1
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
2
|
Boubeta FM, Boechi L, Estrin D, Patrizi B, Di Donato M, Iagatti A, Giordano D, Verde C, Bruno S, Abbruzzetti S, Viappiani C. Cold-Adaptation Signatures in the Ligand Rebinding Kinetics to the Truncated Hemoglobin of the Antarctic Bacterium Pseudoalteromonas haloplanktis TAC125. J Phys Chem B 2018; 122:11649-11661. [PMID: 30230844 DOI: 10.1021/acs.jpcb.8b07682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cold-adapted organisms have evolved proteins endowed with higher flexibility and lower stability in comparison to their thermophilic homologues, resulting in enhanced reaction rates at low temperatures. In this context, protein-bound water molecules were suggested to play a major role, and their weaker interactions at protein active sites have been associated with cold adaptation. In this work, we tested this hypothesis on truncated hemoglobins (a family of microbial heme-proteins of yet-unclear function) applying molecular dynamics simulations and ligand-rebinding kinetics on a protein from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 in comparison with its thermophilic Thermobifida fusca homologue. The CO rebinding kinetics of the former highlight several geminate phases, with an unusually long-lived geminate intermediate. An articulated tunnel with at least two distinct docking sites was identified by analysis of molecular dynamics simulations and was suggested to be at the origin of the unusual geminate rebinding phase. Water molecules are present in the distal pocket, but their stabilization by TrpG8, TyrB10, and HisCD1 is much weaker than in thermophilic Thermobifida fusca truncated hemoglobin, resulting in a faster geminate rebinding. Our results support the hypothesis that weaker water-molecule interactions at the reaction site are associated with cold adaptation.
Collapse
Affiliation(s)
- Fernando M Boubeta
- Instituto de Quimica Fisica de los Materiales, Medio Ambiente y Energia (INQUIMAE), CONICET, and Universidad de Buenos Aires , C1428EHA Buenos Aires , Argentina
| | - Leonardo Boechi
- Instituto de Calculo, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , C1428EGA Buenos Aires , Argentina
| | - Dario Estrin
- Instituto de Quimica Fisica de los Materiales, Medio Ambiente y Energia (INQUIMAE), CONICET, and Universidad de Buenos Aires , C1428EHA Buenos Aires , Argentina
| | - Barbara Patrizi
- European Laboratory for Non Linear Spectroscopy (LENS), Università di Firenze , Via Nello Carrara 1 , 50019 Sesto Fiorentino, Florence , Italy.,INO-CNR, Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche , Largo Fermi 6 , 50125 Florence , Italy
| | - Mariangela Di Donato
- European Laboratory for Non Linear Spectroscopy (LENS), Università di Firenze , Via Nello Carrara 1 , 50019 Sesto Fiorentino, Florence , Italy.,INO-CNR, Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche , Largo Fermi 6 , 50125 Florence , Italy
| | - Alessandro Iagatti
- European Laboratory for Non Linear Spectroscopy (LENS), Università di Firenze , Via Nello Carrara 1 , 50019 Sesto Fiorentino, Florence , Italy
| | - Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR , Via Pietro Castellino 111 , I-80131 Naples , Italy.,Stazione Zoologica Anton Dohrn , Villa Comunale , 80121 Naples , Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR , Via Pietro Castellino 111 , I-80131 Naples , Italy.,Stazione Zoologica Anton Dohrn , Villa Comunale , 80121 Naples , Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università di Parma , Parco Area delle Scienze 23A , 43124 , Parma , Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche , Università di Parma , Parco Area delle Scienze 7A , 43124 , Parma , Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche , Università di Parma , Parco Area delle Scienze 7A , 43124 , Parma , Italy
| |
Collapse
|
3
|
Nienhaus K, Hahn V, Hüpfel M, Nienhaus GU. Substrate Binding Primes Human Tryptophan 2,3-Dioxygenase for Ligand Binding. J Phys Chem B 2017; 121:7412-7420. [PMID: 28715185 DOI: 10.1021/acs.jpcb.7b03463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human heme enzyme tryptophan 2,3-dioxygenase (hTDO) catalyzes the insertion of dioxygen into its cognate substrate, l-tryptophan (l-Trp). Its active site structure is highly dynamic, and the mechanism of enzyme-substrate-ligand complex formation and the ensuing enzymatic reaction is not yet understood. Here we have studied complex formation in hTDO by using time-resolved optical and infrared spectroscopy with carbon monoxide (CO) as a ligand. We have observed that both substrate-free and substrate-bound hTDO coexist in two discrete conformations with greatly different ligand binding rates. In the fast rebinding hTDO conformation, there is facile ligand access to the heme iron, but it is greatly hindered in the slowly rebinding conformation. Spectroscopic evidence implicates active site solvation as playing a crucial role for the observed kinetic differences. Substrate binding shifts the conformational equilibrium markedly toward the fast species and thus primes the active site for subsequent ligand binding, ensuring that formation of the ternary complex occurs predominantly by first binding l-Trp and then the ligand. Consequently, the efficiency of catalysis is enhanced because O2 binding prior to substrate binding, resulting in nonproductive oxidation of the heme iron, is greatly suppressed.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Vincent Hahn
