1
|
Suárez-Suárez C, González-Pérez S, Márquez-Miranda V, Araya-Duran I, Vidal-Beltrán I, Vergara S, Carvacho I, Hinostroza F. The Endocannabinoid Peptide RVD-Hemopressin Is a TRPV1 Channel Blocker. Biomolecules 2024; 14:1134. [PMID: 39334900 PMCID: PMC11430712 DOI: 10.3390/biom14091134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Neurotransmission is critical for brain function, allowing neurons to communicate through neurotransmitters and neuropeptides. RVD-hemopressin (RVD-Hp), a novel peptide identified in noradrenergic neurons, modulates cannabinoid receptors CB1 and CB2. Unlike hemopressin (Hp), which induces anxiogenic behaviors via transient receptor potential vanilloid 1 (TRPV1) activation, RVD-Hp counteracts these effects, suggesting that it may block TRPV1. This study investigates RVD-Hp's role as a TRPV1 channel blocker using HEK293 cells expressing TRPV1-GFP. Calcium imaging and patch-clamp recordings demonstrated that RVD-Hp reduces TRPV1-mediated calcium influx and TRPV1 ion currents. Molecular docking and dynamics simulations indicated that RVD-Hp interacts with TRPV1's selectivity filter, forming stable hydrogen bonds and van der Waals contacts, thus preventing ion permeation. These findings highlight RVD-Hp's potential as a therapeutic agent for conditions involving TRPV1 activation, such as pain and anxiety.
Collapse
Affiliation(s)
- Constanza Suárez-Suárez
- Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile; (C.S.-S.); (S.G.-P.)
| | - Sebastián González-Pérez
- Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile; (C.S.-S.); (S.G.-P.)
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andrés Bello, Santiago 8370146, Chile; (V.M.-M.); (I.A.-D.)
| | - Ingrid Araya-Duran
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andrés Bello, Santiago 8370146, Chile; (V.M.-M.); (I.A.-D.)
| | - Isabel Vidal-Beltrán
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile;
| | - Sebastián Vergara
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile; (S.V.); (I.C.)
| | - Ingrid Carvacho
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile; (S.V.); (I.C.)
| | - Fernando Hinostroza
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile;
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile; (S.V.); (I.C.)
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca 3460000, Chile
- Centro para la Investigación Traslacional en Neurofarmacología, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
2
|
Abstract
Peptidomics is the detection and identification of the peptides present in a sample, and quantitative peptidomics provides additional information about the amounts of these peptides. It is possible to perform absolute quantitation of peptide levels in which the biological sample is compared to synthetic standards of each peptide. More commonly, relative quantitation is performed to compare peptide levels between two or more samples. Relative quantitation can measure differences between all peptides that are detectable, which can exceed 1000 peptides in a complex sample. In this chapter, various techniques used for quantitative peptidomics are described along with discussion of the advantages and disadvantages of each approach. A guide to selecting the optimal quantitative approach is provided, based on the goals of the experiment and the resources that are available.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Departments of Molecular Pharmacology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
3
|
Effect of FKBP12-Derived Intracellular Peptides on Rapamycin-Induced FKBP-FRB Interaction and Autophagy. Cells 2022; 11:cells11030385. [PMID: 35159195 PMCID: PMC8834644 DOI: 10.3390/cells11030385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Intracellular peptides (InPeps) generated by proteasomes were previously suggested as putative natural regulators of protein-protein interactions (PPI). Here, the main aim was to investigate the intracellular effects of intracellular peptide VFDVELL (VFD7) and related peptides on PPI. The internalization of the peptides was achieved using a C-terminus covalently bound cell-penetrating peptide (cpp; YGRKKRRQRRR). The possible inhibition of PPI was investigated using a NanoBiT® luciferase structural complementation reporter system, with a pair of plasmids vectors each encoding, simultaneously, either FK506-binding protein (FKBP) or FKBP-binding domain (FRB) of mechanistic target of rapamycin complex 1 (mTORC1). The interaction of FKBP-FRB within cells occurs under rapamycin induction. Results shown that rapamycin-induced interaction between FKBP-FRB within human embryonic kidney 293 (HEK293) cells was inhibited by VFD7-cpp (10-500 nM) and FDVELLYGRKKRRQRRR (VFD6-cpp; 1-500 nM); additional VFD7-cpp derivatives were either less or not effective in inhibiting FKBP-FRB interaction induced by rapamycin. Molecular dynamics simulations suggested that selected peptides, such as VFD7-cpp, VFD6-cpp, VFAVELLYGRKKKRRQRRR (VFA7-cpp), and VFEVELLYGRKKKRRQRRR (VFA7-cpp), bind to FKBP and to FRB protein surfaces. However, only VFD7-cpp and VFD6-cpp induced changes on FKBP structure, which could help with understanding their mechanism of PPI inhibition. InPeps extracted from HEK293 cells were found mainly associated with macromolecular components (i.e., proteins and/or nucleic acids), contributing to understanding InPeps' intracellular proteolytic stability and mechanism of action-inhibiting PPI within cells. In a model of cell death induced by hypoxia-reoxygenation, VFD6-cpp (1 µM) increased the viability of mouse embryonic fibroblasts cells (MEF) expressing mTORC1-regulated autophagy-related gene 5 (Atg5), but not in autophagy-deficient MEF cells lacking the expression of Atg5. These data suggest that VFD6-cpp could have therapeutic applications reducing undesired side effects of rapamycin long-term treatments. In summary, the present report provides further evidence that InPeps have biological significance and could be valuable tools for the rational design of therapeutic molecules targeting intracellular PPI.
Collapse
|
4
|
Silva RNO, Llanos RP, Eichler RAS, Oliveira TB, Gozzo FC, Festuccia WT, Ferro ES. New Intracellular Peptide Derived from Hemoglobin Alpha Chain Induces Glucose Uptake and Reduces Blood Glycemia. Pharmaceutics 2021; 13:pharmaceutics13122175. [PMID: 34959456 PMCID: PMC8708875 DOI: 10.3390/pharmaceutics13122175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
Intracellular peptides were shown to derive from proteasomal degradation of proteins from mammalian and yeast cells, being suggested to play distinctive roles both inside and outside these cells. Here, the role of intracellular peptides previously identified from skeletal muscle and adipose tissues of C57BL6/N wild type (WT) and neurolysin knockout mice were investigated. In differentiated C2C12 mouse skeletal muscle cells, some of these intracellular peptides like insulin activated the expression of several genes related to muscle contraction and gluconeogenesis. One of these peptides, LASVSTVLTSKYR (Ric4; 600 µg/kg), administrated either intraperitoneally or orally in WT mice, decreased glycemia. Neither insulin (10 nM) nor Ric4 (100 µM) induced glucose uptake in adipose tissue explants obtained from conditional knockout mice depleted of insulin receptor. Ric4 (100 µM) similarly to insulin (100 nM) induced Glut4 translocation to the plasma membrane of C2C12 differentiated cells, and increased GLUT4 mRNA levels in epididymal adipose tissue of WT mice. Ric4 (100 µM) increased both Erk and Akt phosphorylation in C2C12, as well as in epididymal adipose tissue from WT mice; Erk, but not Akt phosphorylation was activated by Ric4 in tibial skeletal muscle from WT mice. Ric4 is rapidly degraded in vitro by WT liver and kidney crude extracts, such a response that is largely reduced by structural modifications such as N-terminal acetylation, C-terminal amidation, and substitution of Leu8 for DLeu8 (Ac-LASVSTV[DLeu]TSKYR-NH2; Ric4-16). Ric4-16, among several Ric4 derivatives, efficiently induced glucose uptake in differentiated C2C12 cells. Among six Ric4-derivatives evaluated in vivo, Ac-LASVSTVLTSKYR-NH2 (Ric4-2; 600 µg/kg) and Ac-LASVSTV[DLeu]TSKYR (Ric4-15; 600 µg/kg) administrated orally efficiently reduced glycemia in a glucose tolerance test in WT mice. The potential clinical application of Ric4 and Ric4-derivatives deserves further attention.
