1
|
Niu X, Menhart N. Structural Perturbations of Exon-Skipping Edits within the Dystrophin D20:24 Region. Biochemistry 2021; 60:765-779. [PMID: 33656846 DOI: 10.1021/acs.biochem.0c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exon skipping is a disease-modifying therapy in which oligonucleotide analogues mask specific exons, eliminating them from the mature mRNA, and also the cognate protein. That is one possible therapeutic aim, but it can also be used to restore the reading frame for diseases caused by frameshift mutations, which is the case for Duchenne muscular dystrophy (DMD). DMD most commonly arises as a result of large exonic deletions that create a frameshift and abolish protein expression. Loss of dystrophin protein leads to the pathology of the disease, which is severe, causing death generally in the second or third decade of life. Here, the primary aim of exon skipping is restoration of protein expression by reading frame correction. However, the therapeutically expressed protein is missing both the region of the underlying genetic defect and the therapeutically skipped exon. How removing some region from the middle of a protein affects its structure and function is unclear. Many different underlying deletions are known, and exon skipping can be applied in many ways, in some cases in different ways to the same defect. These vary in how severely perturbative they are, with possible clinical consequences. In this study, we examine a systematic, comprehensive panel of exon edits in a region of dystrophin and identify for the first time exon edits that are minimally perturbed and appear to keep the structural stability similar to that of wild-type protein. We also identify factors that appear to be correlated with how perturbative an edit is.
Collapse
Affiliation(s)
- Xin Niu
- Department of Biology, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Nick Menhart
- Department of Biology, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| |
Collapse
|
2
|
Aupy P, Zarrouki F, Sandro Q, Gastaldi C, Buclez PO, Mamchaoui K, Garcia L, Vaillend C, Goyenvalle A. Long-Term Efficacy of AAV9-U7snRNA-Mediated Exon 51 Skipping in mdx52 Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:1037-1047. [PMID: 32462052 PMCID: PMC7240049 DOI: 10.1016/j.omtm.2020.04.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 01/16/2023]
Abstract
Gene therapy and antisense approaches hold promise for the treatment of Duchenne muscular dystrophy (DMD). The advantages of both therapeutic strategies can be combined by vectorizing antisense sequences into an adeno-associated virus (AAV) vector. We previously reported the efficacy of AAV-U7 small nuclear RNA (U7snRNA)-mediated exon skipping in the mdx mouse, the dys−/utr− mouse, and the golden retriever muscular dystrophy (GRMD) dog model. In this study, we examined the therapeutic potential of an AAV-U7snRNA targeting the human DMD exon 51, which could be applicable to 13% of DMD patients. A single injection of AAV9-U7 exon 51 (U7ex51) induces widespread and sustained levels of exon 51 skipping, leading to significant restoration of dystrophin and improvement of the dystrophic phenotype in the mdx52 mouse. However, levels of dystrophin re-expression are lower than the skipping levels, in contrast with previously reported results in the mdx mouse, suggesting that efficacy of exon skipping may vary depending on the targeted exon. Additionally, while low levels of exon skipping were measured in the brain, the dystrophin protein could not be detected, in line with a lack of improvement of their abnormal behavioral fear response. These results thus confirm the high therapeutic potential of the AAV-mediated exon-skipping approach, yet the apparent discrepancies between exon skipping and protein restoration levels suggest some limitations of this experimental model.
