1
|
Hoque NJ, Weinert EE. Control of bacterial second messenger signaling and motility by heme-based direct oxygen-sensing proteins. Curr Opin Microbiol 2023; 76:102396. [PMID: 37864983 DOI: 10.1016/j.mib.2023.102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/23/2023]
Abstract
Bacteria sense and respond to their environment, allowing them to maximize their survival and growth under changing conditions, such as oxygen levels. Direct oxygen-sensing proteins allow bacteria to rapidly sense concentration changes and adapt by regulating signaling pathways and/or cellular machinery. Recent work has identified roles for direct oxygen-sensing proteins in controlling second messenger levels and motility machinery, as well as effects on biofilm formation, virulence, and motility. In this review, we discuss recent progress in understanding O2-dependent regulation of cyclic di-GMP signaling and motility and highlight the emerging importance in controlling bacterial physiology and behavior.
Collapse
Affiliation(s)
- Nushrat J Hoque
- Department of Chemistry, Penn State University, University Park, PA 16802, USA
| | - Emily E Weinert
- Department of Chemistry, Penn State University, University Park, PA 16802, USA; Department of Biochemistry & Molecular Biology, Penn State University, University Park, PA 16802, USA.
| |
Collapse
|
2
|
Yamawaki T, Mizuno M, Ishikawa H, Takemura K, Kitao A, Shiro Y, Mizutani Y. Regulatory Switching by Concerted Motions on the Microsecond Time Scale of the Oxygen Sensor Protein FixL. J Phys Chem B 2021; 125:6847-6856. [PMID: 34133147 DOI: 10.1021/acs.jpcb.1c01885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Signal transduction proteins perceive external stimuli in their sensor module and regulate the biological activities of the effector module, allowing cellular adaptation in response to environmental changes. FixL is a dimeric heme protein kinase that senses the oxygen level in plant root nodules to regulate the transcription of nitrogen fixation genes via the phosphorylation of its cognate transcriptional activator. Dissociation of oxygen from the heme induces conformational changes in the protein, converting it from the inactive form for phosphorylation to the active form. However, how FixL undergoes conformational change to regulate kinase activity upon oxygen dissociation remains poorly understood. Here we report time-resolved ultraviolet resonance Raman spectra showing conformational changes for FixL from Sinorhizobium meliloti. We observed spectral changes with a time constant of about 3 μs, which were oxygen-specific. Furthermore, we found that the conformational changes in the sensor and kinase domains are coupled, enabling allosteric control of kinase activity. Our results demonstrate that concerted structural changes on the microsecond time scale serve as the regulatory switch in FixL.
Collapse
Affiliation(s)
- Takeo Yamawaki
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Haruto Ishikawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kazuhiro Takemura
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Yoshitsugu Shiro
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
3
|
Pavlou A, Yoshimura H, Aono S, Pinakoulaki E. Protein Dynamics of the Sensor Protein HemAT as Probed by Time-Resolved Step-Scan FTIR Spectroscopy. Biophys J 2018; 114:584-591. [PMID: 29414704 DOI: 10.1016/j.bpj.2017.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 12/09/2022] Open
Abstract
The heme-based aerotactic transducer (HemAT) is an oxygen-sensor protein consisting of a sensor and a signaling domain in the N- and C-terminal regions, respectively. Time-resolved step-scan FTIR spectroscopy was employed to characterize protein intermediate states obtained by photolysis of the carbon monoxide complexes of sensor-domain, full-length HemAT, and the Y70F (B-helix), L92A (E-helix), T95A (E-helix), and Y133F (G-helix) HemAT mutants. We assign the spectral components to discrete substructures, which originate from a helical structure that is solvated (1638 cm-1) and a native helix that is protected from solvation by interhelix tertiary interactions (1654 cm-1). The full-length protein is characterized by an additional amide I absorbance at 1661 cm-1, which is attributed to disordered structure suggesting that further protein conformational changes occur in the presence of the signaling domain in the full-length protein. The kinetics monitored within the amide I absorbance of the polypeptide backbone in the sensor domain exhibit two distinct relaxation phases (t1 = 24 and t2 = 694 μs), whereas that of the full-length protein exhibits monophasic behavior for all substructures in a time range of t = 1253-2090 μs. These observations can be instrumental in monitoring helix motion and the role of specific mutants in controlling the dynamics in the communication pathway from the sensor to the signaling domain. The kinetics observed for the amide I relaxation for the full-length protein indicate that the discrete substructures within full-length HemAT, unlike those of the sensor domain, relax independently.
