1
|
de Armiño DJA, Di Lella S, Montepietra D, Delcanale P, Bruno S, Giordano D, Verde C, Estrin DA, Viappiani C, Abbruzzetti S. Kinetic and dynamical properties of truncated hemoglobins of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Protein Sci 2024; 33:e5064. [PMID: 38864722 PMCID: PMC11168075 DOI: 10.1002/pro.5064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
Abstract
Due to the low temperature, the Antarctic marine environment is challenging for protein functioning. Cold-adapted organisms have evolved proteins endowed with higher flexibility and lower stability in comparison to their thermophilic homologs, resulting in enhanced reaction rates at low temperatures. The Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) genome is one of the few examples of coexistence of multiple hemoglobin genes encoding, among others, two constitutively transcribed 2/2 hemoglobins (2/2Hbs), also named truncated Hbs (TrHbs), belonging to the Group II (or O), annotated as PSHAa0030 and PSHAa2217. In this work, we describe the ligand binding kinetics and their interrelationship with the dynamical properties of globin Ph-2/2HbO-2217 by combining experimental and computational approaches and implementing a new computational method to retrieve information from molecular dynamic trajectories. We show that our approach allows us to identify docking sites within the protein matrix that are potentially able to transiently accommodate ligands and migration pathways connecting them. Consistently with ligand rebinding studies, our modeling suggests that the distal heme pocket is connected to the solvent through a low energy barrier, while inner cavities play only a minor role in modulating rebinding kinetics.
Collapse
Affiliation(s)
- Diego Javier Alonso de Armiño
- Departamento de Química Inorgánica, Analítica y Química Física, and INQUIMAE‐CONICET, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina
| | - Santiago Di Lella
- Departamento de Química Biológica and IQUIBICEN‐CONICET, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina
| | - Daniele Montepietra
- Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
- Nanoscience Institute—CNR‐NANOModenaItaly
| | - Pietro Delcanale
- Department of Mathematical, Physical and Computer SciencesUniversity of ParmaParmaItaly
| | - Stefano Bruno
- Department of Food and Drug SciencesUniversity of ParmaParmaItaly
| | - Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNRNaplesItaly
- Department of Ecosustainable Marine BiotechnologyStazione Zoologica Anton DohrnNaplesItaly
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNRNaplesItaly
- Department of Ecosustainable Marine BiotechnologyStazione Zoologica Anton DohrnNaplesItaly
| | - Dario A. Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, and INQUIMAE‐CONICET, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina
| | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer SciencesUniversity of ParmaParmaItaly
| | - Stefania Abbruzzetti
- Department of Mathematical, Physical and Computer SciencesUniversity of ParmaParmaItaly
| |
Collapse
|
2
|
Giordano D, Boubeta FM, di Prisco G, Estrin DA, Smulevich G, Viappiani C, Verde C. Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins. Antioxid Redox Signal 2020; 32:396-411. [PMID: 31578873 DOI: 10.1089/ars.2019.7887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Significance: Temperature is one of the most important drivers in shaping protein adaptations. Many biochemical and physiological processes are influenced by temperature. Proteins and enzymes from organisms living at low temperature are less stable in comparison to high-temperature adapted proteins. The lower stability is generally due to greater conformational flexibility. Recent Advances: Adaptive changes in the structure of cold-adapted proteins may occur at subunit interfaces, distant from the active site, thus producing energy changes associated with conformational transitions transmitted to the active site by allosteric modulation, valid also for monomeric proteins in which tertiary structural changes may play an essential role. Critical Issues: Despite efforts, the current experimental and computational methods still fail to produce general principles on protein evolution, since many changes are protein and species dependent. Environmental constraints or other biological cellular signals may override the ancestral information included in the structure of the protein, thus introducing inaccuracy in estimates and predictions on the evolutionary adaptations of proteins in response to cold adaptation. Future Directions: In this review, we describe the studies and approaches used to investigate stability and flexibility in the cold-adapted globins of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. In fact, future research directions will be prescient on more detailed investigation of cold-adapted proteins and the role of fluctuations between different conformational states.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Fernando Martín Boubeta
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy
| | - Dario A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
3
|
Boubeta FM, Boechi L, Estrin D, Patrizi B, Di Donato M, Iagatti A, Giordano D, Verde C, Bruno S, Abbruzzetti S, Viappiani C. Cold-Adaptation Signatures in the Ligand Rebinding Kinetics to the Truncated Hemoglobin of the Antarctic Bacterium Pseudoalteromonas haloplanktis TAC125. J Phys Chem B 2018; 122:11649-11661. [PMID: 30230844 DOI: 10.1021/acs.jpcb.8b07682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cold-adapted organisms have evolved proteins endowed with higher flexibility and lower stability in comparison to their thermophilic homologues, resulting in enhanced reaction rates at low temperatures. In this context, protein-bound water molecules were suggested to play a major role, and their weaker interactions at protein active sites have been associated with cold adaptation. In this work, we tested this hypothesis on truncated hemoglobins (a family of microbial heme-proteins of yet-unclear function) applying molecular dynamics simulations and ligand-rebinding kinetics on a protein from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 in comparison with its thermophilic Thermobifida fusca homologue. The CO rebinding kinetics of the former highlight several geminate phases, with an unusually long-lived geminate intermediate. An articulated tunnel with at least two distinct docking sites was identified by analysis of molecular dynamics simulations and was suggested to be at the origin of the unusual geminate rebinding phase. Water molecules are present in the distal pocket, but their stabilization by TrpG8, TyrB10, and HisCD1 is much weaker than in thermophilic Thermobifida fusca truncated hemoglobin, resulting in a faster geminate rebinding. Our results support the hypothesis that weaker water-molecule interactions at the reaction site are associated with cold adaptation.