Collapse
Affiliation(s)
- Philippine Aupy
- Université Paris-Saclay, UVSQ, INSERM, END-ICAP, 78000 Versailles, France
| | - Faouzi Zarrouki
- Université Paris-Saclay, UVSQ, INSERM, END-ICAP, 78000 Versailles, France.,Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, 91190 Orsay, France
| | - Quentin Sandro
- Université Paris-Saclay, UVSQ, INSERM, END-ICAP, 78000 Versailles, France
| | - Cécile Gastaldi
- LIA BAHN, Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | | | - Kamel Mamchaoui
- Sorbonne Université, INSERM, Institut de Myologie, U974, Centre de Recherche en Myologie, 75013 Paris, France
| | - Luis Garcia
- Université Paris-Saclay, UVSQ, INSERM, END-ICAP, 78000 Versailles, France.,LIA BAHN, Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Cyrille Vaillend
- Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, 91190 Orsay, France
| | - Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, INSERM, END-ICAP, 78000 Versailles, France.,LIA BAHN, Centre Scientifique de Monaco, 98000 Monaco, Monaco
| |
Collapse
|
3
|
Ma KM, Thomas ES, Wereszczynski J, Menhart N. Empirical and Computational Comparison of Alternative Therapeutic Exon Skip Repairs for Duchenne Muscular Dystrophy. Biochemistry 2019; 58:2061-2076. [PMID: 30896926 DOI: 10.1021/acs.biochem.9b00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a common and devastating genetic disease primarily caused by exon deletions that create a genetic frameshift in dystrophin. Exon skipping therapy seeks to correct this by masking an exon during the mRNA maturation process, restoring dystrophin expression, but creating an edited protein missing both the original defect and the therapeutically skipped region. Crucially, it is possible to correct many defects in alternative ways, by skipping an exon either before or after the patient's defect. This results in alternatively edited, hybrid proteins that might have different properties and therapeutic consequences. We examined three such dystrophin exon-skipped edits, Δe45-53, Δe46-54, and Δe47-55, comprising two pairs of alternative repairs of Δe46-53 and Δe47-54 DMD defects. We found that in both cases, Δe46-54 was the more stable repair as determined by a variety of thermodynamic and biochemical measurements. We also examined the origin of these differences with molecular dynamics simulations, which showed that these stability differences were the result of different types of structural perturbations. For example, in one edit there was partial unfolding at the edit site that caused domain-localized perturbations while in another there was unfolding at the protein domain junctions distal to the edit site that increased molecular flexibility. These results demonstrate that alternative exon skip repairs of the same underlying defect can have very different consequences at the level of protein structure and stability and furthermore that these can arise by different mechanisms, either locally or by more subtle long-range perturbations.
Collapse
|
4
|
Ameziane-Le Hir S, Paboeuf G, Tascon C, Hubert JF, Le Rumeur E, Vié V, Raguénès-Nicol C. Dystrophin Hot-Spot Mutants Leading to Becker Muscular Dystrophy Insert More Deeply into Membrane Models than the Native Protein. Biochemistry 2016; 55:4018-26. [PMID: 27367833 DOI: 10.1021/acs.biochem.6b00290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dystrophin (DYS) is a membrane skeleton protein whose mutations lead to lethal Duchenne muscular dystrophy or to the milder Becker muscular dystrophy (BMD). One third of BMD "in-frame" exon deletions are located in the region that codes for spectrin-like repeats R16 to R21. We focused on four prevalent mutated proteins deleted in this area (called RΔ45-47, RΔ45-48, RΔ45-49, and RΔ45-51 according to the deleted exon numbers), analyzing protein/membrane interactions. Two of the mutants, RΔ45-48 and RΔ45-51, led to mild pathologies and displayed a similar triple coiled-coil structure as the full-length DYS R16-21, whereas the two others, RΔ45-47 and RΔ45-49, induced more severe pathologies and showed "fractional" structures unrelated to the normal one. To explore lipid packing, small unilamellar liposomes (SUVs) and planar monolayers were used at various initial surface pressures. The dissociation constants determined by microscale thermophoresis (MST) were much higher for the full-length DYS R161-21 than for the mutants; thus the wild type protein has weaker SUV binding. Comparing surface pressures after protein adsorption and analysis of atomic force microscopy images of mixed protein/lipid monolayers revealed that the mutants insert more into the lipid monolayer than the wild type does. In fact, in both models every deletion mutant showed more interactions with membranes than the full-length protein did. This means that mutations in the R16-21 part of dystrophin disturb the protein's molecular behavior as it relates to membranes, regardless of whether the accompanying pathology is mild or severe.