Collapse
Affiliation(s)
- Andrea Pavlou
- Department of Chemistry, University of Cyprus, Nicosia, Cyprus
| | - Hideaki Yoshimura
- Institute for Molecular Science, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Myodaiji, Okazaki, Japan
| | - Shigetoshi Aono
- Institute for Molecular Science, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Myodaiji, Okazaki, Japan
| | | |
Collapse
|
4
|
Mizutani Y. Time-Resolved Resonance Raman Spectroscopy and Application to Studies on Ultrafast Protein Dynamics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043
| |
Collapse
|
5
|
Pavlou A, Loullis A, Yoshimura H, Aono S, Pinakoulaki E. Probing the Role of the Heme Distal and Proximal Environment in Ligand Dynamics in the Signal Transducer Protein HemAT by Time-Resolved Step-Scan FTIR and Resonance Raman Spectroscopy. Biochemistry 2017; 56:5309-5317. [PMID: 28876054 DOI: 10.1021/acs.biochem.7b00558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
HemAT is a heme-containing oxygen sensor protein that controls aerotaxis. Time-resolved step-scan FTIR studies were performed on the isolated sensor domain and full-length HemAT proteins as well as on the Y70F (B-helix), L92A (E-helix), T95A (E-helix), and Y133F (G-helix) mutants to elucidate the effect of the site-specific mutations on the ligand dynamics subsequent to CO photolysis. The mutations aimed to perturb H-bonding and electrostatic interactions near the heme Fe-bound gaseous ligand (CO) and the heme proximal environment. Rebinding of CO to the heme Fe is biphasic in the sensor domain and full-length HemAT as well as in the mutants, with the exception of the Y133F mutant protein. The monophasic rebinding of CO in Y133F suggests that in the absence of the H-bond between Y133 and the heme proximal H123 residue the ligand rebinding process is significantly affected. The role of the proximal environment is also probed by resonance Raman photodissociation experiments, in which the Fe-His mode of the photoproduct of sensor domain HemAT-CO is detected at a frequency higher than that of the deoxy form in the difference resonance Raman spectra. The role of the conformational changes of Y133 (G-helix) and the role of the distal L92 and T95 residues (E-helix) in regulating ligand dynamics in the heme pocket are discussed.
Collapse
Affiliation(s)
- Andrea Pavlou
- Department of Chemistry, University of Cyprus , P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Andreas Loullis
- Department of Chemistry, University of Cyprus , P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Hideaki Yoshimura
- Institute for Molecular Science, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences , 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Shigetoshi Aono
- Institute for Molecular Science, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences , 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Eftychia Pinakoulaki
- Department of Chemistry, University of Cyprus , P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
6
|
Abstract
The discovery of the globin-coupled sensor (GCS) family of haem proteins has provided new insights into signalling proteins and pathways by which organisms sense and respond to changing oxygen levels. GCS proteins consist of a sensor globin domain linked to a variety of output domains, suggesting roles in controlling numerous cellular pathways, and behaviours in response to changing oxygen concentration. Members of this family of proteins have been identified in the genomes of numerous organisms and characterization of GCS with output domains, including methyl accepting chemotaxis proteins, kinases, and diguanylate cyclases, have yielded an understanding of the mechanism by which oxygen controls activity of GCS protein output domains, as well as downstream proteins and pathways regulated by GCS signalling. Future studies will expand our understanding of these proteins both in vitro and in vivo, likely demonstrating broad roles for GCS in controlling oxygen-dependent microbial physiology and phenotypes.
Collapse
|
7
|
Otomo A, Ishikawa H, Mizuno M, Kimura T, Kubo M, Shiro Y, Aono S, Mizutani Y. A Study of the Dynamics of the Heme Pocket and C-helix in CooA upon CO Dissociation Using Time-Resolved Visible and UV Resonance Raman Spectroscopy. J Phys Chem B 2016; 120:7836-43. [PMID: 27457181 DOI: 10.1021/acs.jpcb.6b05634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CooA is a CO-sensing transcriptional activator from the photosynthetic bacterium Rhodospirillum rubrum that binds CO at the heme iron. The heme iron in ferrous CooA has two axial ligands: His77 and Pro2. CO displaces Pro2 and induces a conformational change in CooA. The dissociation of CO and/or ligation of the Pro2 residue are believed to trigger structural changes in the protein. Visible time-resolved resonance Raman spectra obtained in this study indicated that the ν(Fe-His) mode, arising from the proximal His77-iron stretch, does not shift until 50 μs after the photodissociation of CO. Ligation of the Pro2 residue to the heme iron was observed around 50 μs after the photodissociation of CO, suggesting that the ν(Fe-His) band exhibits no shift until the ligation of Pro2. UV resonance Raman spectra suggested structural changes in the vicinity of Trp110 in the C-helix upon CO binding, but no or very small spectral changes in the time-resolved UV resonance Raman spectra were observed from 100 ns to 100 μs after the photodissociation of CO. These results strongly suggest that the conformational change of CooA is induced by the ligation of Pro2 to the heme iron.
