1
|
Verma J, Sourirajan A, Dev K. Bacterial diversity in 110 thermal hot springs of Indian Himalayan Region (IHR). 3 Biotech 2022; 12:238. [PMID: 36003895 PMCID: PMC9393120 DOI: 10.1007/s13205-022-03270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
Thermal hot springs are present throughout the world and constitute a unique habitat for microbial diversity. The current investigation is conducted to study the bacterial diversity of thermophilic microorganisms in thermal hot springs of the Indian Himalayan Region (IHR). As of today, 110 geothermal hot springs have been explored for microbial diversity. In this study, we observed that the growth of thermophilic bacteria isolated from thermal hot springs of IHR ranges between 40 and 100 °C, and pH of 3.5-8 have been reported in the literature. The major bacterial species reported from the thermal hot springs of IHR are Bacillus spp., Geobacillus spp., Paenibacillus spp., Pseudomonas spp., Anoxybacillus, Paenibacillus, Brevibacillus, Aneurinibacillus, Thermus aquaticus, Aquimonas, Flavobacterium, etc. Furthermore, bacterial isolates from thermal hot springs of IHR have been reported to produce various enzymes and metabolites such as amylase, β-galactosidase, cellulase, nitrate reductase, acetoin, caffeine degradation enzymes, lipase, urease, and laccase. Metagenomic study and the entire genomic shotgun project have established the impact of physicochemical parameters (temperature and pH) on developing the microbiome. We have discussed the discoveries of microbiological data on the hot springs of IHR until the end of year 2021. As a whole, the microbiome adapts themselves as successful inhabitants to extreme environmental conditions and also serves as a diverse resource for potential applications in health, food, and environment.
Collapse
Affiliation(s)
- Jagdish Verma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173212 Himachal Pradesh India
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173212 Himachal Pradesh India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173212 Himachal Pradesh India
| |
Collapse
|
2
|
Neira JL, Cámara-Artigas A, Hernández-Cifre JG, Ortore MG. The Histidine Phosphocarrier Kinase/Phosphorylase from Bacillus Subtilis Is an Oligomer in Solution with a High Thermal Stability. Int J Mol Sci 2021; 22:3231. [PMID: 33810099 PMCID: PMC8004850 DOI: 10.3390/ijms22063231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 01/25/2023] Open
Abstract
The histidine phosphocarrier protein (HPr) kinase/phosphorylase (HPrK/P) modulates the phosphorylation state of the HPr protein, and it is involved in the use of carbon sources by Gram-positive bacteria. Its X-ray structure, as concluded from crystals of proteins from several species, is a hexamer; however, there are no studies about its conformational stability, and how its structure is modified by the pH. We have embarked on the conformational characterization of HPrK/P of Bacillus subtilis (bsHPrK/P) in solution by using several spectroscopic (namely, fluorescence and circular dichroism (CD)) and biophysical techniques (namely, small-angle X-ray-scattering (SAXS) and dynamic light-scattering (DLS)). bsHPrK/P was mainly a hexamer in solution at pH 7.0, in the presence of phosphate. The protein had a high conformational stability, with an apparent thermal denaturation midpoint of ~70 °C, at pH 7.0, as monitored by fluorescence and CD. The protein was very pH-sensitive, precipitated between pH 3.5 and 6.5; below pH 3.5, it had a molten-globule-like conformation; and it acquired a native-like structure in a narrow pH range (between pH 7.0 and 8.0). Guanidinium hydrochloride (GdmCl) denaturation occurred through an oligomeric intermediate. On the other hand, urea denaturation occurred as a single transition, in the range of concentrations between 1.8 and 18 µM, as detected by far-UV CD and fluorescence.
