbenzamidine conjugates. Chemistry 2013; 19:9923-9. [PMID: 23780839 DOI: 10.1002/chem.201300519] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Indexed: 12/15/2022]
Abstract
Transcription factors (TFs) are specialized proteins that play a key role in the regulation of genetic expression. Their mechanism of action involves the interaction with specific DNA sequences, which usually takes place through specialized domains of the protein. However, achieving an efficient binding usually requires the presence of the full protein. This is the case for bZIP and zinc finger TF families, which cannot interact with their target sites when the DNA binding fragments are presented as isolated monomers. Herein it is demonstrated that the DNA binding of these monomeric peptides can be restored when conjugated to aza-bisbenzamidines, which are readily accessible molecules that interact with A/T-rich sites by insertion into their minor groove. Importantly, the fluorogenic properties of the aza-benzamidine unit provide details of the DNA interaction that are eluded in electrophoresis mobility shift assays (EMSA). The hybrids based on the GCN4 bZIP protein preferentially bind to composite sequences containing tandem bisbenzamidine-GCN4 binding sites (TCAT⋅AAATT). Fluorescence reverse titrations show an interesting multiphasic profile consistent with the formation of competitive nonspecific complexes at low DNA/peptide ratios. On the other hand, the conjugate with the DNA binding domain of the zinc finger protein GAGA binds with high affinity (KD≈12 nM) and specificity to a composite AATTT⋅GAGA sequence containing both the bisbenzamidine and the TF consensus binding sites.
Collapse
Affiliation(s)
- Mateo I Sánchez
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
5
|
Basic leucine zipper transcription factor Hac1 binds DNA in two distinct modes as revealed by microfluidic analyses. Proc Natl Acad Sci U S A 2012; 109:E3084-93. [PMID: 23054834 DOI: 10.1073/pnas.1212457109] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A quantitative understanding of how transcription factors interact with genomic target sites is crucial for reconstructing transcriptional networks in vivo. Here, we use Hac1, a well-characterized basic leucine zipper (bZIP) transcription factor involved in the unfolded protein response (UPR) as a model to investigate interactions between bZIP transcription factors and their target sites. During the UPR, the accumulation of unfolded proteins leads to unconventional splicing and subsequent translation of HAC1 mRNA, followed by transcription of UPR target genes. Initial candidate-based approaches identified a canonical cis-acting unfolded protein response element (UPRE-1) within target gene promoters; however, subsequent studies identified a large set of Hac1 target genes lacking this UPRE-1 and containing a different motif (UPRE-2). Using a combination of unbiased and directed microfluidic DNA binding assays, we established that Hac1 binds in two distinct modes: (i) to short (6-7 bp) UPRE-2-like motifs and (ii) to significantly longer (11-13 bp) extended UPRE-1-like motifs. Using a genetic screen, we demonstrate that a region of extended homology N-terminal to the basic DNA binding domain is required for this dual site recognition. These results establish Hac1 as the first bZIP transcription factor known to adopt more than one binding mode and unify previously conflicting and discrepant observations of Hac1 function into a cohesive model of UPR target gene activation. Our results also suggest that even structurally simple transcription factors can recognize multiple divergent target sites of very different lengths, potentially enriching their downstream target repertoire.
Collapse
|
6
|
Chan IS, Al-Sarraj T, Shahravan SH, Fedorova AV, Shin JA. The bZIP dimer localizes at DNA full-sites where each basic region can alternately translocate and bind to subsites at the half-site. Biochemistry 2012; 51:6632-43. [PMID: 22856882 DOI: 10.1021/bi300718f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Crystal structures of the GCN4 bZIP (basic region/leucine zipper) with the AP-1 or CRE site show how each GCN4 basic region binds to a 4 bp cognate half-site as a single DNA target; however, this may not always fully describe how bZIP proteins interact with their target sites. Previously, we showed that the GCN4 basic region interacts with all 5 bp in half-site TTGCG (termed 5H-LR) and that 5H-LR comprises two 4 bp subsites, TTGC and TGCG, which individually are also target sites of the basic region. In this work, we explore how the basic region interacts with 5H-LR when the bZIP dimer localizes to full-sites. Using AMBER molecular modeling, we simulated GCN4 bZIP complexes with full-sites containing 5H-LR to investigate in silico the interface between the basic region and 5H-LR. We also performed in vitro investigation of bZIP-DNA interactions at a number of full-sites that contain 5H-LR versus either subsite: we analyzed results from DNase I footprinting and electrophoretic mobility shift assay (EMSA) and from EMSA titrations to quantify binding affinities. Our computational and experimental results together support a highly dynamic DNA-binding model: when a bZIP dimer localizes to its target full-site, the basic region can alternately recognize either subsite as a distinct target at 5H-LR and translocate between the subsites, potentially by sliding and hopping. This model provides added insights into how α-helical DNA-binding domains of transcription factors can localize to their gene regulatory sequences in vivo.