Collapse
Affiliation(s)
- Akihiro Otomo
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Haruto Ishikawa
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tetsunari Kimura
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Minoru Kubo
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Yoshitsugu Shiro
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Shigetoshi Aono
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences , 5-1 Higashiyama, Myodaiji, Okazaki 444-8786, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
8
|
An O2-sensing stressosome from a Gram-negative bacterium. Nat Commun 2016; 7:12381. [PMID: 27488264 PMCID: PMC4976288 DOI: 10.1038/ncomms12381] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/28/2016] [Indexed: 12/16/2022] Open
Abstract
Bacteria have evolved numerous pathways to sense and respond to changing environmental conditions, including, within Gram-positive bacteria, the stressosome complex that regulates transcription of general stress response genes. However, the signalling molecules recognized by Gram-positive stressosomes have yet to be identified, hindering our understanding of the signal transduction mechanism within the complex. Furthermore, an analogous pathway has yet to be described in Gram-negative bacteria. Here we characterize a putative stressosome from the Gram-negative bacterium Vibrio brasiliensis. The sensor protein RsbR binds haem and exhibits ligand-dependent control of the stressosome complex activity. Oxygen binding to the haem decreases activity, while ferrous RsbR results in increased activity, suggesting that the V. brasiliensis stressosome may be activated when the bacterium enters anaerobic growth conditions. The findings provide a model system for investigating ligand-dependent signalling within stressosome complexes, as well as insights into potential pathways controlled by oxygen-dependent signalling within Vibrio species.
Collapse
|
9
|
Abstract
If life without heme-Fe were at all possible, it would definitely be different. Indeed this complex and versatile iron-porphyrin macrocycle upon binding to different “globins” yields hemeproteins crucial to sustain a variety of vital functions, generally classified, for convenience, in a limited number of functional families. Over-and-above the array of functions briefly outlined below, the spectacular progress in molecular genetics seen over the last 30 years led to the discovery of many hitherto unknown novel hemeproteins in prokaryotes and eukaryotes. Here, we highlight a few basic aspects of the chemistry of the hemeprotein universe, in particular those that are relevant to the control of heme-Fe reactivity and specialization, as sculpted by a variety of interactions with the protein moiety.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, I-00146 Roma, Italy
| | - Maurizio Brunori
- Dipartimento di Scienze Biochimiche “Alessandro Rossi Fanelli” and Istituto Pasteur — Fondazione Cenci, Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| |
Collapse
|
10
|
Identification of essential histidine residues involved in heme binding and Hemozoin formation in heme detoxification protein from Plasmodium falciparum. Sci Rep 2014; 4:6137. [PMID: 25138161 PMCID: PMC4138515 DOI: 10.1038/srep06137] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/31/2014] [Indexed: 12/22/2022] Open
Abstract
Malaria parasites digest hemoglobin within a food vacuole to supply amino acids, releasing the toxic product heme. During the detoxification, toxic free heme is converted into an insoluble crystalline form called hemozoin (Hz). Heme detoxification protein (HDP) in Plasmodium falciparum is one of the most potent of the hemozoin-producing enzymes. However, the reaction mechanisms of HDP are poorly understood. We identified the active site residues in HDP using a combination of Hz formation assay and spectroscopic characterization of mutant proteins. Replacement of the critical histidine residues His122, His172, His175, and His197 resulted in a reduction in the Hz formation activity to approximately 50% of the wild-type protein. Spectroscopic characterization of histidine-substituted mutants revealed that His122 binds heme and that His172 and His175 form a part of another heme-binding site. Our results show that the histidine residues could be present in the individual active sites and could be ligated to each heme. The interaction between heme and the histidine residues would serve as a molecular tether, allowing the proper positioning of two hemes to enable heme dimer formation. The heme dimer would act as a seed for the crystal growth of Hz in P. falciparum.
Collapse
|
11
|
Abstract
The haem-based sensors are chimeric multi-domain proteins responsible for the cellular adaptive responses to environmental changes. The signal transduction is mediated by the sensing capability of the haem-binding domain, which transmits a usable signal to the cognate transmitter domain, responsible for providing the adequate answer. Four major families of haem-based sensors can be recognized, depending on the nature of the haem-binding domain: (i) the haem-binding PAS domain, (ii) the CO-sensitive carbon monoxide oxidation activator, (iii) the haem NO-binding domain, and (iv) the globin-coupled sensors. The functional classification of the haem-binding sensors is based on the activity of the transmitter domain and, traditionally, comprises: (i) sensors with aerotactic function; (ii) sensors with gene-regulating function; and (iii) sensors with unknown function. We have implemented this classification with newly identified proteins, that is, the Streptomyces avermitilis and Frankia sp. that present a C-terminal-truncated globin fused to an N-terminal cofactor-free monooxygenase, the structural-related class of non-haem globins in Bacillus subtilis, Moorella thermoacetica, and Bacillus anthracis, and a haemerythrin-coupled diguanylate cyclase in Vibrio cholerae. This review summarizes the structures, the functions, and the structure-function relationships known to date on this broad protein family. We also propose unresolved questions and new possible research approaches.
Collapse
|
12
|
Yano S, Ishikawa H, Mizuno M, Nakamura H, Shiro Y, Mizutani Y. Ultraviolet Resonance Raman Observations of the Structural Dynamics of Rhizobial Oxygen Sensor FixL on Ligand Recognition. J Phys Chem B 2013; 117:15786-91. [DOI: 10.1021/jp406709e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Shinji Yano
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Haruto Ishikawa
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hiro Nakamura
- RIKEN SPring-8 Center, 1-1-1
Kouto, Sayo, Hyogo 679-5148, Japan
| | | | - Yasuhisa Mizutani
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|