Collapse
Affiliation(s)
- José L. Neira
- IDIBE, Universidad Miguel Hernández, 03202 Alicante, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Ana Cámara-Artigas
- Departamento de Química y Física, Research Center CIAIMBITAL, Universidad de Almería- ceiA3, 04120 Almería, Spain;
| | - José Ginés Hernández-Cifre
- Departamento de Química Física, Facultad de Química, Campus de Espinardo, Universidad de Murcia, 30100 Murcia, Spain;
| | - María Grazia Ortore
- Dipartimento DiSVA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| |
Collapse
|
3
|
Chen S, Wu Y, Su L, Wu J. Contribution of disulfide bond to the stability of Thermobifida fusca cutinase. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2018.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Wakai S. Biochemical and thermodynamic analyses of energy conversion in extremophiles. Biosci Biotechnol Biochem 2018; 83:49-64. [PMID: 30381012 DOI: 10.1080/09168451.2018.1538769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A variety of extreme environments, characterized by extreme values of various physicochemical parameters (temperature, pressure, salinity, pH, and so on), are found on Earth. Organisms that favorably live in such extreme environments are called extremophiles. All living organisms, including extremophiles, must acquire energy to maintain cellular homeostasis, including extremophiles. For energy conversion in harsh environments, thermodynamically useful reactions and stable biomolecules are essential. In this review, I briefly summarize recent studies of extreme environments and extremophiles living in these environments and describe energy conversion processes in various extremophiles based on my previous research. Furthermore, I discuss the correlation between the biological system of electrotrophy, a third biological energy acquisition system, and the mechanism underlying microbiologically influenced corrosion. These insights into energy conversion in extremophiles may improve our understanding of the "limits of life". Abbreviations: PPi: pyrophosphate; PPase: pyrophosphatase; ITC: isothermal titration microcalorimetry; SVNTase: Shewanella violacea 5'-nucleotidase; SANTase: Shewanella amazonensis 5'-nucleotidase.
Collapse
Affiliation(s)
- Satoshi Wakai
- a Graduate School of Science, Technology and Innovation , Kobe University , Kobe , Japan
| |
Collapse
|
5
|
Brininger C, Spradlin S, Cobani L, Evilia C. The more adaptive to change, the more likely you are to survive: Protein adaptation in extremophiles. Semin Cell Dev Biol 2018; 84:158-169. [PMID: 29288800 DOI: 10.1016/j.semcdb.2017.12.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/25/2017] [Accepted: 12/25/2017] [Indexed: 12/22/2022]
Abstract
Discovering how organisms and their proteins adapt to extreme conditions is a complicated process. Every condition has its own set of adaptations that make it uniquely stable in its environment. The purpose of our review is to discuss what is known in the extremophilic community about protein adaptations. To simplify our mission, we broke the extremophiles into three broad categories: thermophiles, halophiles and psychrophiles. While there are crossover organisms- organisms that exist in two or more extremes, like heat plus acid or cold plus pressure, most of them have a primary adaptation that is within one of these categories which tends to be the most easily identifiable one. While the generally known adaptations are still accepted, like thermophilic proteins have increased ionic interactions and a hardier hydrophobic core, halophilic proteins have a large increase in acidic amino acids and amino acid/peptide insertions and psychrophiles have a much more open structure and reduced ionic interactions, some new information has come to light. Thermophilic stability can be improved by increased subunit-subunit or subunit-cofactor interactions. Halophilic proteins have reversible folding when in the presence of salt. Psychrophilic proteins have an increase in cavities that not only decrease the formation of ice, but also increase flexibility under low temperature conditions. In a proof of concept experiment, we applied what is currently known about adaptations to a well characterized protein, malate dehydrogenase (MDH). While this protein has been profiled in the literature, we are applying our adaptation predictions to its sequence and structure to see if the described adaptations apply. Our analysis demonstrates that thermophilic and halophilic adaptations fit the corresponding MDHs very well. However, because the number of psychrophiles MDH sequences and structures is low, our analysis on psychrophiles is inconclusive and needs more information. By discussing known extremophilic adaptations and applying them to a random, conserved protein, we have found that general adaptations are conserved and can be predicted in proposed extremophilic proteins. The present field of extremophile adaptations is discovering more and more ways organisms and their proteins have adapted. The more that is learned about protein adaptation, the closer we get to custom proteins, designed to fit any extreme and solve some of the world's most pressing environmental problems.