Collapse
Affiliation(s)
- I-San Chan
- Department of Chemistry, University of Toronto, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | | | | | | | | |
Collapse
|
7
|
Shahravan SH, Li ITS, Truong K, Shin JA. FRep: A Fluorescent Protein-Based Bioprobe for in Vivo Detection of Protein–DNA Interactions. Anal Chem 2011; 83:9643-50. [DOI: 10.1021/ac2024602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- S. Hesam Shahravan
- Department of Chemical and Physical Sciences, University of Toronto at Mississauga, Mississauga, Ontario, Canada L5L 1C6
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
| | - Isaac T. S. Li
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Kevin Truong
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Jumi A. Shin
- Department of Chemical and Physical Sciences, University of Toronto at Mississauga, Mississauga, Ontario, Canada L5L 1C6
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| |
Collapse
|
8
|
Chan IS, Shahravan SH, Fedorova AV, Shin JA. The bZIP targets overlapping DNA subsites within a half-site, resulting in increased binding affinities. Biochemistry 2008; 47:9646-52. [PMID: 18702507 PMCID: PMC2633644 DOI: 10.1021/bi800355t] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously reported that the wt bZIP, a hybrid of the GCN4 basic region and C/EBP leucine zipper, not only recognizes GCN4 cognate site AP-1 (TGACTCA) but also selectively targets noncognate DNA sites, in particular the C/EBP site (TTGCGCAA). In this work, we used electrophoretic mobility shift assay and DNase I footprinting to investigate the factors driving the high affinity between the wt bZIP and the C/EBP site. We found that on each strand of the C/EBP site, the wt bZIP recognizes two 4 bp subsites, TTGC and TGCG, which overlap to form the effective 5 bp half-site (TTGCG). The affinity of the wt bZIP for the overall 5 bp half-site is >or=10-fold stronger than that for either 4 bp subsite. Our results suggest that interactions of the wt bZIP with both subsites contribute to the strong affinity at the overall 5 bp half-site and, consequently, the C/EBP site. Accordingly, we propose that the wt bZIP undergoes conformational changes to slide between the two overlapping subsites on the same DNA strand and establish sequence-selective contacts with the different subsites. The proposed binding mechanism expands our understanding of what constitutes an actual DNA target site in protein-DNA interactions.
Collapse
Affiliation(s)
| | | | | | - Jumi A. Shin
- To whom correspondence should be addressed. Phone: (905) 828−5355. Fax: (905) 828−5425. E-mail:
| |
Collapse
|
9
|
Seong KM, Park H, Kim SJ, Ha HN, Lee JY, Kim J. A new method for the construction of a mutant library with a predictable occurrence rate using Poisson distribution. J Microbiol Methods 2007; 69:442-50. [PMID: 17428560 DOI: 10.1016/j.mimet.2007.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 02/15/2007] [Accepted: 02/19/2007] [Indexed: 11/24/2022]
Abstract
A yeast transcriptional activator, Gcn4p, induces the expression of genes that are involved in amino acid and purine biosynthetic pathways under amino acid starvation. Gcn4p has an acidic activation domain in the central region and a bZIP domain in the C-terminus that is divided into the DNA-binding motif and dimerization leucine zipper motif. In order to identify amino acids in the DNA-binding motif of Gcn4p which are involved in transcriptional activation, we constructed mutant libraries in the DNA-binding motif through an innovative application of random mutagenesis. Mutant library made by oligonucleotides which were mutated randomly using the Poisson distribution showed that the actual mutation frequency was in good agreement with expected values. This method could save the time and effort to create a mutant library with a predictable mutation frequency. Based on the studies using the mutant libraries constructed by the new method, the specific residues of the DNA-binding domain in Gcn4p appear to be involved in the transcriptional activities on a conserved binding site.
Collapse
Affiliation(s)
- Ki Moon Seong
- Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
10
|
Chan IS, Fedorova AV, Shin JA. The GCN4 bZIP targets noncognate gene regulatory sequences: quantitative investigation of binding at full and half sites. Biochemistry 2007; 46:1663-71. [PMID: 17279629 PMCID: PMC2435288 DOI: 10.1021/bi0617613] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously reported that a basic region/leucine zipper (bZIP) protein, a hybrid of the GCN4 basic region and C/EBP leucine zipper, not only recognizes cognate target sites AP-1 (5'-TGACTCA-3') and cAMP-response element (CRE) (5'-TGACGTCA-3') but also binds selectively to noncognate DNA sites: C/EBP (CCAAT/enhancer binding protein, 5'-TTGCGCAA), XRE1 (xenobiotic response element, 5'-TTGCGTGA), HRE (HIF response element, 5'-GCACGTAG), and E-box (5'-CACGTG). In this work, we used electrophoretic mobility shift assay (EMSA) and circular dichroism (CD) for more extensive characterization of the binding of wt bZIP dimer to noncognate sites as well as full- and half-site derivatives, and we examined changes in flanking sequences. Quantitative EMSA titrations were used to measure dissociation constants of this hybrid, wt bZIP, to DNA duplexes: Full-site binding affinities gradually decrease from cognate sites AP-1 and CRE with Kd values of 13 and 12 nM, respectively, to noncognate sites with Kd values of 120 nM to low microM. DNA-binding selectivity at half sites is maintained; however, half-site binding affinities sharply decrease from the cognate half site (Kd = 84 nM) to noncognate half sites (all Kd values > 2 microM). CD shows that comparable levels of alpha-helical structure are induced in wt bZIP upon binding to cognate AP-1 or noncognate sites. Thus, noncognate sites may contribute to preorganization of stable protein structure before binding target DNA sites. This work demonstrates that the bZIP scaffold may be a powerful tool in the design of small, alpha-helical proteins with desired DNA recognition properties.
Collapse
Affiliation(s)
- I-San Chan
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | | | | |
Collapse
|