Collapse
Affiliation(s)
- Renée N. O. Silva
- Department of Pharmacology, Biomedical Science Institute, University of São Paulo, São Paulo 05508-000, SP, Brazil; (R.N.O.S.); (R.P.L.); (R.A.S.E.)
| | - Ricardo P. Llanos
- Department of Pharmacology, Biomedical Science Institute, University of São Paulo, São Paulo 05508-000, SP, Brazil; (R.N.O.S.); (R.P.L.); (R.A.S.E.)
| | - Rosangela A. S. Eichler
- Department of Pharmacology, Biomedical Science Institute, University of São Paulo, São Paulo 05508-000, SP, Brazil; (R.N.O.S.); (R.P.L.); (R.A.S.E.)
| | - Thiago B. Oliveira
- Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo 05508-000, SP, Brazil; (T.B.O.); (W.T.F.)
| | - Fábio C. Gozzo
- Institute of Chemistry, State University of Campinas, Campinas 13083-862, SP, Brazil;
| | - William T. Festuccia
- Physiology and Biophysics, Biomedical Science Institute, University of São Paulo, São Paulo 05508-000, SP, Brazil; (T.B.O.); (W.T.F.)
| | - Emer S. Ferro
- Department of Pharmacology, Biomedical Science Institute, University of São Paulo, São Paulo 05508-000, SP, Brazil; (R.N.O.S.); (R.P.L.); (R.A.S.E.)
- Correspondence: ; Tel.: +55-11-3091-7310
| |
Collapse
|
5
|
Peptidomic profiling of cerebrospinal fluid from patients with intracranial saccular aneurysms. J Proteomics 2021; 240:104188. [PMID: 33781962 DOI: 10.1016/j.jprot.2021.104188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 01/05/2023]
Abstract
Intracranial saccular aneurysms (ISA) represent 90%-95% of all intracranial aneurysm cases, characterizing abnormal pockets at arterial branch points. Ruptures lead to subarachnoid hemorrhages (SAH) and poor prognoses. We applied mass spectrometry-based peptidomics to investigate the peptidome of twelve cerebrospinal fluid (CSF) samples collected from eleven patients diagnosed with ISA. For peptide profile analyses, participants were classified into: 1) ruptured intracranial saccular aneurysms (RIA), 2) unruptured intracranial saccular aneurysms (UIA), and late-ruptured intracranial saccular aneurysms (LRIA). Altogether, a total of 2199 peptides were detected by both Mascot and Peaks software, from which 484 (22.0%) were unique peptides. All unique peptides presented conserved chains, domains, regions of protein modulation and/or post-translational modification sites related to human diseases. Gene Ontology (GO) analyses of peptide precursor proteins showed that 42% are involved in binding, 56% in cellular anatomical entities, and 39% in intercellular signaling molecules. Unique peptides identified in patients diagnosed with RIA have a larger molecular weight and a distinctive developmental process compared to UIA and LRIA (P ≤ 0.05). Continued investigations will allow the characterization of the biological and clinical significance of the peptides identified in the present study, as well as identify prototypes for peptide-based pharmacological therapies to treat ISA. SIGNIFICANCE.
Collapse
|
6
|
Heimann AS, Dale CS, Guimarães FS, Reis RAM, Navon A, Shmuelov MA, Rioli V, Gomes I, Devi LL, Ferro ES. Hemopressin as a breakthrough for the cannabinoid field. Neuropharmacology 2021; 183:108406. [PMID: 33212113 PMCID: PMC8609950 DOI: 10.1016/j.neuropharm.2020.108406] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Hemopressin (PVNFKFLSH in rats, and PVNFKLLSH in humans and mice), a fragment derived from the α-chain of hemoglobin, was the first peptide described to have type 1 cannabinoid receptor activity. While hemopressin was shown to have inverse agonist/antagonistic activity, extended forms of hemopressin (i.e. RVD-hemopressin, also called pepcan-12) exhibit type 1 and type 2 cannabinoid receptor agonistic/allosteric activity, and recent studies suggest that they can activate intracellular mitochondrial cannabinoid receptors. Therefore, hemopressin and hemopressin-related peptides could have location-specific and biased pharmacological action, which would increase the possibilities for fine-tunning and broadening cannabinoid receptor signal transduction. Consistent with this, hemopressins were shown to play a role in a number of physiological processes including antinociceptive and anti-inflammatory activity, regulation of food intake, learning and memory. The shortest active hemopressin fragment, NFKF, delays the first seizure induced by pilocarpine, and prevents neurodegeneration in an experimental model of autoimmune encephalomyelitis. These functions of hemopressins could be due to engagement of both cannabinoid and non-cannabinoid receptor systems. Self-assembled nanofibrils of hemopressin have pH-sensitive switchable surface-active properties, and show potential as inflammation and cancer targeted drug-delivery systems. Upon disruption of the self-assembled hemopressin nanofibril emulsion, the intrinsic analgesic and anti-inflammatory properties of hemopressin could help bolster the therapeutic effect of anti-inflammatory or anti-cancer formulations. In this article, we briefly review the molecular and behavioral pharmacological properties of hemopressins, and summarize studies on the intricate and unique mode of generation and binding of these peptides to cannabinoid receptors. Thus, the review provides a window into the current status of hemopressins in expanding the repertoire of signaling and activity by the endocannabinoid system, in addition to their new potential for pharmaceutic formulations.
Collapse
Affiliation(s)
| | - Camila S Dale
- Department of Anatomy, Biomedical Science Institute, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14025-600, Ribeirão Preto, SP, Brazil; Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, 14025-600, Ribeirão Preto, SP, Brazil
| | - Ricardo A M Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Rio de Janeiro, Federal University, 21949-900, Rio de Janeiro, RJ, Brazil
| | - Ami Navon
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Michal A Shmuelov
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Vanessa Rioli
- Special Laboratory of Applied Toxinology (LETA), Center of Toxins, Immune Response and Cell Signaling (CETICS), Butantan Institute, São Paulo, 05503-900, Brazil
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, United States
| | - Lakshmi L Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 10029, New York, NY, United States
| | - Emer S Ferro
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 7610001, Israel; Department of Pharmacology, Biomedical Science Institute, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Liang S, Dong H, Zhu S, Zhao Q, Huang B, Yu Y, Wang Q, Wang H, Yu S, Han H. Eimeria tenella Translation Initiation Factor eIF-5A That Interacts With Calcium-Dependent Protein Kinase 4 Is Involved in Host Cell Invasion. Front Cell Infect Microbiol 2021; 10:602049. [PMID: 33553005 PMCID: PMC7862772 DOI: 10.3389/fcimb.2020.602049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/04/2020] [Indexed: 11/17/2022] Open
Abstract
Eimeria tenella is an apicomplexan, parasitic protozoan known to infect poultry worldwide. An important calcium-dependent protein kinase (CDPK) has been identified in plants, green algae, ciliates and apicomplexan, such as E. tenella. CDPKs are effector molecules involved in calcium signaling pathways, which control important physiological processes such as gliding motility, reproduction, and host cell invasion. Given that CDPKs are not found in the host, studying the functions of CDPKs in E. tenella may serve as a basis for developing new therapeutic drugs and vaccines. To assess the function of CDPK4 in E. tenella (EtCDPK4), a putative interactor, translation initiation factor eIF-5A (EteIF-5A), was screened by both co-immunoprecipitation (co-IP) and His pull-down assays followed by mass spectrometry. The interaction between EteIF-5A and EtCDPK4 was determined by bimolecular fluorescence complementation (BiFC), GST pull-down, and co-IP. The molecular characteristics of EteIF-5A were then analyzed. Quantitative real-time polymerase chain reaction and western blotting were used to determine the transcription and protein levels of EteIF-5A in the different developmental stages of E. tenella. The results showed that the transcription level of EteIF-5A mRNA was highest in second-generation merozoites, and the protein expression level was highest in unsporulated oocysts. Indirect immunofluorescence showed that the EteIF-5A protein was found throughout the cytoplasm of sporozoites, but not in the refractile body. As the invasion of DF-1 cells progressed, EteIF-5A fluorescence intensity increased in trophozoites, decreased in immature schizonts, and increased in mature schizonts. The secretion assay results, analyzed by western blotting, indicated that EteIF-5A was a secreted protein but not from micronemes. The results of invasion inhibition assays showed that rabbit anti-rEteIF-5A polyclonal antibodies effectively inhibited cell invasion by sporozoites, with an inhibition rate of 48%.