Collapse
Affiliation(s)
- C Brininger
- Department of Chemistry, Idaho State University, Pocatello, ID 83209, USA
| | - S Spradlin
- Department of Chemistry, Idaho State University, Pocatello, ID 83209, USA
| | - L Cobani
- Department of Chemistry, Idaho State University, Pocatello, ID 83209, USA
| | - C Evilia
- Department of Chemistry, Idaho State University, Pocatello, ID 83209, USA.
| |
Collapse
|
6
|
Takahashi M, Takahashi E, Joudeh LI, Marini M, Das G, Elshenawy MM, Akal A, Sakashita K, Alam I, Tehseen M, Sobhy MA, Stingl U, Merzaban JS, Di Fabrizio E, Hamdan SM. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea. FASEB J 2018; 32:3346-3360. [PMID: 29401622 PMCID: PMC6051491 DOI: 10.1096/fj.201700862rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein’s surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of Thermococcus kodakarensis DNA polymerase.—Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.
Collapse
Affiliation(s)
- Masateru Takahashi
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Etsuko Takahashi
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Luay I Joudeh
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Monica Marini
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Gobind Das
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Mohamed M Elshenawy
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Anastassja Akal
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia.,KAUST Catalysis Center, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Kosuke Sakashita
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia; and
| | - Muhammad Tehseen
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Mohamed A Sobhy
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Ulrich Stingl
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia.,Fort Lauderdale Research and Education Center, University of Florida, Davie, Florida, USA
| | - Jasmeen S Merzaban
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Enzo Di Fabrizio
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Samir M Hamdan
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Chakravorty D, Khan MF, Patra S. Multifactorial level of extremostability of proteins: can they be exploited for protein engineering? Extremophiles 2017; 21:419-444. [PMID: 28283770 DOI: 10.1007/s00792-016-0908-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022]
Abstract
Research on extremostable proteins has seen immense growth in the past decade owing to their industrial importance. Basic research of attributes related to extreme-stability requires further exploration. Modern mechanistic approaches to engineer such proteins in vitro will have more impact in industrial biotechnology economy. Developing a priori knowledge about the mechanism behind extreme-stability will nurture better understanding of pathways leading to protein molecular evolution and folding. This review is a vivid compilation about all classes of extremostable proteins and the attributes that lead to myriad of adaptations divulged after an extensive study of 6495 articles belonging to extremostable proteins. Along with detailing on the rationale behind extreme-stability of proteins, emphasis has been put on modern approaches that have been utilized to render proteins extremostable by protein engineering. It was understood that each protein shows different approaches to extreme-stability governed by minute differences in their biophysical properties and the milieu in which they exist. Any general rule has not yet been drawn regarding adaptive mechanisms in extreme environments. This review was further instrumental to understand the drawback of the available 14 stabilizing mutation prediction algorithms. Thus, this review lays the foundation to further explore the biophysical pleiotropy of extreme-stable proteins to deduce a global prediction model for predicting the effect of mutations on protein stability.
Collapse
Affiliation(s)
- Debamitra Chakravorty
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohd Faheem Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
8
|
Rankine CD, Nunes JPF, Robinson MS, Lane PD, Wann DA. A theoretical investigation of internal conversion in 1,2-dithiane using non-adiabatic multiconfigurational molecular dynamics. Phys Chem Chem Phys 2016; 18:27170-27174. [PMID: 27722509 DOI: 10.1039/c6cp05518d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-adiabatic multireference molecular dynamics simulations have revealed a motion in 1,2-dithiane that activates on absorption of light in the mid-UV and expedites the S1/S0 internal conversion process.