Collapse
Affiliation(s)
- Sarah Ameziane-Le Hir
- Université de Rennes 1 , 35042 Rennes, France.,UMR CNRS 6251, Institut de Physique de Rennes, 35042 Rennes, France.,UMR CNRS 6290, Équipe SIM, 35043 Rennes, France
| | - Gilles Paboeuf
- Université de Rennes 1 , 35042 Rennes, France.,UMR CNRS 6251, Institut de Physique de Rennes, 35042 Rennes, France
| | - Christophe Tascon
- Université de Rennes 1 , 35042 Rennes, France.,UMR CNRS 6290, Équipe SIM, 35043 Rennes, France
| | - Jean-François Hubert
- Université de Rennes 1 , 35042 Rennes, France.,UMR CNRS 6290, Équipe SIM, 35043 Rennes, France
| | - Elisabeth Le Rumeur
- Université de Rennes 1 , 35042 Rennes, France.,UMR CNRS 6290, Équipe SIM, 35043 Rennes, France
| | - Véronique Vié
- Université de Rennes 1 , 35042 Rennes, France.,UMR CNRS 6251, Institut de Physique de Rennes, 35042 Rennes, France
| | - Céline Raguénès-Nicol
- Université de Rennes 1 , 35042 Rennes, France.,UMR CNRS 6290, Équipe SIM, 35043 Rennes, France
| |
Collapse
|
5
|
Liang Y, Chen S, Zhu J, Zhou X, Yang C, Yao L, Zhang C. Dystrophin hydrophobic regions in the pathogenesis of Duchenne and Becker muscular dystrophies. Bosn J Basic Med Sci 2015; 15:42-9. [PMID: 26042512 DOI: 10.17305/bjbms.2015.300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/16/2023] Open
Abstract
The aim of our study was to determine the role of dystrophin hydrophobic regions in the pathogenesis of Duchenne (DMD) and Becker (BMD) muscular dystrophies, by the Kyte-Doolittle scale mean hydrophobicity profile and 3D molecular models. A total of 1038 cases diagnosed with DMD or BMD with the in-frame mutation were collected in our hospital and the Leiden DMD information database in the period 2002-2013. Correlation between clinical types and genotypes were determined on the basis of these two sources. In addition, the Kyte-Doolittle scale mean hydrophobicity of dystrophin was analyzed using BioEdit software and the models of the hydrophobic domains of dystrophin were constructed. The presence of four hydrophobic regions is confirmed. They include the calponin homology CH2 domain on the actin-binding domain (ABD), spectrin-type repeat 16, hinge III and the EF Hand domain. The severe symptoms of DMD usually develop as a result of the mutational disruption in the hydrophobic regions I, II and IV of dystrophin - those that bind associated proteins of the dystrophin-glycoprotein complex (DGC). On the other hand, when the hydrophobic region III is deleted, the connection of the ordered repeat domains of the central rod domain remains intact, resulting in the less severe clinical presentation. We conclude that mutational changes in the structure of hydrophobic regions of dystrophin play an important role in the pathogenesis of DMD.
Collapse
Affiliation(s)
- Yingyin Liang
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province.
| | | | | | | | | | | | | |
Collapse
|
6
|
McCourt JL, Rhett KK, Jaeger MA, Belanto JJ, Talsness DM, Ervasti JM. In vitro stability of therapeutically relevant, internally truncated dystrophins. Skelet Muscle 2015; 5:13. [PMID: 25954502 PMCID: PMC4424174 DOI: 10.1186/s13395-015-0040-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/14/2015] [Indexed: 12/21/2022] Open
Abstract
Background The X-linked recessive disease Duchenne muscular dystrophy (DMD) is caused by mutations in the gene encoding the protein dystrophin. Despite its large size, dystrophin is a highly stable protein, demonstrating cooperative unfolding during thermal denaturation as monitored by circular dichroism spectroscopy. In contrast, internal sequence deletions have been associated with a loss of the cooperative unfolding and cause in vitro protein aggregation. Several emerging therapy options for DMD utilize internally deleted micro-dystrophins and multi-exon-skipped dystrophins that produce partially functional proteins, but the stability of such internally truncated proteins has not been investigated. Methods In this study, we analyzed the in vitro stability of human dystrophin constructs skipped around exon 45 or exon 51, several dystrophin gene therapy constructs, as well as human full-length and micro-utrophin. Constructs were expressed in insect cells using the baculovirus system, purified by affinity chromatography, and analyzed by high-speed sedimentation, circular dichroism spectroscopy, and differential scanning fluorimetry. Results Our results reveal that not all gene therapy constructs display stabilities consistent with full-length human dystrophin. However, all dystrophins skipped in-frame around exon 45 or exon 51 show stability profiles congruent with intact human dystrophin. Similar to previous studies of mouse proteins, full-length human utrophin also displays stability similar to human dystrophin and does not appear to be affected by a large internal deletion. Conclusions Our results suggest that the in vitro stability of human dystrophin is less sensitive to smaller deletions at natural exon boundaries than larger, more complex deletions present in some gene therapy constructs.