Collapse
Affiliation(s)
- Fernando M Boubeta
- Instituto de Quimica Fisica de los Materiales, Medio Ambiente y Energia (INQUIMAE), CONICET, and Universidad de Buenos Aires , C1428EHA Buenos Aires , Argentina
| | - Leonardo Boechi
- Instituto de Calculo, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , C1428EGA Buenos Aires , Argentina
| | - Dario Estrin
- Instituto de Quimica Fisica de los Materiales, Medio Ambiente y Energia (INQUIMAE), CONICET, and Universidad de Buenos Aires , C1428EHA Buenos Aires , Argentina
| | - Barbara Patrizi
- European Laboratory for Non Linear Spectroscopy (LENS), Università di Firenze , Via Nello Carrara 1 , 50019 Sesto Fiorentino, Florence , Italy.,INO-CNR, Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche , Largo Fermi 6 , 50125 Florence , Italy
| | - Mariangela Di Donato
- European Laboratory for Non Linear Spectroscopy (LENS), Università di Firenze , Via Nello Carrara 1 , 50019 Sesto Fiorentino, Florence , Italy.,INO-CNR, Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche , Largo Fermi 6 , 50125 Florence , Italy
| | - Alessandro Iagatti
- European Laboratory for Non Linear Spectroscopy (LENS), Università di Firenze , Via Nello Carrara 1 , 50019 Sesto Fiorentino, Florence , Italy
| | - Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR , Via Pietro Castellino 111 , I-80131 Naples , Italy.,Stazione Zoologica Anton Dohrn , Villa Comunale , 80121 Naples , Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR , Via Pietro Castellino 111 , I-80131 Naples , Italy.,Stazione Zoologica Anton Dohrn , Villa Comunale , 80121 Naples , Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università di Parma , Parco Area delle Scienze 23A , 43124 , Parma , Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche , Università di Parma , Parco Area delle Scienze 7A , 43124 , Parma , Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche , Università di Parma , Parco Area delle Scienze 7A , 43124 , Parma , Italy
| |
Collapse
|
4
|
Feis A, Howes BD, Milazzo L, Coppola D, Smulevich G. Structural determinants of ligand binding in truncated hemoglobins: Resonance Raman spectroscopy of the native states and their carbon monoxide and hydroxide complexes. Biopolymers 2018; 109:e23114. [DOI: 10.1002/bip.23114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Alessandro Feis
- Dipartimento di Chimica “Ugo Schiff,”; Università di Firenze, Via della Lastruccia 3-13; Sesto Fiorentino 50019 Italy
| | - Barry D. Howes
- Dipartimento di Chimica “Ugo Schiff,”; Università di Firenze, Via della Lastruccia 3-13; Sesto Fiorentino 50019 Italy
| | - Lisa Milazzo
- Dipartimento di Chimica “Ugo Schiff,”; Università di Firenze, Via della Lastruccia 3-13; Sesto Fiorentino 50019 Italy
| | - Daniela Coppola
- Dipartimento di Scienze bio-agroalimentari del CNR (DiSBA-CNR), CNR, Via Pietro Castellino 111; Naples I-80131 Italy
| | - Giulietta Smulevich
- Dipartimento di Chimica “Ugo Schiff,”; Università di Firenze, Via della Lastruccia 3-13; Sesto Fiorentino 50019 Italy
| |
Collapse
|
5
|
Coexistence of multiple globin genes conferring protection against nitrosative stress to the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Nitric Oxide 2018; 73:39-51. [DOI: 10.1016/j.niox.2017.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/07/2017] [Accepted: 12/18/2017] [Indexed: 11/20/2022]
|
6
|
Preimesberger MR, Majumdar A, Lecomte JTJ. Dynamics of Lysine as a Heme Axial Ligand: NMR Analysis of the Chlamydomonas reinhardtii Hemoglobin THB1. Biochemistry 2017; 56:551-569. [DOI: 10.1021/acs.biochem.6b00926] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew R. Preimesberger
- T.
C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ananya Majumdar
- Biomolecular
NMR Center, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Juliette T. J. Lecomte
- T.