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Manuel Hüpfel
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany.,Institute of Nanotechnology (INT) and Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT) , 76344 Eggenstein-Leopoldshafen, Germany.,Department of Physics, University of Illinois at Urbana-Champaign , 1110 W. Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Abstract
Membrane proteins play a most important part in metabolism, signaling, cell motility, transport, development, and many other biochemical and biophysical processes which constitute fundamentals of life on the molecular level. Detailed understanding of these processes is necessary for the progress of life sciences and biomedical applications. Nanodiscs provide a new and powerful tool for a broad spectrum of biochemical and biophysical studies of membrane proteins and are commonly acknowledged as an optimal membrane mimetic system that provides control over size, composition, and specific functional modifications on the nanometer scale. In this review we attempted to combine a comprehensive list of various applications of nanodisc technology with systematic analysis of the most attractive features of this system and advantages provided by nanodiscs for structural and mechanistic studies of membrane proteins.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Mid-infrared spectroscopy for protein analysis: potential and challenges. Anal Bioanal Chem 2016; 408:2875-89. [PMID: 26879650 DOI: 10.1007/s00216-016-9375-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/22/2016] [Accepted: 01/28/2016] [Indexed: 12/11/2022]
Abstract
Mid-infrared (MIR) spectroscopy investigates the interaction of MIR photons with both organic and inorganic molecules via the excitation of vibrational and rotational modes, providing inherent molecular selectivity. In general, infrared (IR) spectroscopy is particularly sensitive to protein structure and structural changes via vibrational resonances originating from the polypeptide backbone or side chains; hence information on the secondary structure of proteins can be obtained in a label-free fashion. In this review, the challenges for IR spectroscopy for protein analysis are discussed as are the potential and limitations of different IR spectroscopic techniques enabling protein analysis. In particular, the amide I spectral range has been widely used to study protein secondary structure, conformational changes, protein aggregation, protein adsorption, and the formation of amyloid fibrils. In addition to representative examples of the potential of IR spectroscopy in various fields related to protein analysis, the potential of protein analysis taking advantage of miniaturized MIR systems, including waveguide-enhanced MIR sensors, is detailed.
Collapse
|
6
|
Horn M, Nienhaus K, Nienhaus GU. Fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase. F1000Res 2014; 3:290. [PMID: 25653844 DOI: 10.12688/f1000research.5836.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2014] [Indexed: 03/23/2024] Open
Abstract
Inducible nitric oxide synthase (iNOS) is a homodimeric heme enzyme that catalyzes the formation of nitric oxide (NO) from dioxygen and L-arginine (L-Arg) in a two-step process. The produced NO can either diffuse out of the heme pocket into the surroundings or it can rebind to the heme iron and inhibit enzyme action. Here we have employed Fourier transform infrared (FTIR) photolysis difference spectroscopy at cryogenic temperatures, using the carbon monoxide (CO) and NO stretching bands as local probes of the active site of iNOS. Characteristic changes were observed in the spectra of the heme-bound ligands upon binding of the cofactors. Unlike photolyzed CO, which becomes trapped in well-defined orientations, as indicated by sharp photoproduct bands, photoproduct bands of NO photodissociated from the ferric heme iron were not visible, indicating that NO does not reside in the protein interior in a well-defined location or orientation. This may be favorable for NO release from the enzyme during catalysis because it reduces self-inhibition. Moreover, we used temperature derivative spectroscopy (TDS) with FTIR monitoring to explore the dynamics of NO and carbon monoxide (CO) inside iNOS after photodissociation at cryogenic temperatures. Only a single kinetic photoproduct state was revealed, but no secondary docking sites as in hemoglobins. Interestingly, we observed that intense illumination of six-coordinate ferrous iNOS oxy-NO ruptures the bond between the heme iron and the proximal thiolate to yield five-coordinate ferric iNOS oxy-NO, demonstrating the strong trans effect of the heme-bound NO.
