1
|
The 5-Ketofructose Reductase of Gluconobacter sp. Strain CHM43 Is a Novel Class in the Shikimate Dehydrogenase Family. J Bacteriol 2021; 203:e0055820. [PMID: 34309403 DOI: 10.1128/jb.00558-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gluconobacter sp. strain CHM43 oxidizes mannitol to fructose and then oxidizes fructose to 5-keto-d-fructose (5KF) in the periplasmic space. Since NADPH-dependent 5KF reductase was found in the soluble fraction of Gluconobacter spp., 5KF might be transported into the cytoplasm and metabolized. Here, we identified the GLF_2050 gene as the kfr gene encoding 5KF reductase (KFR). A mutant strain devoid of the kfr gene showed lower KFR activity and no 5KF consumption. The crystal structure revealed that KFR is similar to NADP+-dependent shikimate dehydrogenase (SDH), which catalyzes the reversible NADP+-dependent oxidation of shikimate to 3-dehydroshikimate. We found that several amino acid residues in the putative substrate-binding site of KFR were different from those of SDH. Phylogenetic analyses revealed that only a subclass in the SDH family containing KFR conserved such a unique substrate-binding site. We constructed KFR derivatives with amino acid substitutions, including replacement of Asn21 in the substrate-binding site with Ser that is found in SDH. The KFR-N21S derivative showed a strong increase in the Km value for 5KF but a higher shikimate oxidation activity than wild-type KFR, suggesting that Asn21 is important for 5KF binding. In addition, the conserved catalytic dyad Lys72 and Asp108 were individually substituted for Asn. The K72N and D108N derivatives showed only negligible activities without a dramatic change in the Km value for 5KF, suggesting a catalytic mechanism similar to that of SDH. With these data taken together, we suggest that KFR is a new member of the SDH family. IMPORTANCE A limited number of species of acetic acid bacteria, such as Gluconobacter sp. strain CHM43, produce 5-ketofructose, a potential low-calorie sweetener, at a high yield. Here, we show that an NADPH-dependent 5-ketofructose reductase (KFR) is involved in 5-ketofructose degradation, and we characterize this enzyme with respect to its structure, phylogeny, and function. The crystal structure of KFR was similar to that of shikimate dehydrogenase, which is functionally crucial in the shikimate pathway in bacteria and plants. Phylogenetic analysis suggested that KFR is positioned in a small subgroup of the shikimate dehydrogenase family. Catalytically important amino acid residues were also conserved, and their relevance was experimentally validated. Thus, we propose KFR as a new member of shikimate dehydrogenase family.
Collapse
|
2
|
Mycobacterium tuberculosis Shikimate Pathway Enzymes as Targets for the Rational Design of Anti-Tuberculosis Drugs. Molecules 2020; 25:molecules25061259. [PMID: 32168746 PMCID: PMC7144000 DOI: 10.3390/molecules25061259] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Roughly a third of the world’s population is estimated to have latent Mycobacterium tuberculosis infection, being at risk of developing active tuberculosis (TB) during their lifetime. Given the inefficacy of prophylactic measures and the increase of drug-resistant M. tuberculosis strains, there is a clear and urgent need for the development of new and more efficient chemotherapeutic agents, with selective toxicity, to be implemented on patient treatment. The component enzymes of the shikimate pathway, which is essential in mycobacteria and absent in humans, stand as attractive and potential targets for the development of new drugs to treat TB. This review gives an update on published work on the enzymes of the shikimate pathway and some insight on what can be potentially explored towards selective drug development.
Collapse
|
4
|
Punkvang A, Kamsri P, Mulholland A, Spencer J, Hannongbua S, Pungpo P. Simulations of Shikimate Dehydrogenase from Mycobacterium tuberculosis in Complex with 3-Dehydroshikimate and NADPH Suggest Strategies for MtbSDH Inhibition. J Chem Inf Model 2019; 59:1422-1433. [PMID: 30840825 DOI: 10.1021/acs.jcim.8b00834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Shikimate dehydrogenase (SDH) from Mycobacterium tuberculosis ( MtbSDH), encoded by the aroE gene, is essential for viability of M. tuberculosis but absent from humans. Therefore, it is a potentially promising target for antituberculosis agent development. Molecular-level understanding of the interactions of MtbSDH with its 3-dehydroshikimate (DHS) substrate and NADPH cofactor will help in the design of novel and effective MtbSDH inhibitors. However, this is limited by the lack of relevant crystal structures for MtbSDH complexes. Here, molecular dynamics (MD) simulations were performed to generate these MtbSDH complexes and investigate interactions of MtbSDH with substrate and cofactor and the role of MtbSDH dynamics within these. The results indicate that, while structural rearrangements are not necessary for DHS binding, reorientation of individual side chains in the NADPH binding pocket is involved in ternary complex formation. The mechanistic roles for Lys69, Asp105, and Ala213 were investigated by generating Lys69Ala, Asp105Asn, and Ala213Leu mutants in silico and investigating their complexes with DHS and NADPH. Our results show that Lys69 plays a dual role, in positioning NADPH and in catalysis. Asp105 plays a crucial role in positioning both the ε-amino group of Lys69 and nicotinamide ring of NADPH for MtbSDH catalysis but makes no direct contribution to DHS binding. Ala213 is the selection key for NADPH binding with the nicotinamide ring in the proS, rather than proR, conformation in the MtbSDH complex. Our results identify three strategies for MtbSDH inhibition: prevention of MtbSDH binary and ternary complex formation by blocking DHS and NADPH binding (first and second strategies, respectively) and the prevention of MtbSDH complex formation with either DHS or NADPH by blocking both DHS and NADPH binding (third strategy). Further, based on this third strategy, we propose guidelines for the rational design of "hybrid" MtbSDH inhibitors able to bind in both the substrate (DHS) and cofactor (NADPH) pockets, providing a new avenue of exploration in the search for anti-TB therapeutics.