Collapse
Affiliation(s)
- C. D. Rankine
- Department of Chemistry
- University of York
- Heslington
- UK
| | | | | | - P. D. Lane
- Department of Chemistry
- University of York
- Heslington
- UK
| | - D. A. Wann
- Department of Chemistry
- University of York
- Heslington
- UK
| |
Collapse
|
9
|
Cacciapuoti G, Bagarolo ML, Martino E, Scafuri B, Marabotti A, Porcelli M. Efficient Fludarabine-Activating PNP From Archaea as a Guidance for Redesign the Active Site of E. Coli PNP. J Cell Biochem 2015; 117:1126-35. [PMID: 26477689 DOI: 10.1002/jcb.25396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/06/2015] [Indexed: 11/08/2022]
Abstract
The combination of the gene of purine nucleoside phosphorylase (PNP) from Escherichia coli and fludarabine represents one of the most promising systems in the gene therapy of solid tumors. The use of fludarabine in gene therapy is limited by the lack of an enzyme that is able to efficiently activate this prodrug which, consequently, has to be administered in high doses that cause serious side effects. In an attempt to identify enzymes with a better catalytic efficiency than E. coli PNP towards fludarabine to be used as a guidance on how to improve the activity of the bacterial enzyme, we have selected 5'-deoxy-5'-methylthioadenosine phosphorylase (SsMTAP) and 5'-deoxy-5'-methylthioadenosine phosphorylase II (SsMTAPII), two PNPs isolated from the hyperthermophilic archaeon Sulfolobus solfataricus. Substrate specificity and catalytic efficiency of SsMTAP and SsMTAPII for fludarabine were analyzed by kinetic studies and compared with E. coli PNP. SsMTAP and SsMTAPII share with E. coli PNP a comparable low affinity for the arabinonucleoside but are better catalysts of fludarabine cleavage with k(cat)/K(m) values that are 12.8-fold and 6-fold higher, respectively, than those reported for the bacterial enzyme. A computational analysis of the interactions of fludarabine in the active sites of E. coli PNP, SsMTAP, and SsMTAPII allowed to identify the crucial residues involved in the binding with this substrate, and provided structural information to improve the catalytic efficiency of E. coli PNP by enzyme redesign.
Collapse
Affiliation(s)
- Giovanna Cacciapuoti
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, Naples, 80138, Italy
| | - Maria Libera Bagarolo
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, Naples, 80138, Italy
| | - Elisa Martino
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, Naples, 80138, Italy
| | - Bernardina Scafuri
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, Fisciano, Salerno, 84084, Italy
| | - Anna Marabotti
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, Fisciano, Salerno, 84084, Italy
| | - Marina Porcelli
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, Naples, 80138, Italy
| |
Collapse
|
10
|
Bagarolo ML, Porcelli M, Martino E, Feller G, Cacciapuoti G. Multiple disulfide bridges modulate conformational stability and flexibility in hyperthermophilic archaeal purine nucleoside phosphorylase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1458-65. [DOI: 10.1016/j.bbapap.2015.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/27/2015] [Accepted: 06/23/2015] [Indexed: 11/25/2022]
|
11
|
Porcelli M, Ilisso CP, De Leo E, Cacciapuoti G. Biochemical characterization of a thermostable adenosylmethionine synthetase from the archaeon Pyrococcus furiosus with high catalytic power. Appl Biochem Biotechnol 2015; 175:2916-33. [PMID: 25577347 DOI: 10.1007/s12010-015-1476-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/01/2015] [Indexed: 11/25/2022]
Abstract
Adenosylmethionine synthetase plays a key role in the biogenesis of the sulfonium compound S-adenosylmethionine, the principal widely used methyl donor in the biological methylations. We report here, for the first time, the characterization of adenosylmethionine synthetase from the hyperthermophilic archaeon Pyrococcus furiosus (PfMAT). The gene PF1866 encoding PfMAT was cloned and expressed, and the recombinant protein was purified to homogeneity. PfMAT shares 51, 63, and 82% sequence identity with the homologous enzymes from Sulfolobus solfataricus, Methanococcus jannaschii, and Thermococcus kodakarensis, respectively. PfMAT is a homodimer of 90 kDa highly thermophilic with an optimum temperature of 90 °C and is characterized by remarkable thermodynamic stability (Tm, 99 °C), kinetic stability, and resistance to guanidine hydrochloride-induced unfolding. The latter process is reversible as demonstrated by the analysis of the refolding process by activity assays and fluorescence measurements. Limited proteolysis experiments indicated that the proteolytic cleavage site is localized at Lys148 and that the C-terminal peptide is necessary for the integrity of the active site. PfMAT shows kinetic features that make it the most efficient catalyst for S-adenosylmethionine synthesis among the characterized MAT from Bacteria and Archaea. Molecular and structural characterization of PfMAT could be useful to improve MAT enzyme engineering for biotechnological applications.