Collapse
Affiliation(s)
- Michael Horn
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics, Karlsruhe, D-76131, Germany
| | - Karin Nienhaus
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics, Karlsruhe, D-76131, Germany
| | - Gerd Ulrich Nienhaus
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics, Karlsruhe, D-76131, Germany ; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
7
|
Horn M, Nienhaus K, Nienhaus GU. Fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase. F1000Res 2014; 3:290. [PMID: 25653844 PMCID: PMC4304226 DOI: 10.12688/f1000research.5836.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2014] [Indexed: 11/20/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) is a homodimeric heme enzyme that catalyzes the formation of nitric oxide (NO) from dioxygen and L-arginine (L-Arg) in a two-step process. The produced NO can either diffuse out of the heme pocket into the surroundings or it can rebind to the heme iron and inhibit enzyme action. Here we have employed Fourier transform infrared (FTIR) photolysis difference spectroscopy at cryogenic temperatures, using the carbon monoxide (CO) and NO stretching bands as local probes of the active site of iNOS. Characteristic changes were observed in the spectra of the heme-bound ligands upon binding of the cofactors. Unlike photolyzed CO, which becomes trapped in well-defined orientations, as indicated by sharp photoproduct bands, photoproduct bands of NO photodissociated from the ferric heme iron were not visible, indicating that NO does not reside in the protein interior in a well-defined location or orientation. This may be favorable for NO release from the enzyme during catalysis because it reduces self-inhibition. Moreover, we used temperature derivative spectroscopy (TDS) with FTIR monitoring to explore the dynamics of NO and carbon monoxide (CO) inside iNOS after photodissociation at cryogenic temperatures. Only a single kinetic photoproduct state was revealed, but no secondary docking sites as in hemoglobins. Interestingly, we observed that intense illumination of six-coordinate ferrous iNOS oxy-NO ruptures the bond between the heme iron and the proximal thiolate to yield five-coordinate ferric iNOS oxy-NO, demonstrating the strong trans effect of the heme-bound NO.
Collapse
Affiliation(s)
- Michael Horn
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics, Karlsruhe, D-76131, Germany
| | - Karin Nienhaus
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics, Karlsruhe, D-76131, Germany
| | - Gerd Ulrich Nienhaus
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics, Karlsruhe, D-76131, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
8
|
Lukman S, Verma CS, Fuentes G. Exploiting Protein Intrinsic Flexibility in Drug Design. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 805:245-69. [DOI: 10.1007/978-3-319-02970-2_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Abbruzzetti S, Spyrakis F, Bidon-Chanal A, Luque FJ, Viappiani C. Ligand migration through hemeprotein cavities: insights from laser flash photolysis and molecular dynamics simulations. Phys Chem Chem Phys 2013; 15:10686-701. [PMID: 23733145 DOI: 10.1039/c3cp51149a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The presence of cavities and tunnels in the interior of proteins, in conjunction with the structural plasticity arising from the coupling to the thermal fluctuations of the protein scaffold, has profound consequences on the pathways followed by ligands moving through the protein matrix. In this perspective we discuss how quantitative analysis of experimental rebinding kinetics from laser flash photolysis, trapping of unstable conformational states by embedding proteins within the nanopores of silica gels, and molecular simulations can synergistically converge to gain insight into the migration mechanism of ligands. We show how the evaluation of the free energy landscape for ligand diffusion based on the outcome of computational techniques can assist the definition of sound reaction schemes, leading to a comprehensive understanding of the broad range of chemical events and time scales that encompass the transport of small ligands in hemeproteins.