Collapse
Affiliation(s)
- Auradee Punkvang
- Faculty of Science , Nakhon Phanom University , 48000 Nakhon Phanom , Thailand
| | - Pharit Kamsri
- Faculty of Science , Nakhon Phanom University , 48000 Nakhon Phanom , Thailand
| | - Adrian Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol , Clifton, BS8 1TS Bristol , United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine , University of Bristol , Bristol BS8 1TD , United Kingdom
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science , Kasetsart University , Chatuchak, 10900 Bangkok , Thailand
| | - Pornpan Pungpo
- Department of Chemistry, Faculty of Science , Ubon Ratchathani University , Warin Chamrap, 34190 Ubon Ratchathani , Thailand
| |
Collapse
|
5
|
Sulpice R, Ishihara H, Schlereth A, Cawthray GR, Encke B, Giavalisco P, Ivakov A, Arrivault S, Jost R, Krohn N, Kuo J, Laliberté E, Pearse SJ, Raven JA, Scheible WR, Teste F, Veneklaas EJ, Stitt M, Lambers H. Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species. PLANT, CELL & ENVIRONMENT 2014; 37:1276-98. [PMID: 24895754 PMCID: PMC4260170 DOI: 10.1111/pce.12240] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Proteaceae species in south-western Australia occur on phosphorus- (P) impoverished soils. Their leaves contain very low P levels, but have relatively high rates of photosynthesis. We measured ribosomal RNA (rRNA) abundance, soluble protein, activities of several enzymes and glucose 6-phosphate (Glc6P) levels in expanding and mature leaves of six Proteaceae species in their natural habitat. The results were compared with those for Arabidopsis thaliana. Compared with A. thaliana, immature leaves of Proteaceae species contained very low levels of rRNA, especially plastidic rRNA. Proteaceae species showed slow development of the photosynthetic apparatus (‘delayed greening’), with young leaves having very low levels of chlorophyll and Calvin-Benson cycle enzymes. In mature leaves, soluble protein and Calvin-Benson cycle enzyme activities were low, but Glc6P levels were similar to those in A. thaliana. We propose that low ribosome abundance contributes to the high P efficiency of these Proteaceae species in three ways: (1) less P is invested in ribosomes; (2) the rate of growth and, hence, demand for P is low; and (3) the especially low plastidic ribosome abundance in young leaves delays formation of the photosynthetic machinery, spreading investment of P in rRNA. Although Calvin-Benson cycle enzyme activities are low, Glc6P levels are maintained, allowing their effective use.
Collapse
Affiliation(s)
- Ronan Sulpice
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 1, Potsdam-Golm, D-14476, Germany
- * Present address: National University of Ireland, Galway, Plant
Systems Biology Lab, Plant and AgriBiosciences Research Centre, Botany and Plant Science, Galway, Ireland
| | - Hirofumi Ishihara
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 1, Potsdam-Golm, D-14476, Germany
- † These three authors are joint first authors
| | - Armin Schlereth
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 1, Potsdam-Golm, D-14476, Germany
- † These three authors are joint first authors
| | - Gregory R Cawthray
- School of Plant Biology, The University of Western Australia35 Stirling Highway, Crawley (Perth), Western Australia, 6009, Australia
| | - Beatrice Encke
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 1, Potsdam-Golm, D-14476, Germany
| | - Patrick Giavalisco
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 1, Potsdam-Golm, D-14476, Germany
| | - Alexander Ivakov
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 1, Potsdam-Golm, D-14476, Germany
| | - StÉphanie Arrivault
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 1, Potsdam-Golm, D-14476, Germany
| | - Ricarda Jost
- School of Plant Biology, The University of Western Australia35 Stirling Highway, Crawley (Perth), Western Australia, 6009, Australia
| | - Nicole Krohn
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 1, Potsdam-Golm, D-14476, Germany
| | - John Kuo
- Centre for Microscopy and Microanalysis, The University of Western Australia35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Etienne Laliberté
- School of Plant Biology, The University of Western Australia35 Stirling Highway, Crawley (Perth), Western Australia, 6009, Australia
| | - Stuart J Pearse
- School of Plant Biology, The University of Western Australia35 Stirling Highway, Crawley (Perth), Western Australia, 6009, Australia
| | - John A Raven
- School of Plant Biology, The University of Western Australia35 Stirling Highway, Crawley (Perth), Western Australia, 6009, Australia
- Division of Plant Sciences, University of Dundee at JHI, James Hutton InstituteInvergowrie, Dundee, DD2 5DA, UK
| | - Wolf-rüdiger Scheible
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 1, Potsdam-Golm, D-14476, Germany
- Plant Biology Division, The Samuel Roberts Noble Foundation2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - François Teste
- School of Plant Biology, The University of Western Australia35 Stirling Highway, Crawley (Perth), Western Australia, 6009, Australia
| | - Erik J Veneklaas
- School of Plant Biology, The University of Western Australia35 Stirling Highway, Crawley (Perth), Western Australia, 6009, Australia
| | - Mark Stitt
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 1, Potsdam-Golm, D-14476, Germany
| | - Hans Lambers
- School of Plant Biology, The University of Western Australia35 Stirling Highway, Crawley (Perth), Western Australia, 6009, Australia
| |
Collapse
|