Collapse
Affiliation(s)
- Shanshan Liang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Bing Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yu Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Qingjie Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haixia Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shuilan Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
8
|
Riquelme-Sandoval A, de Sá-Ferreira CO, Miyakoshi LM, Hedin-Pereira C. New Insights Into Peptide Cannabinoids: Structure, Biosynthesis and Signaling. Front Pharmacol 2020; 11:596572. [PMID: 33362550 PMCID: PMC7759141 DOI: 10.3389/fphar.2020.596572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/19/2020] [Indexed: 01/01/2023] Open
Abstract
Classically, the endocannabinoid system (ECS) consists of endogenous lipids, of which the best known are anandamide (AEA) and 2 arachidonoylglycerol (2-AG), their enzyme machinery for synthesis and degradation and their specific receptors, cannabinoid receptor one (CB1) and cannabinoid receptor two (CB2). However, endocannabinoids also bind to other groups of receptors. Furthermore, another group of lipids are considered to be endocannabinoids, such as the fatty acid ethanolamides, the fatty acid primary amides and the monoacylglycerol related molecules. Recently, it has been shown that the hemopressin peptide family, derived from α and β chains of hemoglobins, is a new family of cannabinoids. Some studies indicate that hemopressin peptides are expressed in the central nervous system and peripheral tissues and act as ligands of these receptors, thus suggesting that they play a physiological role. In this review, we examine new evidence on lipid endocannabinoids, cannabinoid receptors and the modulation of their signaling pathways. We focus our discussion on the current knowledge of the pharmacological effects, the biosynthesis of the peptide cannabinoids and the new insights on the activation and modulation of cannabinoid receptors by these peptides. The novel peptide compounds derived from hemoglobin chains and their non-classical activation of cannabinoid receptors are only starting to be uncovered. It will be exciting to follow the ensuing discoveries, not only in reference to what is already known of the classical lipid endocannabinoids revealing more complex aspects of endocannabinoid system, but also as to its possibilities as a future therapeutic tool.
Collapse
Affiliation(s)
- Agustín Riquelme-Sandoval
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caio O de Sá-Ferreira
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leo M Miyakoshi
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cecilia Hedin-Pereira
- Laboratory of Cellular Neuroanatomy, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,VPPCB-Fiocruz, Rio de Janeiro, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Thimet Oligopeptidase Biochemical and Biological Significances: Past, Present, and Future Directions. Biomolecules 2020; 10:biom10091229. [PMID: 32847123 PMCID: PMC7565970 DOI: 10.3390/biom10091229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
Thimet oligopeptidase (EC 3.4.24.15; EP24.15, THOP1) is a metallopeptidase ubiquitously distributed in mammalian tissues. Beyond its previously well characterized role in major histocompatibility class I (MHC-I) antigen presentation, the recent characterization of the THOP1 C57BL6/N null mice (THOP1−/−) phenotype suggests new key functions for THOP1 in hyperlipidic diet-induced obesity, insulin resistance and non-alcoholic liver steatosis. Distinctive levels of specific intracellular peptides (InPeps), genes and microRNAs were observed when comparing wild type C57BL6/N to THOP1−/− fed either standard or hyperlipidic diets. A possible novel mechanism of action was suggested for InPeps processed by THOP1, which could be modulating protein-protein interactions and microRNA processing, thus affecting the phenotype. Together, research into the biochemical and biomedical significance of THOP1 suggests that degradation by the proteasome is a step in the processing of various proteins, not merely for ending their existence. This allows many functional peptides to be generated by proteasomal degradation in order to, for example, control mRNA translation and the formation of protein complexes.
Collapse
|
10
|
Gewehr MCF, Silverio R, Rosa-Neto JC, Lira FS, Reckziegel P, Ferro ES. Peptides from Natural or Rationally Designed Sources Can Be Used in Overweight, Obesity, and Type 2 Diabetes Therapies. Molecules 2020; 25:E1093. [PMID: 32121443 PMCID: PMC7179135 DOI: 10.3390/molecules25051093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022] Open
Abstract
Overweight and obesity are among the most prominent health problems in the modern world, mostly because they are either associated with or increase the risk of other diseases such as type 2 diabetes, hypertension, and/or cancer. Most professional organizations define overweight and obesity according to individual body-mass index (BMI, weight in kilograms divided by height squared in meters). Overweight is defined as individuals with BMI from 25 to 29, and obesity as individuals with BMI ≥30. Obesity is the result of genetic, behavioral, environmental, physiological, social, and cultural factors that result in energy imbalance and promote excessive fat deposition. Despite all the knowledge concerning the pathophysiology of obesity, which is considered a disease, none of the existing treatments alone or in combination can normalize blood glucose concentration and prevent debilitating complications from obesity. This review discusses some new perspectives for overweight and obesity treatments, including the use of the new orally active cannabinoid peptide Pep19, the advantage of which is the absence of undesired central nervous system effects usually experienced with other cannabinoids.
Collapse
Affiliation(s)
- Mayara C. F. Gewehr
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Renata Silverio
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil;
| | - José Cesar Rosa-Neto
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Fabio S. Lira
- Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente 19060-900, Brazil;
| | - Patrícia Reckziegel
- Department of Pharmacology, National Institute of Pharmacology and Molecular Biology (INFAR), Federal University of São Paulo (UNIFESP), São Paulo 05508-000, Brazil;
| | - Emer S. Ferro
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| |
Collapse
|
11
|
The Relevance of Thimet Oligopeptidase in the Regulation of Energy Metabolism and Diet-Induced Obesity. Biomolecules 2020; 10:biom10020321. [PMID: 32079362 PMCID: PMC7072564 DOI: 10.3390/biom10020321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Thimet oligopeptidase (EC 3.4.24.15; EP24.15; THOP1) is a potential therapeutic target, as it plays key biological functions in processing biologically functional peptides. The structural conformation of THOP1 provides a unique restriction regarding substrate size, in that it only hydrolyzes peptides (optimally, those ranging from eight to 12 amino acids) and not proteins. The proteasome activity of hydrolyzing proteins releases a large number of intracellular peptides, providing THOP1 substrates within cells. The present study aimed to investigate the possible function of THOP1 in the development of diet-induced obesity (DIO) and insulin resistance by utilizing a murine model of hyperlipidic DIO with both C57BL6 wild-type (WT) and THOP1 null (THOP1−/−) mice. After 24 weeks of being fed a hyperlipidic diet (HD), THOP1−/− and WT mice ingested similar chow and calories; however, the THOP1−/− mice gained 75% less body weight and showed neither insulin resistance nor non-alcoholic fatty liver steatosis when compared to WT mice. THOP1−/− mice had increased adrenergic-stimulated adipose tissue lipolysis as well as a balanced level of expression of genes and microRNAs associated with energy metabolism, adipogenesis, or inflammation. Altogether, these differences converge to a healthy phenotype of THOP1−/− fed a HD. The molecular mechanism that links THOP1 to energy metabolism is suggested herein to involve intracellular peptides, of which the relative levels were identified to change in the adipose tissue of WT and THOP1−/− mice. Intracellular peptides were observed by molecular modeling to interact with both pre-miR-143 and pre-miR-222, suggesting a possible novel regulatory mechanism for gene expression. Therefore, we successfully demonstrated the previously anticipated relevance of THOP1 in energy metabolism regulation. It was suggested that intracellular peptides were responsible for mediating the phenotypic differences that are described herein by a yet unknown mechanism of action.
Collapse
|
12
|
Wei F, Zhao L, Jing Y. Signaling molecules targeting cannabinoid receptors: Hemopressin and related peptides. Neuropeptides 2020; 79:101998. [PMID: 31831183 DOI: 10.1016/j.npep.2019.101998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/23/2022]
Abstract
Cannabinoid receptors (CBRs) are part of the endocannabinoid system, which is involved in various physiological processes such as nociception, inflammation, appetite, stress, and emotion regulation. Many studies have linked the endocannabinoid system to neuroinflammatory and neurodegenerative disorders such as Parkinson's disease, Huntington's chorea, Alzheimer's disease, and multiple sclerosis. Hemopressin [Hp; a fragment of the hemoglobin α1 chain (95-103 amino acids)] and related peptides [VD-Hpα and RVD-Hpα] are peptides that bind to CBRs. Hp acts as an inverse agonist to CB1 receptor (CB1R), VD-Hpα acts as an agonist to CB1R, and RVD-Hpα acts as a negative allosteric modulator of CB1R and a positive allosteric modulator of CB2R. Because of the critical roles of CBRs in numerous physiological processes, it is appealing to use Hp and related peptides for therapeutic purposes. This review discusses their discovery, structure, metabolism, brain exposure, self-assembly characteristics, pharmacological characterization, and pharmacological activities.