C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
7
|
Giordano D, Pesce A, Boechi L, Bustamante JP, Caldelli E, Howes BD, Riccio A, di Prisco G, Nardini M, Estrin D, Smulevich G, Bolognesi M, Verde C. Structural flexibility of the heme cavity in the cold-adapted truncated hemoglobin from the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. FEBS J 2015; 282:2948-65. [PMID: 26040838 DOI: 10.1111/febs.13335] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/17/2015] [Accepted: 06/01/2015] [Indexed: 11/30/2022]
Abstract
Truncated hemoglobins build one of the three branches of the globin protein superfamily. They display a characteristic two-on-two α-helical sandwich fold and are clustered into three groups (I, II and III) based on distinct structural features. Truncated hemoglobins are present in eubacteria, cyanobacteria, protozoa and plants. Here we present a structural, spectroscopic and molecular dynamics characterization of a group-II truncated hemoglobin, encoded by the PSHAa0030 gene from Pseudoalteromonas haloplanktis TAC125 (Ph-2/2HbO), a cold-adapted Antarctic marine bacterium hosting one flavohemoglobin and three distinct truncated hemoglobins. The Ph-2/2HbO aquo-met crystal structure (at 2.21 Å resolution) shows typical features of group-II truncated hemoglobins, namely the two-on-two α-helical sandwich fold, a helix Φ preceding the proximal helix F, and a heme distal-site hydrogen-bonded network that includes water molecules and several distal-site residues, including His(58)CD1. Analysis of Ph-2/2HbO by electron paramagnetic resonance, resonance Raman and electronic absorption spectra, under varied solution conditions, shows that Ph-2/2HbO can access diverse heme ligation states. Among these, detection of a low-spin heme hexa-coordinated species suggests that residue Tyr(42)B10 can undergo large conformational changes in order to act as the sixth heme-Fe ligand. Altogether, the results show that Ph-2/2HbO maintains the general structural features of group-II truncated hemoglobins but displays enhanced conformational flexibility in the proximity of the heme cavity, a property probably related to the functional challenges, such as low temperature, high O2 concentration and low kinetic energy of molecules, experienced by organisms living in the Antarctic environment.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources, National Research Council, Napoli, Italy
| | | | - Leonardo Boechi
- Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Argentina
| | - Juan Pablo Bustamante
- Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Argentina
| | - Elena Caldelli
- Department of Chemistry 'Ugo Schiff', University of Firenze, Sesto Fiorentino, Italy
| | - Barry D Howes
- Department of Chemistry 'Ugo Schiff', University of Firenze, Sesto Fiorentino, Italy
| | - Alessia Riccio
- Institute of Biosciences and BioResources, National Research Council, Napoli, Italy
| | - Guido di Prisco
- Institute of Biosciences and BioResources, National Research Council, Napoli, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milano, Italy
| | - Dario Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Argentina
| | - Giulietta Smulevich
- Department of Chemistry 'Ugo Schiff', University of Firenze, Sesto Fiorentino, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milano, Italy.,CNR-Institute of Biophysics and CIMAINA, University of Milano, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources, National Research Council, Napoli, Italy.,Department of Biology, Roma 3 University, Italy
| |
Collapse
|
8
|
Giordano D, Coppola D, Russo R, Tinajero-Trejo M, di Prisco G, Lauro F, Ascenzi P, Verde C. The globins of cold-adapted Pseudoalteromonas haloplanktis TAC125: from the structure to the physiological functions. Adv Microb Physiol 2014; 63:329-89. [PMID: 24054800 DOI: 10.1016/b978-0-12-407693-8.00008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evolution allowed Antarctic microorganisms to grow successfully under extreme conditions (low temperature and high O2 content), through a variety of structural and physiological adjustments in their genomes and development of programmed responses to strong oxidative and nitrosative stress. The availability of genomic sequences from an increasing number of cold-adapted species is providing insights to understand the molecular mechanisms underlying crucial physiological processes in polar organisms. The genome of Pseudoalteromonas haloplanktis TAC125 contains multiple genes encoding three distinct truncated globins exhibiting the 2/2 α-helical fold. One of these globins has been extensively characterised by spectroscopic analysis, kinetic measurements and computer simulation. The results indicate unique adaptive structural properties that enhance the overall flexibility of the protein, so that the structure appears to be resistant to pressure-induced stress. Recent results on a genomic mutant strain highlight the involvement of the cold-adapted globin in the protection against the stress induced by high O2 concentration. Moreover, the protein was shown to catalyse peroxynitrite isomerisation in vitro. In this review, we first summarise how cold temperatures affect the physiology of microorganisms and focus on the molecular mechanisms of cold adaptation revealed by recent biochemical and genetic studies. Next, since only in a very few cases the physiological role of truncated globins has been demonstrated, we also discuss the structural and functional features of the cold-adapted globin in an attempt to put into perspective what has been learnt about these proteins and their potential role in the biology of cold-adapted microorganisms.
Collapse
|