1
|
Gc JB, Johnson KA, Husby ML, Frick CT, Gerstman BS, Stahelin RV, Chapagain PP. Interdomain salt-bridges in the Ebola virus protein VP40 and their role in domain association and plasma membrane localization. Protein Sci 2016; 25:1648-58. [PMID: 27328459 DOI: 10.1002/pro.2969] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 02/03/2023]
Abstract
The Ebola virus protein VP40 is a transformer protein that possesses an extraordinary ability to accomplish multiple functions by transforming into various oligomeric conformations. The disengagement of the C-terminal domain (CTD) from the N-terminal domain (NTD) is a crucial step in the conformational transformations of VP40 from the dimeric form to the hexameric form or octameric ring structure. Here, we use various molecular dynamics (MD) simulations to investigate the dynamics of the VP40 protein and the roles of interdomain interactions that are important for the domain-domain association and dissociation, and report on experimental results of the behavior of mutant variants of VP40. The MD studies find that various salt-bridge interactions modulate the VP40 domain dynamics by providing conformational specificity through interdomain interactions. The MD simulations reveal a novel salt-bridge between D45-K326 when the CTD participates in a latch-like interaction with the NTD. The D45-K326 salt-bridge interaction is proposed to help domain-domain association, whereas the E76-K291 interaction is important for stabilizing the closed-form structure. The effects of the removal of important VP40 salt-bridges on plasma membrane (PM) localization, VP40 oligomerization, and virus like particle (VLP) budding assays were investigated experimentally by live cell imaging using an EGFP-tagged VP40 system. It is found that the mutations K291E and D45K show enhanced PM localization but D45K significantly reduced VLP formation.
Collapse
Affiliation(s)
- Jeevan B Gc
- Department of Physics, Florida International University, Miami, Florida, 33199
| | - Kristen A Johnson
- Department of Chemistry and Biochemistry, the Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, 46556.,Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, 46556
| | - Monica L Husby
- Department of Chemistry and Biochemistry, the Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, 46556.,Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, 46556
| | - Cary T Frick
- Department of Chemistry and Biochemistry, the Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, 46556.,Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, 46556
| | - Bernard S Gerstman
- Department of Physics, Florida International University, Miami, Florida, 33199.,Biomolecular Science Institute, Florida International University, Miami, Florida, 33199
| | - Robert V Stahelin
- Department of Chemistry and Biochemistry, the Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, 46556.,Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, 46556.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, Indiana, 46617
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, Florida, 33199.,Biomolecular Science Institute, Florida International University, Miami, Florida, 33199
| |
Collapse
|
2
|
Bhaskara RM, Srinivasan N. Stability of domain structures in multi-domain proteins. Sci Rep 2011; 1:40. [PMID: 22355559 PMCID: PMC3216527 DOI: 10.1038/srep00040] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 06/27/2011] [Indexed: 01/22/2023] Open
Abstract
Multi-domain proteins have many advantages with respect to stability and folding inside cells. Here we attempt to understand the intricate relationship between the domain-domain interactions and the stability of domains in isolation. We provide quantitative treatment and proof for prevailing intuitive ideas on the strategies employed by nature to stabilize otherwise unstable domains. We find that domains incapable of independent stability are stabilized by favourable interactions with tethered domains in the multi-domain context. Stability of such folds to exist independently is optimized by evolution. Specific residue mutations in the sites equivalent to inter-domain interface enhance the overall solvation, thereby stabilizing these domain folds independently. A few naturally occurring variants at these sites alter communication between domains and affect stability leading to disease manifestation. Our analysis provides safe guidelines for mutagenesis which have attractive applications in obtaining stable fragments and domain constructs essential for structural studies by crystallography and NMR.
Collapse
|
3
|
Li C, Huang J, Li S, Fan W, Hu Y, Wang Q, Zhu F, Xie L, Zhang R. Cloning, characterization and immunolocalization of two subunits of calcineurin from pearl oyster (Pinctada fucata). Comp Biochem Physiol B Biochem Mol Biol 2009; 153:43-53. [DOI: 10.1016/j.cbpb.2009.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 01/13/2009] [Accepted: 01/13/2009] [Indexed: 01/11/2023]
|