Collapse
Affiliation(s)
- Fengmei Wei
- Department of Physiology and Psychology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Long Zhao
- Department of Orthopaedics, Lanzhou University First Affiliated Hospital, Lanzhou, Gansu Province 730000, PR China
| | - Yuhong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
13
|
de Araujo CB, Heimann AS, Remer RA, Russo LC, Colquhoun A, Forti FL, Ferro ES. Intracellular Peptides in Cell Biology and Pharmacology. Biomolecules 2019; 9:biom9040150. [PMID: 30995799 PMCID: PMC6523763 DOI: 10.3390/biom9040150] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/02/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Intracellular peptides are produced by proteasomes following degradation of nuclear, cytosolic, and mitochondrial proteins, and can be further processed by additional peptidases generating a larger pool of peptides within cells. Thousands of intracellular peptides have been sequenced in plants, yeast, zebrafish, rodents, and in human cells and tissues. Relative levels of intracellular peptides undergo changes in human diseases and also when cells are stimulated, corroborating their biological function. However, only a few intracellular peptides have been pharmacologically characterized and their biological significance and mechanism of action remains elusive. Here, some historical and general aspects on intracellular peptides' biology and pharmacology are presented. Hemopressin and Pep19 are examples of intracellular peptides pharmacologically characterized as inverse agonists to cannabinoid type 1 G-protein coupled receptors (CB1R), and hemopressin fragment NFKF is shown herein to attenuate the symptoms of pilocarpine-induced epileptic seizures. Intracellular peptides EL28 (derived from proteasome 26S protease regulatory subunit 4; Rpt2), PepH (derived from Histone H2B type 1-H), and Pep5 (derived from G1/S-specific cyclin D2) are examples of peptides that function intracellularly. Intracellular peptides are suggested as biological functional molecules, and are also promising prototypes for new drug development.
Collapse
Affiliation(s)
- Christiane B de Araujo
- Special Laboratory of Cell Cycle, Center of Toxins, Immune Response and Cell Signaling - CeTICS, Butantan Institute, São Paulo SP 05503-900, Brazil.
| | | | | | - Lilian C Russo
- Department of Biochemistry, Chemistry Institute, University of São Paulo 1111, São Paulo 05508-000, Brazil.
| | - Alison Colquhoun
- Department of Cell and Developmental Biology, University of São Paulo (USP), São Paulo 05508-000, Brazil.
| | - Fábio L Forti
- Department of Biochemistry, Chemistry Institute, University of São Paulo 1111, São Paulo 05508-000, Brazil.
| | - Emer S Ferro
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil.
| |
Collapse
|
14
|
Fesenko I, Azarkina R, Kirov I, Kniazev A, Filippova A, Grafskaia E, Lazarev V, Zgoda V, Butenko I, Bukato O, Lyapina I, Nazarenko D, Elansky S, Mamaeva A, Ivanov V, Govorun V. Phytohormone treatment induces generation of cryptic peptides with antimicrobial activity in the Moss Physcomitrella patens. BMC PLANT BIOLOGY 2019; 19:9. [PMID: 30616513 PMCID: PMC6322304 DOI: 10.1186/s12870-018-1611-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/20/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND Cryptic peptides (cryptides) are small bioactive molecules generated via degradation of functionally active proteins. Only a few examples of plant cryptides playing an important role in plant defense have been reported to date, hence our knowledge about cryptic signals hidden in protein structure remains very limited. Moreover, little is known about how stress conditions influence the size of endogenous peptide pools, and which of these peptides themselves have biological functions is currently unclear. RESULTS Here, we used mass spectrometry to comprehensively analyze the endogenous peptide pools generated from functionally active proteins inside the cell and in the secretome from the model plant Physcomitrella patens. Overall, we identified approximately 4,000 intracellular and approximately 500 secreted peptides. We found that the secretome and cellular peptidomes did not show significant overlap and that respective protein precursors have very different protein degradation patterns. We showed that treatment with the plant stress hormone methyl jasmonate induced specific proteolysis of new functional proteins and the release of bioactive peptides having an antimicrobial activity and capable to elicit the expression of plant defense genes. Finally, we showed that the inhibition of protease activity during methyl jasmonate treatment decreased the secretome antimicrobial potential, suggesting an important role of peptides released from proteins in immune response. CONCLUSIONS Using mass-spectrometry, in vitro experiments and bioinformatics analysis, we found that methyl jasmonate acid induces significant changes in the peptide pools and that some of the resulting peptides possess antimicrobial and regulatory activities. Moreover, our study provides a list of peptides for further study of potential plant cryptides.
Collapse
Affiliation(s)
- Igor Fesenko
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Regina Azarkina
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ilya Kirov
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrei Kniazev
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna Filippova
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Grafskaia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region Russia
| | - Vassili Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - Ivan Butenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Olga Bukato
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Irina Lyapina
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Nazarenko
- Department of Analytical Chemistry, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey Elansky
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Mamaeva
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vadim Ivanov
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vadim Govorun
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
15
|
Wu Y, Han M, Wang Y, Gao Y, Cui X, Xu P, Ji C, Zhong T, You L, Zeng Y. A Comparative Peptidomic Characterization of Cultured Skeletal Muscle Tissues Derived From db/db Mice. Front Endocrinol (Lausanne) 2019; 10:741. [PMID: 31736878 PMCID: PMC6828820 DOI: 10.3389/fendo.2019.00741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022] Open
Abstract
As an important secretory organ, skeletal muscle has drawn attention as a potential target tissue for type 2 diabetic mellitus (T2DM). Recent peptidomics approaches have been applied to identify secreted peptides with potential bioactive. However, comprehensive analysis of the secreted peptides from skeletal muscle tissues of db/db mice and elucidation of their possible roles in insulin resistance remains poorly characterized. Here, we adopted a label-free discovery using liquid chromatography tandem mass spectrometry (LC-MS/MS) technology and identified 63 peptides (42 up-regulated peptides and 21 down-regulated peptides) differentially secreted from cultured skeletal muscle tissues of db/db mice. Analysis of relative molecular mass (Mr), isoelectric point (pI) and distribution of Mr vs pI of differentially secreted peptides presented the general feature. Furthermore, Gene ontology (GO) and pathway analyses for the parent proteins made a comprehensive functional assessment of these differential peptides, indicating the enrichment in glycolysis/gluconeogenesis and striated muscle contraction processes. Intercellular location analysis pointed out most precursor proteins of peptides were cytoplasmic or cytoskeletal. Additionally, cleavage site analysis revealed that Lysine (N-terminal)-Alanine (C-terminal) and Lysine (N-terminal)-Leucine (C-terminal) represents the preferred cleavage sites for identified peptides and proceeding peptides respectively. Mapped to the precursors' sequences, most identified peptides were observed cleaved from creatine kinase m-type (KCRM) and fructose-bisphosphate aldolase A (Aldo A). Based on UniProt and Pfam database for specific domain structure or motif, 44 peptides out of total were positioned in the functional motif or domain from their parent proteins. Using C2C12 myotubes as cell model in vitro, we found several candidate peptides displayed promotive or inhibitory effects on insulin and mitochondrial-related pathways by an autocrine manner. Taken together, this study will encourage us to investigate the biologic functions and the potential regulatory mechanism of these secreted peptides from skeletal muscle tissues, thus representing a promising strategy to treat insulin resistance as well as the associated metabolic disorders.
Collapse
Affiliation(s)
- Yanting Wu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
- Affiliated Maternity and Child Health Care Hospital of Nantong University, NanTong, China
| | - Mei Han
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yan Wang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yao Gao
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xianwei Cui
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Pengfei Xu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Chenbo Ji
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Tianying Zhong
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Lianghui You
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
- *Correspondence: Lianghui You
| | - Yu Zeng
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
- Yu Zeng
| |
Collapse
|
16
|
Morozov AV, Karpov VL. Biological consequences of structural and functional proteasome diversity. Heliyon 2018; 4:e00894. [PMID: 30417153 PMCID: PMC6218844 DOI: 10.1016/j.heliyon.2018.e00894] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/25/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
Cell homeostasis and regulation of metabolic pathways are ensured by synthesis, proper folding and efficient degradation of a vast amount of proteins. Ubiquitin-proteasome system (UPS) degrades most intracellular proteins and thus, participates in regulation of cellular metabolism. Within the UPS, proteasomes are the elements that perform substrate cleavage. However, the proteasomes in the organism are diverse. Structurally different proteasomes are present not only in different types of cells, but also in a single cell. The reason for proteasome heterogeneity is not fully understood. This review briefly encompasses mammalian proteasome structure and function, and discusses biological relevance of proteasome diversity for a range of important cellular functions including internal and external signaling.