Collapse
Affiliation(s)
- Marina Porcelli
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Via Costantinopoli 16, 80138, Naples, Italy,
| | | | | | | |
Collapse
|
12
|
Protein adaptations in archaeal extremophiles. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2013; 2013:373275. [PMID: 24151449 PMCID: PMC3787623 DOI: 10.1155/2013/373275] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/26/2013] [Accepted: 08/14/2013] [Indexed: 12/25/2022]
Abstract
Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity.
Collapse
|
13
|
Zhou X, Szeker K, Janocha B, Böhme T, Albrecht D, Mikhailopulo IA, Neubauer P. Recombinant purine nucleoside phosphorylases from thermophiles: preparation, properties and activity towards purine and pyrimidine nucleosides. FEBS J 2013; 280:1475-90. [PMID: 23332162 DOI: 10.1111/febs.12143] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/13/2013] [Accepted: 01/16/2013] [Indexed: 12/18/2022]
Abstract
Thermostable nucleoside phosphorylases are attractive biocatalysts for the synthesis of modified nucleosides. Hence we report on the recombinant expression of three 'high molecular mass' purine nucleoside phosphorylases (PNPs) derived from the thermophilic bacteria Deinococcus geothermalis, Geobacillus thermoglucosidasius and from the hyperthermophilic archaeon Aeropyrum pernix (5'-methythioadenosine phosphorylase; ApMTAP). Thermostability studies, kinetic analysis and substrate specificities are reported. The PNPs were stable at their optimal temperatures (DgPNP, 55 °C; GtPNP, 70 °C; ApMTAP, activity rising to 99 °C). Substrate properties were investigated for natural purine nucleosides [adenosine, inosine and their C2'-deoxy counterparts (activity within 50-500 U·mg(-1))], analogues with 2'-amino modified 2'-deoxy-adenosine and -inosine (within 0.1-3 U·mg(-1)) as well as 2'-deoxy-2'-fluoroadenosine (9) and its C2'-arabino diastereomer (10, within 0.01-0.03 U·mg(-1)). Our results reveal that the structure of the heterocyclic base (e.g. adenine or hypoxanthine) can play a critical role in the phosphorolysis reaction. The implications of this finding may be helpful for reaction mechanism studies or optimization of reaction conditions. Unexpectedly, the diastereomeric 2'-deoxyfluoro adenine ribo- and arabino-nucleosides displayed similar substrate properties. Moreover, cytidine and 2'-deoxycytidine were found to be moderate substrates of the prepared PNPs, with substrate activities in a range similar to those determined for 2'-deoxyfluoro adenine nucleosides 9 and 10. C2'-modified nucleosides are accepted as substrates by all recombinant enzymes studied, making these enzymes promising biocatalysts for the synthesis of modified nucleosides. Indeed, the prepared PNPs performed well in preliminary transglycosylation reactions resulting in the synthesis of 2'-deoxyfluoro adenine ribo- and arabino- nucleosides in moderate yield (24%).
Collapse
Affiliation(s)
- Xinrui Zhou
- Laboratory of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|