Collapse
Affiliation(s)
- Jackie L McCourt
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455 USA
| | - Katrina K Rhett
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455 USA
| | - Michele A Jaeger
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455 USA
| | - Joseph J Belanto
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455 USA
| | - Dana M Talsness
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455 USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455 USA
| |
Collapse
|
7
|
Singh SM, Bandi S, Shah DD, Armstrong G, Mallela KMG. Missense mutation Lys18Asn in dystrophin that triggers X-linked dilated cardiomyopathy decreases protein stability, increases protein unfolding, and perturbs protein structure, but does not affect protein function. PLoS One 2014; 9:e110439. [PMID: 25340340 PMCID: PMC4207752 DOI: 10.1371/journal.pone.0110439] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/15/2014] [Indexed: 11/19/2022] Open
Abstract
Genetic mutations in a vital muscle protein dystrophin trigger X-linked dilated cardiomyopathy (XLDCM). However, disease mechanisms at the fundamental protein level are not understood. Such molecular knowledge is essential for developing therapies for XLDCM. Our main objective is to understand the effect of disease-causing mutations on the structure and function of dystrophin. This study is on a missense mutation K18N. The K18N mutation occurs in the N-terminal actin binding domain (N-ABD). We created and expressed the wild-type (WT) N-ABD and its K18N mutant, and purified to homogeneity. Reversible folding experiments demonstrated that both mutant and WT did not aggregate upon refolding. Mutation did not affect the protein's overall secondary structure, as indicated by no changes in circular dichroism of the protein. However, the mutant is thermodynamically less stable than the WT (denaturant melts), and unfolds faster than the WT (stopped-flow kinetics). Despite having global secondary structure similar to that of the WT, mutant showed significant local structural changes at many amino acids when compared with the WT (heteronuclear NMR experiments). These structural changes indicate that the effect of mutation is propagated over long distances in the protein structure. Contrary to these structural and stability changes, the mutant had no significant effect on the actin-binding function as evident from co-sedimentation and depolymerization assays. These results summarize that the K18N mutation decreases thermodynamic stability, accelerates unfolding, perturbs protein structure, but does not affect the function. Therefore, K18N is a stability defect rather than a functional defect. Decrease in stability and increase in unfolding decrease the net population of dystrophin molecules available for function, which might trigger XLDCM. Consistently, XLDCM patients have decreased levels of dystrophin in cardiac muscle.
Collapse
Affiliation(s)
- Surinder M. Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Swati Bandi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Dinen D. Shah
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Geoffrey Armstrong
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Krishna M. G. Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
8
|
Cholesterol favors the anchorage of human dystrophin repeats 16 to 21 in membrane at physiological surface pressure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1266-73. [PMID: 24440661 DOI: 10.1016/j.bbamem.2014.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 12/28/2022]
Abstract
Dystrophin (DYS) is a filamentous protein that connects the cytoskeleton and the extracellular matrix via the sarcolemma, conferring resistance to muscular cells. In this study, interactions between the DYS R16-21 fragment and lipids were examined using Langmuir films made of anionic and zwitterionic lipids. The film fluidity was modified by the addition of 15% cholesterol. Whatever the lipid mixture examined, at low surface pressure (20 mN/m) few differences appeared on the protein insertion and the presence of cholesterol did not affect the protein/lipid interactions. At high surface pressure (30 mN/m), the protein insertion was very low and occurred only in zwitterionic films in the liquid-expanded phase. In anionic films, electrostatic interactions prevented the protein insertion outright, and caused accumulation of the protein on the hydrophilic part of the monolayer. Addition of cholesterol to both lipid mixtures drastically modified the protein-lipid interactions: the DYS R16-21 insertion increased and its organization in the monolayer appeared to be more homogeneous. The presence of accessible cholesterol recognition amino-acid consensus sequences in this fragment may enhance the protein/membrane binding at physiological lateral pressure. These results suggest that the anchorage of dystrophin to the membrane in vivo may be stabilized by cholesterol-rich nano-domains in the inner leaflet of sarcolemma.
Collapse
|
9
|
Microdystrophin ameliorates muscular dystrophy in the canine model of duchenne muscular dystrophy. Mol Ther 2013; 21:750-7. [PMID: 23319056 DOI: 10.1038/mt.2012.283] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Dystrophin deficiency results in lethal Duchenne muscular dystrophy (DMD). Substituting missing dystrophin with abbreviated microdystrophin has dramatically alleviated disease in mouse DMD models. Unfortunately, translation of microdystrophin therapy has been unsuccessful in dystrophic dogs, the only large mammalian model. Approximately 70% of the dystrophin-coding sequence is removed in microdystrophin. Intriguingly, loss of ≥50% dystrophin frequently results in severe disease in patients. To test whether the small gene size constitutes a fundamental design error for large mammalian muscle, we performed a comprehensive study using 22 dogs (8 normal and 14 dystrophic). We delivered the ΔR2-15/ΔR18-19/ΔR20-23/ΔC microdystrophin gene to eight extensor carpi ulnaris (ECU) muscles in six dystrophic dogs using Y713F tyrosine mutant adeno-associated virus (AAV)-9 (2.6 × 10(13) viral genome (vg) particles/muscle). Robust expression was observed 2 months later despite T-cell infiltration. Major components of the dystrophin-associated glycoprotein complex (DGC) were restored by microdystrophin. Treated muscle showed less inflammation, fibrosis, and calcification. Importantly, therapy significantly preserved muscle force under the stress of repeated cycles of eccentric contraction. Our results have established the proof-of-concept for microdystrophin therapy in dystrophic muscles of large mammals and set the stage for clinical trial in human patients.
Collapse
|