Collapse
Affiliation(s)
- Alexey V Morozov
- W.A. Engelhardt Institute of Molecular Biology, RAS, 119991, Moscow, Russia
| | - Vadim L Karpov
- W.A. Engelhardt Institute of Molecular Biology, RAS, 119991, Moscow, Russia
| |
Collapse
|
17
|
Dowd S, Mustroph ML, Romanova EV, Southey BR, Pinardo H, Rhodes JS, Sweedler JV. Exploring Exercise- and Context-Induced Peptide Changes in Mice by Quantitative Mass Spectrometry. ACS OMEGA 2018; 3:13817-13827. [PMID: 30411050 PMCID: PMC6210063 DOI: 10.1021/acsomega.8b01713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Recent research suggests that exercise may help facilitate abstinence from cocaine addiction, though the mechanisms are not well understood. In mice, wheel running accelerates the extinction of conditioned place preference (CPP) for cocaine, providing an animal model for evaluating potential neurological mechanisms. The objective of this study was to quantify dynamic changes in endogenous peptides in the amygdala and dentate gyrus of the hippocampus in mice exposed to a context paired with the effects of cocaine, and in response to exercise. Male C57BL/6J mice conditioned to cocaine were housed with or without running wheels for 30 days. Following a CPP test and final exposure to either a cocaine- or saline-associated context, peptides were measured in brain tissue extracts using label-free matrix-assisted laser desorption/ionization mass spectrometry (MS) and stable isotopic labeling with liquid chromatography and electrospray ionization MS. CPP in mice was significantly reduced with running, which correlated to decreased myelin basic protein derivatives in the dentate gyrus extracts, possibly reflecting increased unmyelinated granule neuron density. Exposure to a cocaine-paired context increased hemoglobin-derived peptides in runners and decreased an actin-derived peptide in sedentary animals. These results allowed us to characterize a novel set of biomarkers that are responsive to exercise in the hippocampus and in a cocaine-paired context in the amygdala.
Collapse
Affiliation(s)
- Sarah
E. Dowd
- Department
of Chemistry, Neuroscience Program, Beckman Institute, Department of Animal Sciences, and Department of
Psychology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, 63-5, Urbana, Illinois 61801, United States
| | - Martina L. Mustroph
- Department
of Chemistry, Neuroscience Program, Beckman Institute, Department of Animal Sciences, and Department of
Psychology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, 63-5, Urbana, Illinois 61801, United States
| | - Elena V. Romanova
- Department
of Chemistry, Neuroscience Program, Beckman Institute, Department of Animal Sciences, and Department of
Psychology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, 63-5, Urbana, Illinois 61801, United States
| | - Bruce R. Southey
- Department
of Chemistry, Neuroscience Program, Beckman Institute, Department of Animal Sciences, and Department of
Psychology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, 63-5, Urbana, Illinois 61801, United States
| | - Heinrich Pinardo
- Department
of Chemistry, Neuroscience Program, Beckman Institute, Department of Animal Sciences, and Department of
Psychology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, 63-5, Urbana, Illinois 61801, United States
| | - Justin S. Rhodes
- Department
of Chemistry, Neuroscience Program, Beckman Institute, Department of Animal Sciences, and Department of
Psychology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, 63-5, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department
of Chemistry, Neuroscience Program, Beckman Institute, Department of Animal Sciences, and Department of
Psychology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, 63-5, Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
Remelli M, Ceciliato C, Guerrini R, Kolkowska P, Krzywoszynska K, Salvadori S, Valensin D, Watly J, Kozlowski H. DOES hemopressin bind metal ions in vivo? Dalton Trans 2018; 45:18267-18280. [PMID: 27801457 DOI: 10.1039/c6dt03598a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hemopressin is a neuropeptide, derived from the degradation of the α(1)-chain of hemoglobin, and possesses several pharmacologic properties, such as the ability to block cannabinoid CB1 receptor activity, to cause dose-dependent hypotension and to inhibit food intake. Actually, human hemopressin (PVNFKLLSH) is only the precursor of a class of longer peptides, called "Pepcans", which bear additional residues at their amino-terminus and possess slightly different chemical and biological properties with respect to hemopressin. The presence of a histidyl residue and the free terminal amine imparts to hemopressin and its derivatives good binding properties towards transition metal ions. In this paper, we present a wide investigation on the complex-formation equilibria of human hemopressin and three analogues towards the Cu(ii) and Ni(ii) ions. The study showed that the main coordination site is always the amino terminus (if not protected), while the C-terminal histidine acts only as an anchoring site for the metal ions at acidic pH, with the formation of a macrochelate complex. The presence of additional residues in N-terminal position produces significant differences in the protonation and complex-formation behaviors of these peptides, which can be explained in terms of charge of the ligand and coordination environment. Although the participation of metal ions in the biological activity of hemopressin and Pepcans has not yet been demonstrated, the data reported here can help to shed light on the mechanisms governing the action of these neuropeptides in vivo.
Collapse
Affiliation(s)
- Maurizio Remelli
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy.
| | - Carlo Ceciliato
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy.
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy.
| | - Paulina Kolkowska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland. and Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro 2, Siena, Italy
| | - Karolina Krzywoszynska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Severo Salvadori
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy.
| | - Daniela Valensin
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro 2, Siena, Italy
| | - Joanna Watly
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Henryk Kozlowski
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| |
Collapse
|
19
|
Abstract
Peptidomics is the detection and identification of the peptides present in a sample, while quantitative peptidomics provides additional information about the amounts of these peptides. Comparison of peptide levels among two or more samples is termed relative quantitation. It is also possible to perform absolute quantitation of peptide levels in which the biological sample is compared to synthetic standards, which requires a separate standard for each peptide. In contrast, relative quantitation can compare levels of all peptides that are detectable in a sample, which can exceed 1000 peptides in a complex sample. In this chapter, various techniques used for quantitative peptidomics are described along with discussion of the advantages and disadvantages of each approach. A guide to selecting the optimal quantitative approach is provided, based on the goals of the experiment and the resources that are available.
Collapse
Affiliation(s)
- Lloyd Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
20
|
Boonen K, De Haes W, Van Houtven J, Verdonck R, Baggerman G, Valkenborg D, Schoofs L. Quantitative Peptidomics with Isotopic and Isobaric Tags. Methods Mol Biol 2018; 1719:141-159. [PMID: 29476509 DOI: 10.1007/978-1-4939-7537-2_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In differential peptidomics, peptide profiles are compared between biological samples and the resulting expression levels are correlated to a phenotype of interest. This, in turn, allows us insight into how peptides may affect the phenotype of interest. In quantitative differential peptidomics, both label-based and label-free techniques are often employed. Label-based techniques have several advantages over label-free methods, primarily that labels allow for various samples to be pooled prior to liquid chromatography-mass spectrometry (LC-MS) analysis, reducing between-run variation. Here, we detail a method for performing quantitative peptidomics using stable amine-binding isotopic and isobaric tags.