Collapse
Affiliation(s)
- Stefania Abbruzzetti
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Parma, viale delle Scienze 7A, 43124, Parma, Italy
| | | | | | | | | |
Collapse
|
10
|
Spyrakis F, Lucas F, Bidon-Chanal A, Viappiani C, Guallar V, Luque FJ. Comparative analysis of inner cavities and ligand migration in non-symbiotic AHb1 and AHb2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1957-67. [PMID: 23583621 DOI: 10.1016/j.bbapap.2013.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/30/2013] [Accepted: 04/03/2013] [Indexed: 10/27/2022]
Abstract
This study reports a comparative analysis of the topological properties of inner cavities and the intrinsic dynamics of non-symbiotic hemoglobins AHb1 and AHb2 from Arabidopsis thaliana. The two proteins belong to the 3/3 globin fold and have a sequence identity of about 60%. However, it is widely assumed that they have distinct physiological roles. In order to investigate the structure-function relationships in these proteins, we have examined the bis-histidyl and ligand-bound hexacoordinated states by atomistic simulations using in silico structural models. The results allow us to identify two main pathways to the distal cavity in the bis-histidyl hexacoordinated proteins. Nevertheless, a larger accessibility to small gaseous molecules is found in AHb2. This effect can be attributed to three factors: the mutation Leu35(AHb1)→Phe32(AHb2), the enhanced flexibility of helix B, and the more favorable energetic profile for ligand migration to the distal cavity. The net effect of these factors would be to facilitate the access of ligands, thus compensating the preference for the fully hexacoordination of AHb2, in contrast to the equilibrium between hexa- and pentacoordinated species in AHb1. On the other hand, binding of the exogenous ligand introduces distinct structural changes in the two proteins. A well-defined tunnel is formed in AHb1, which might be relevant to accomplish the proposed NO detoxification reaction. In contrast, no similar tunnel is found in AHb2, which can be ascribed to the reduced flexibility of helix E imposed by the larger number of salt bridges compared to AHb1. This feature would thus support the storage and transport functions proposed for AHb2. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Francesca Spyrakis
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Parma, Parma, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Lucas MF, Guallar V. Single vs. multiple ligand pathways in globins: a computational view. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1739-43. [PMID: 23388390 DOI: 10.1016/j.bbapap.2013.01.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 11/30/2022]
Abstract
Diatomic ligand migration in globins has been the subject of numerous studies. Still, a consensus picture for the ligand entrance is not clear, with a growing concern among experimental researchers that computational simulations always show multiple pathways for any globin. Modeling non-biased ligand entrance from conventional molecular dynamics techniques, however, has shown to be difficult (and expensive). Here we use our Monte Carlo methodology, capable of freely mapping ligand diffusion and the description of rare events, to two well-studied systems: myoglobin and the mini-hemoglobin from the sea worm Cerebratulus lacteus. Our results clearly show that the simulations are specific to the system providing a different trend in the entrance pathway, as expected from experiments. While Mb presents multiple entrance pathways, populating the well-known xenon cavities, in CerHb the ligand enters the protein only by one apolar channel. Most of the trajectories (64%) visiting myoglobin's active site though, are gated by the distal histidine. Such detailed information, accessible through the state of the art algorithms in PELE, is computationally inexpensive and available to all non-profit researchers. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- M Fátima Lucas
- Joint BSC-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain
| | | |
Collapse
|
12
|
Bovine Carbonyl Lactoperoxidase Structure at 2.0Å Resolution and Infrared Spectra as a Function of pH. Protein J 2012; 31:598-608. [DOI: 10.1007/s10930-012-9436-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Kim S, Lim M. Protein Conformation-Controlled Rebinding Barrier of NO and Its Binding Trajectories in Myoglobin and Hemoglobin at Room Temperature. J Phys Chem B 2012; 116:5819-30. [DOI: 10.1021/jp300176q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Seongheun Kim
- Department of Chemistry and Chemistry Institute for
Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Manho Lim
- Department of Chemistry and Chemistry Institute for
Functional Materials, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
14
|
Bettati S, Luque FJ, Viappiani C. Protein dynamics: experimental and computational approaches. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1814:913-915. [PMID: 21600317 DOI: 10.1016/j.bbapap.2011.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- Stefano Bettati
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, and Istituto Nazionale di Biostrutture e Biosistemi, Italy.
| | | | | |
Collapse
|
15
|
Nienhaus K, Nickel E, Lu C, Yeh SR, Nienhaus GU. Ligand migration in human indoleamine-2,3 dioxygenase. IUBMB Life 2011; 63:153-9. [PMID: 21445845 DOI: 10.1002/iub.431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Human indoleamine 2,3-dioxygenase (hIDO), a monomeric heme enzyme, catalyzes the oxidative degradation of L-tryptophan (L-Trp) and other indoleamine derivatives. Its activity follows typical Michaelis-Menten behavior only for L-Trp concentrations up to 50 μM; a further increase in the concentration of L-Trp causes a decrease in the activity. This substrate inhibition of hIDO is a result of the binding of a second L-Trp molecule in an inhibitory substrate binding site of the enzyme. The molecular details of the reaction and the inhibition are not yet known. In the following, we summarize the present knowledge about this heme enzyme.
Collapse
Affiliation(s)
- Karin Nienhaus
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe, Germany.
| | | | | | | | | |
Collapse
|