Collapse
Affiliation(s)
- Kurt Boonen
- Research Group of Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Wouter De Haes
- Research Group of Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium
- Research Group of Molecular and Functional Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Joris Van Houtven
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics Department, KU Leuven, Leuven, Belgium
| | - Rik Verdonck
- Research Group of Molecular Developmental Physiology and Signal Transduction, Department of Biology, KU Leuven, Leuven, Belgium
| | - Geert Baggerman
- Center for Proteomics, University of Antwerp, Antwerp, Belgium
| | - Dirk Valkenborg
- Center for Proteomics, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
| | - Liliane Schoofs
- Research Group of Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
21
|
Fricker LD. Carboxypeptidase E and the Identification of Novel Neuropeptides as Potential Therapeutic Targets. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 82:85-102. [PMID: 29413529 DOI: 10.1016/bs.apha.2017.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peptides and small molecules that bind to peptide receptors are important classes of drugs that are used for a wide variety of different applications. The search for novel neuropeptides traditionally involved a time-consuming approach to purify each peptide to homogeneity and determine its amino acid sequence. The discovery in the 1980s of enkephalin convertase/carboxypeptidase E (CPE), and the observation that this enzyme was involved in the production of nearly every known neuropeptide led to the idea for a one-step affinity purification of CPE substrates. This approach was successfully used to isolate hundreds of known neuropeptides in mouse brain, as well as over a dozen novel peptides. Some of the novel peptides found using this approach are among the most abundant peptides present in brain, but had not been previously identified by traditional approaches. Recently, receptors for two of the novel peptides have been identified, confirming their role as neuropeptides that function in cell-cell signaling. Small molecules that bind to one of these receptors have been developed and found to significantly reduce food intake and anxiety-like behavior in an animal model. This review describes the entire project, from discovery of CPE to the novel peptides and their receptors.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
22
|
Sakaguchi Y, Kinumi T, Takatsu A. Quantification of peptides using N-terminal isotope coding and C-terminal derivatization for sensitive analysis by micro liquid chromatography-tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:1111-1119. [PMID: 27591418 DOI: 10.1002/jms.3845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
Stable isotope-coding coupled with mass spectrometry is a popular method for quantitative proteomics and peptide quantification. However, the efficiency of the derivatization reaction at a particular functional group, especially in complex structures, can affect accuracy. Here, we present a dual functional-group derivatization of bioactive peptides followed by micro liquid chromatography-tandem mass spectrometry (LC-MS/MS). By separating the sensitivity-enhancement and isotope-coding derivatization reactions, suitable chemistries can be chosen. The peptide amino groups were reductively alkylated with acetaldehyde or acetaldehyde-d4 to afford N-alkylated products with different masses. This process is simple, quick and high-yield, and accurate comparative analysis can be achieved for the mass-differentiated peptides. Then, the carboxyl groups were derivatized with 1-(2-pyrimidinyl)piperazine to increase MS/MS sensitivity. Angiotensins I-IV, bradykinin and neurotensin were analyzed after online solid phase extraction by micro LC-MS/MS. In all instances, a greater than 17-fold increase in sensitivity was achieved, compared with the analyses of the underivatized peptides. Furthermore, the values obtained from the present method were in agreement with the result from isotope dilution quantification using isotopically labeled angiotensin I [Asp-Arg-(Val-d8 )-Tyr-Ile-His-Pro-(Phe-d8 )-His-Leu]. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yohei Sakaguchi
- Bio-medical Standards Group, Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), C-3, 1-1-1, Umezomo, Tsukuba, Ibaraki, 305-8563, Japan
| | - Tomoya Kinumi
- Bio-medical Standards Group, Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), C-3, 1-1-1, Umezomo, Tsukuba, Ibaraki, 305-8563, Japan
| | - Akiko Takatsu
- Bio-medical Standards Group, Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), C-3, 1-1-1, Umezomo, Tsukuba, Ibaraki, 305-8563, Japan
| |
Collapse
|
23
|
Csizmadia V, Hales P, Tsu C, Ma J, Chen J, Shah P, Fleming P, Senn JJ, Kadambi VJ, Dick L, Wolenski FS. Proteasome inhibitors bortezomib and carfilzomib used for the treatment of multiple myeloma do not inhibit the serine protease HtrA2/Omi. Toxicol Res (Camb) 2016; 5:1619-1628. [PMID: 30090462 PMCID: PMC6062231 DOI: 10.1039/c6tx00220j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/23/2016] [Indexed: 12/26/2022] Open
Abstract
The proteasome inhibitor bortezomib is associated with the development of peripheral neuropathy in patients, but the mechanism is not fully understood.
The proteasome inhibitor bortezomib is associated with the development of peripheral neuropathy in patients, but the mechanism by which bortezomib can induce peripheral neuropathy is not fully understood. One study suggested that off-target inhibition of proteases other than the proteasome, particularly HtraA2/Omi, may be the underlying mechanism of the neuropathy. The same study also concluded that carfilzomib, a second proteasome inhibitor that is associated with less peripheral neuropathy in patients than bortezomib, showed no inhibition of HtrA2/Omi. The goal of the work described here was to determine whether either proteasome inhibitors truly affected HtrA2/Omi activity. A variety of methods were used to test the effects of both bortezomib and carfilzomib on HtrA2/Omi activity that included in vitro recombinant enzyme assays, and studies with the human neuroblastoma SH-SY5Y cell line and HtrA2/Omi-knockout mouse embryonic fibroblasts. The compound ucf-101 was used to assess the effects of specific HtrA2/Omi inhibition. In contrast to previously published data, our results clearly demonstrated that neither bortezomib nor carfilzomib inhibited HtrA2/Omi activity in recombinant enzyme assays at concentrations up to 100 μM, while the specific inhibitor ucf-101 did inhibit the enzyme. The proteasome inhibitors did not inhibit HtrA2/Omi activity in either SH-SY5Y cells or mouse embryonic fibroblasts, as determined by expression of the HtrA2/Omi substrates eIF4G1 and UCH-L1. Based on our biochemical and cell-based assays, we conclude that neither bortezomib nor carfilzomib inhibited HtrA2/Omi activity. Therefore, it is unlikely that bortezomib associated peripheral neuropathy is a direct result of off-target inhibition of HtrA2/Omi.
Collapse
Affiliation(s)
- Vilmos Csizmadia
- Millennium Pharmaceuticals , Inc (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited) , Cambridge , MA 02139 , USA . ; ; Tel: +1 617-551-3620
| | - Paul Hales
- Millennium Pharmaceuticals , Inc (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited) , Cambridge , MA 02139 , USA . ; ; Tel: +1 617-551-3620
| | - Christopher Tsu
- Millennium Pharmaceuticals , Inc (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited) , Cambridge , MA 02139 , USA . ; ; Tel: +1 617-551-3620
| | - Jingya Ma
- Millennium Pharmaceuticals , Inc (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited) , Cambridge , MA 02139 , USA . ; ; Tel: +1 617-551-3620
| | - Jiejin Chen
- Millennium Pharmaceuticals , Inc (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited) , Cambridge , MA 02139 , USA . ; ; Tel: +1 617-551-3620
| | - Pooja Shah
- Millennium Pharmaceuticals , Inc (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited) , Cambridge , MA 02139 , USA . ; ; Tel: +1 617-551-3620
| | - Paul Fleming
- Millennium Pharmaceuticals , Inc (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited) , Cambridge , MA 02139 , USA . ; ; Tel: +1 617-551-3620
| | - Joseph J Senn
- Millennium Pharmaceuticals , Inc (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited) , Cambridge , MA 02139 , USA . ; ; Tel: +1 617-551-3620
| | - Vivek J Kadambi
- Millennium Pharmaceuticals , Inc (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited) , Cambridge , MA 02139 , USA . ; ; Tel: +1 617-551-3620
| | - Larry Dick
- Millennium Pharmaceuticals , Inc (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited) , Cambridge , MA 02139 , USA . ; ; Tel: +1 617-551-3620
| | - Francis S Wolenski
- Millennium Pharmaceuticals , Inc (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited) , Cambridge , MA 02139 , USA . ; ; Tel: +1 617-551-3620
| |
Collapse
|
24
|
Paré B, Deschênes LT, Pouliot R, Dupré N, Gros-Louis F. An Optimized Approach to Recover Secreted Proteins from Fibroblast Conditioned-Media for Secretomic Analysis. Front Cell Neurosci 2016; 10:70. [PMID: 27064649 PMCID: PMC4814560 DOI: 10.3389/fncel.2016.00070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/04/2016] [Indexed: 11/13/2022] Open
Abstract
The proteins secreted by a particular type of cell, the secretome, play important roles in the regulation of many physiological processes via paracrine/autocrine mechanisms, and they are of increasing interest to help understanding rare diseases and to identify potential biomarkers and therapeutic targets. To facilitate ongoing research involving secreted proteins, we revisited cell culture protocols and whole secreted protein enrichment protocols. A reliable method for culturing and precipitating secreted protein from patient-derived fibroblast conditioned-medium was established. The method is based on the optimization of cell confluency and incubation time conditions. The well-established carrier-based TCA-DOC protein precipitation method was consistently found to give higher protein recovery yield. According to our results, we therefore propose that protein enrichment should be performed by TCA-DOC precipitation method after 48 h at 95% of confluence in a serum-deprived culture medium. Given the importance of secreted proteins as a source to elucidate the pathogenesis of rare diseases, especially neurological disorders, this approach may help to discover novel candidate biomarkers with potential clinical significance.
Collapse
Affiliation(s)
- Bastien Paré
- Division of Regenerative Medicine, Laval University Experimental Organogenesis Research Center/LOEX, CHU de Québec Research Center - Enfant-Jésus HospitalQuébec, QC, Canada; Department of Surgery, Faculty of Medicine, Laval UniversityQuébec, QC, Canada
| | - Lydia T Deschênes
- Division of Regenerative Medicine, Laval University Experimental Organogenesis Research Center/LOEX, CHU de Québec Research Center - Enfant-Jésus Hospital Québec, QC, Canada
| | - Roxane Pouliot
- Division of Regenerative Medicine, Laval University Experimental Organogenesis Research Center/LOEX, CHU de Québec Research Center - Enfant-Jésus HospitalQuébec, QC, Canada; Faculty of Pharmacy, Laval UniversityQuébec, QC, Canada
| | - Nicolas Dupré
- Neuroscience Division of the CHU de Québec, Department of Medicine of the Faculty of Medicine, Laval University Québec, QC, Canada
| | - Francois Gros-Louis
- Division of Regenerative Medicine, Laval University Experimental Organogenesis Research Center/LOEX, CHU de Québec Research Center - Enfant-Jésus HospitalQuébec, QC, Canada; Department of Surgery, Faculty of Medicine, Laval UniversityQuébec, QC, Canada
| |
Collapse
|
25
|
Fricker LD. Limitations of Mass Spectrometry-Based Peptidomic Approaches. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1981-91. [PMID: 26305799 PMCID: PMC6597174 DOI: 10.1007/s13361-015-1231-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 05/23/2023]
Abstract
Mass spectrometry-based peptidomic approaches are powerful techniques to detect and identify the peptide content of biological samples. The present study investigated the limitations of peptidomic approaches using trimethylammonium butyrate isotopic tags to quantify relative peptide levels and Mascot searches to identify peptides. Data were combined from previous studies on human cell lines or mouse tissues. The combined databases contain 2155 unique peptides ranging in mass from 444 to 8765 Da, with the vast majority between 1 and 3 kDa. The amino acid composition of the identified peptides generally reflected the frequency in the Eukaryotic proteome with the exception of Cys, which was not present in any of the identified peptides in the free-SH form but was detected at low frequency as a disulfide with Cys residues, a disulfide with glutathione, or as S-cyanocysteine. To test if the low detection rate of peptides smaller than 500 Da, larger than 3 kDa, or containing Cys was a limitation of the peptidomics procedure, tryptic peptides of known proteins were processed for peptidomics using the same approach used for human cell lines and mouse tissues. The identified tryptic peptides ranged from 516 to 2418 Da, whereas the theoretical digest ranged from 217 to 7559 Da. Peptides with Cys were rarely detected and, if present, the Cys was usually modified S-cyanocysteine. Additionally, peptides with mono- and di-iodo Tyr and His were identified. Taken together, there are limitations of peptidomic techniques, and awareness of these limitations is important to properly use and interpret results. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA.
| |
Collapse
|
26
|
Ye H, Wang J, Zhang Z, Jia C, Schmerberg C, Catherman AD, Thomas PM, Kelleher NL, Li L. Defining the Neuropeptidome of the Spiny Lobster Panulirus interruptus Brain Using a Multidimensional Mass Spectrometry-Based Platform. J Proteome Res 2015; 14:4776-91. [PMID: 26390183 DOI: 10.1021/acs.jproteome.5b00627] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Decapod crustaceans are important animal models for neurobiologists due to their relatively simple nervous systems with well-defined neural circuits and extensive neuromodulation by a diverse set of signaling peptides. However, biochemical characterization of these endogenous neuropeptides is often challenging due to limited sequence information about these neuropeptide genes and the encoded preprohormones. By taking advantage of sequence homology in neuropeptides observed in related species using a home-built crustacean neuropeptide database, we developed a semi-automated sequencing strategy to characterize the neuropeptidome of Panulirus interruptus, an important aquaculture species, with few known neuropeptide preprohormone sequences. Our streamlined process searched the high mass accuracy and high-resolution data acquired on a LTQ-Orbitrap with a flexible algorithm in ProSight that allows for sequence discrepancy from reported sequences in our database, resulting in the detection of 32 neuropeptides, including 19 novel ones. We further improved the overall coverage to 51 neuropeptides with our multidimensional platform that employed multiple analytical techniques including dimethylation-assisted fragmentation, de novo sequencing using nanoliquid chromatography-electrospray ionization-quadrupole-time-of-flight (nanoLC-ESI-Q-TOF), direct tissue analysis, and mass spectrometry imaging on matrix-assisted laser desorption/ionization (MALDI)-TOF/TOF. The high discovery rate from this unsequenced model organism demonstrated the utility of our neuropeptide discovery pipeline and highlighted the advantage of utilizing multiple sequencing strategies. Collectively, our study expands the catalog of crustacean neuropeptides and more importantly presents an approach that can be adapted to exploring neuropeptidome from species that possess limited sequence information.
Collapse
Affiliation(s)
- Hui Ye
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University , Nanjing 210009, China.,School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | | | - Zichuan Zhang
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Chenxi Jia
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Claire Schmerberg
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Adam D Catherman
- Departments of Chemistry and Molecular Biosciences, Proteomics Center of Excellence and Chemistry of Life Processes Institute, Northwestern University , 2145 North Sheridan Road, Evanston, Illinois 60208, United States
| | - Paul M Thomas
- Departments of Chemistry and Molecular Biosciences, Proteomics Center of Excellence and Chemistry of Life Processes Institute, Northwestern University , 2145 North Sheridan Road, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, Proteomics Center of Excellence and Chemistry of Life Processes Institute, Northwestern University , 2145 North Sheridan Road, Evanston, Illinois 60208, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,School of Life Sciences, Tianjin University , No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
27
|
Romanova EV, Sweedler JV. Peptidomics for the discovery and characterization of neuropeptides and hormones. Trends Pharmacol Sci 2015; 36:579-86. [PMID: 26143240 DOI: 10.1016/j.tips.2015.05.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 12/31/2022]
Abstract
The discovery of neuropeptides as signaling molecules with paracrine or hormonal regulatory functions has led to trailblazing advances in physiology and fostered the characterization of numerous neuropeptide-binding G protein-coupled receptors (GPCRs) as potential drug targets. The impact on human health has been tremendous: approximately 30% of commercial drugs act via the GPCR pathway. However, about 25% of the GPCRs encoded by the mammalian genome still lack their pharmacological identity. Searching for the orphan GPCR endogenous ligands that are likely to be neuropeptides has proved to be a formidable task. Here we describe the mass spectrometry (MS)-based technologies and experimental strategies that have been successful in achieving high-throughput characterization of endogenous peptides in nervous and endocrine systems.
Collapse
Affiliation(s)
- Elena V Romanova
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
28
|
Hattori T, Nakashima K, Marutani T, Kiso Y, Nishi Y, Mukai H. Successful acquisition of a neutralizing monoclonal antibody against a novel neutrophil-activating peptide, mitocryptide-1. Biochem Biophys Res Commun 2015; 463:54-9. [PMID: 25986736 DOI: 10.1016/j.bbrc.2015.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
Abstract
Mitocryptide-1 (MCT-1) is a novel neutrophil-activating peptide derived from mitochondrial cytochrome c oxidase subunit VIII, and its physiological role and involvement in various diseases have not yet been elucidated. Generating neutralizing antibodies against the function of MCT-1 is of particular importance for investigating its physiological and pathophysiological roles, because MCT-1 is a fragmented peptide of its mother protein and hence it is very difficult to manipulate its expression level genetically without affecting expression of the mother protein. Here, we report the successful generation of a neutralizing monoclonal antibody (MAb) against MCT-1. This MAb, designated NM1B1, which specifically bound to the region of positions 9-22 of MCT-1, showed concentration-dependent inhibition of MCT-1-induced migration and β-hexosaminidase release in neutrophilic/granulocytic differentiated HL-60 cells. Thus, NM1B1, as a neutralizing MAb against MCT-1, could elucidate not just the physiological regulatory mechanisms of MCT-1 but also its pathophysiological involvement in various inflammatory diseases in vivo.
Collapse
Affiliation(s)
- Tatsuya Hattori
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan; Laboratory of Protein Engineering, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Kenta Nakashima
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Takayuki Marutani
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Yoshiaki Kiso
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Yoshisuke Nishi
- Laboratory of Protein Engineering, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan.
| | - Hidehito Mukai
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan.
| |
Collapse
|
29
|
Hofer SC, Ralvenius WT, Gachet MS, Fritschy JM, Zeilhofer HU, Gertsch J. Localization and production of peptide endocannabinoids in the rodent CNS and adrenal medulla. Neuropharmacology 2015; 98:78-89. [PMID: 25839900 DOI: 10.1016/j.neuropharm.2015.03.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/06/2015] [Accepted: 03/20/2015] [Indexed: 12/20/2022]
Abstract
The endocannabinoid system (ECS) comprises the cannabinoid receptors CB1 and CB2 and their endogenous arachidonic acid-derived agonists 2-arachidonoyl glycerol and anandamide, which play important neuromodulatory roles. Recently, a novel class of negative allosteric CB1 receptor peptide ligands, hemopressin-like peptides derived from alpha hemoglobin, has been described, with yet unknown origin and function in the CNS. Using monoclonal antibodies we now identified the localization of RVD-hemopressin (pepcan-12) and N-terminally extended peptide endocannabinoids (pepcans) in the CNS and determined their neuronal origin. Immunohistochemical analyses in rodents revealed distinctive and specific staining in major groups of noradrenergic neurons, including the locus coeruleus (LC), A1, A5 and A7 neurons, which appear to be major sites of production/release in the CNS. No staining was detected in dopaminergic neurons. Peptidergic axons were seen throughout the brain (notably hippocampus and cerebral cortex) and spinal cord, indicative of anterograde axonal transport of pepcans. Intriguingly, the chromaffin cells in the adrenal medulla were also strongly stained for pepcans. We found specific co-expression of pepcans with galanin, both in the LC and adrenal gland. Using LC-MS/MS, pepcan-12 was only detected in non-perfused brain (∼ 40 pmol/g), suggesting that in the CNS it is secreted and present in extracellular compartments. In adrenal glands, significantly more pepcan-12 (400-700 pmol/g) was measured in both non-perfused and perfused tissues. Thus, chromaffin cells may be a major production site of pepcan-12 found in blood. These data uncover important areas of peptide endocannabinoid occurrence with exclusive noradrenergic immunohistochemical staining, opening new doors to investigate their potential physiological function in the ECS. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.
Collapse
Affiliation(s)
- Stefanie C Hofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - William T Ralvenius
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - M Salomé Gachet
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland; Institute of Pharmaceutical Chemistry, Swiss Federal Institute of Technology (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, CH-8057 Zürich, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland.
| |
Collapse
|
30
|
Hattori T, Mukai H. [Cryptides: biologically active peptides hidden in protein structures]. Nihon Yakurigaku Zasshi 2014; 144:234-238. [PMID: 25381893 DOI: 10.1254/fpj.144.234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
31
|
Tanaka K, Shimizu T, Yanagita T, Nemoto T, Nakamura K, Taniuchi K, Dimitriadis F, Yokotani K, Saito M. Brain RVD-haemopressin, a haemoglobin-derived peptide, inhibits bombesin-induced central activation of adrenomedullary outflow in the rat. Br J Pharmacol 2014; 171:202-13. [PMID: 24138638 DOI: 10.1111/bph.12471] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/17/2013] [Accepted: 09/21/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Haemopressin and RVD-haemopressin, derived from the haemoglobin α-chain, are bioactive peptides found in brain and are ligands for cannabinoid CB1 receptors. Activation of brain CB1 receptors inhibited the secretion of adrenal catecholamines (noradrenaline and adrenaline) induced by i.c.v. bombesin in the rat. Here, we investigated the effects of two haemoglobin-derived peptides on this bombesin-induced response EXPERIMENTAL APPROACH Anaesthetised male Wistar rats were pretreated with either haemoglobin-derived peptide, given i.c.v., 30 min before i.c.v. bombesin and plasma catecholamines were subsequently measured electrochemically after HPLC. Direct effects of bombesin on secretion of adrenal catecholamines were examined using bovine adrenal chromaffin cells. Furthermore, activation of haemoglobin α-positive spinally projecting neurons in the rat hypothalamic paraventricular nucleus (PVN, a regulatory centre of central adrenomedullary outflow) after i.c.v. bombesin was assessed by immunohistochemical techniques. KEY RESULTS Bombesin given i.c.v. dose-dependently elevated plasma catecholamines whereas incubation with bombesin had no effect on spontaneous and nicotine-induced secretion of catecholamines from chromaffin cells. The bombesin-induced increase in catecholamines was inhibited by pretreatment with i.c.v. RVD-haemopressin (CB1 receptor agonist) but not after pretreatment with haemopressin (CB1 receptor inverse agonist). Bombesin activated haemoglobin α-positive spinally projecting neurons in the PVN. CONCLUSIONS AND IMPLICATIONS The haemoglobin-derived peptide RVD-haemopressin in the brain plays an inhibitory role in bombesin-induced activation of central adrenomedullary outflow via brain CB1 receptors in the rat. These findings provide basic information for the therapeutic use of haemoglobin-derived peptides in the modulation of central adrenomedullary outflow.
Collapse
Affiliation(s)
- Kenjiro Tanaka
- Department of Pharmacology, Kochi University School of Medicine, Nankoku, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ferro ES, Rioli V, Castro LM, Fricker LD. Intracellular peptides: From discovery to function. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
de Araujo CB, Russo LC, Castro LM, Forti FL, do Monte ER, Rioli V, Gozzo FC, Colquhoun A, Ferro ES. A novel intracellular peptide derived from g1/s cyclin d2 induces cell death. J Biol Chem 2014; 289:16711-26. [PMID: 24764300 DOI: 10.1074/jbc.m113.537118] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intracellular peptides are constantly produced by the ubiquitin-proteasome system, and many are probably functional. Here, the peptide WELVVLGKL (pep5) from G1/S-specific cyclin D2 showed a 2-fold increase during the S phase of HeLa cell cycle. pep5 (25-100 μm) induced cell death in several tumor cells only when it was fused to a cell-penetrating peptide (pep5-cpp), suggesting its intracellular function. In vivo, pep5-cpp reduced the volume of the rat C6 glioblastoma by almost 50%. The tryptophan at the N terminus of pep5 is essential for its cell death activity, and N terminus acetylation reduced the potency of pep5-cpp. WELVVL is the minimal active sequence of pep5, whereas Leu-Ala substitutions totally abolished pep5 cell death activity. Findings from the initial characterization of the cell death/signaling mechanism of pep5 include caspase 3/7 and 9 activation, inhibition of Akt2 phosphorylation, activation of p38α and -γ, and inhibition of proteasome activity. Further pharmacological analyses suggest that pep5 can trigger cell death by distinctive pathways, which can be blocked by IM-54 or a combination of necrostatin-1 and q-VD-OPh. These data further support the biological and pharmacological potential of intracellular peptides.
Collapse
Affiliation(s)
| | - Lilian C Russo
- the Department of Biochemistry, Support Center for Research in Proteolysis and Cell Signaling (NAPPS), Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | | | - Fábio L Forti
- the Department of Biochemistry, Support Center for Research in Proteolysis and Cell Signaling (NAPPS), Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | | | - Vanessa Rioli
- the Special Laboratory of Applied Toxinology (LETA), Center of Toxins, Immune Response, and Cell Signaling (CETICS), Butantan Institute, 05503-000, São Paulo, SP, Brazil, and
| | - Fabio C Gozzo
- the Institute of Chemistry, State University of Campinas, 13083-862, Campinas, SP, Brazil
| | - Alison Colquhoun
- Cell Biology and Development, Support Center for Research in Proteolysis and Cell Signaling (NAPPS), Biomedical Science Institute, University of São Paulo, São Paulo, 05508-000, SP, Brazil
| | | |
Collapse
|
34
|
Romanova EV, Dowd SE, Sweedler JV. Quantitation of endogenous peptides using mass spectrometry based methods. Curr Opin Chem Biol 2013; 17:801-8. [PMID: 23790312 DOI: 10.1016/j.cbpa.2013.05.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
Abstract
The mass spectrometry-based 'omics' sub-discipline that focuses on comprehensive, often exploratory, analyses of endogenous peptides involved in cell-to-cell communication is oftentimes referred to as peptidomics. Although the progress in bioanalytical technology development for peptide discovery has been tremendous, perhaps the largest advances have involved robust quantitative mass spectrometric approaches and data mining algorithms. These efforts have accelerated the discovery and validation of biomarkers, functionally important posttranslational modifications, and unexpected molecular interactions, information that aids drug development. In this article we outline the current approaches used in quantitative peptidomics and the technical challenges that stimulate new advances in the field, while also reviewing the newest literature on functional characterizations of endogenous peptides using quantitative mass spectrometry.
Collapse
Affiliation(s)
- Elena V Romanova
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|