1
|
Borisov VB, Giardina G, Pistoia G, Forte E. Cytochrome bd-type oxidases and environmental stressors in microbial physiology. Adv Microb Physiol 2024; 86:199-255. [PMID: 40404270 DOI: 10.1016/bs.ampbs.2024.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Cytochrome bd is a tri-haem copper-free terminal oxidase of many respiratory chains of prokaryotes with unique structural and functional characteristics. As the other membrane-bound terminal oxidases, this enzyme couples the four-electron reduction of oxygen to water with the generation of a proton motive force used for ATP synthesis but the molecular mechanism does not include proton pumping. Beyond its bioenergetic role, cytochrome bd is involved in resistance to several stressors and affords protection against oxidative and nitrosative stress. These features agree with its expression in many bacterial pathogens. The importance for bacterial virulence and the absence of eukaryotic homologues make this enzyme an ideal target for new antimicrobial drugs. This review aims to provide an update on the current knowledge about cytochrome bd in light of recent advances in the structural characterisation of this enzyme, focussing on its reactivity with environmental stressors.
Collapse
Affiliation(s)
- Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Gianluca Pistoia
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Liu D, Bauer N, Lu W, Yang X, Wang B. On the Question of Uncatalyzed CO Insertion into a Hydrazone Double Bond: A Comparative Study Using Different CO Sources and Substrates. J Org Chem 2024; 89:9551-9556. [PMID: 38888488 PMCID: PMC11232009 DOI: 10.1021/acs.joc.4c00936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Because of endogenous signaling roles of carbon monoxide (CO) and its demonstrated pharmacological effects, there has been extensive interests in developing fluorescent CO probes. Palladium-mediated CO insertion has been successfully used for such applications. However, recent years have seen many publications of using uncatalyzed CO insertion into a hydrazone double bond as a way to sense CO. Such chemistry has no precedents otherwise. Further, the rigor of the CO-sensing work was largely based on using ruthenium-carbonyl complexes such as CORM-3 as CO surrogates, which have been reported to have extensive chemical reactivity and to release largely CO2 instead of CO unless in the presence of a strong nucleophile such as dithionite. For all of these, it is important to reassess the feasibility of such a CO-insertion reaction. By studying two of the reported "CO probes" using CO gas, this study finds no evidence of CO insertion into a hydrazone double bond. Further, the chemical reaction between CO gas and a series of eight hydrazone compounds was conducted, leading to the same conclusion. Such findings are consistent with the state-of-the-art knowledge of carbonylation chemistry and do not support uncatalyzed CO insertion as a mechanism for developing fluorescent CO probes.
Collapse
Affiliation(s)
- Dongning Liu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Nicola Bauer
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
3
|
Yang X, Mao Q, Wang B. On the Question of CO's Ability to Induce HO-1 Expression in Cell Culture: A Comparative Study Using Different CO Sources. ACS Chem Biol 2024; 19:725-735. [PMID: 38340055 PMCID: PMC10949199 DOI: 10.1021/acschembio.3c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
With the recognition of the endogenous signaling roles and pharmacological functions of carbon monoxide (CO), there is an increasing need to understand CO's mechanism of actions. Along this line, chemical donors have been introduced as CO surrogates for ease of delivery, dosage control, and sometimes the ability to target. Among all of the donors, two ruthenium-carbonyl complexes, CORM-2 and -3, are arguably the most commonly used tools for about 20 years in studying the mechanism of actions of CO. Largely based on data using these two CORMs, there has been a widely accepted inference that the upregulation of heme oxygenase-1 (HO-1) expression is one of the key mechanisms for CO's actions. However, recent years have seen reports of very pronounced chemical reactivities and CO-independent activities of these CORMs. We are interested in examining this question by conducting comparative studies using CO gas, CORM-2/-3, and organic CO donors in RAW264.7, HeLa, and HepG2 cell cultures. CORM-2 and CORM-3 treatment showed significant dose-dependent induction of HO-1 compared to "controls," while incubation for 6 h with 250-500 ppm CO gas did not increase the HO-1 protein expression and mRNA transcription level. A further increase of the CO concentration to 5% did not lead to HO-1 expression either. Additionally, we demonstrate that CORM-2/-3 releases minimal amounts of CO under the experimental conditions. These results indicate that the HO-1 induction effects of CORM-2/-3 are not attributable to CO. We also assessed two organic CO prodrugs, BW-CO-103 and BW-CO-111. BW-CO-111 but not BW-CO-103 dose-dependently increased HO-1 levels in RAW264.7 and HeLa cells. We subsequently studied the mechanism of induction with an Nrf2-luciferase reporter assay, showing that the HO-1 induction activity is likely due to the activation of Nrf2 by the CO donors. Overall, CO alone is unable to induce HO-1 or activate Nrf2 under various conditions in vitro. As such, there is no evidence to support attributing the HO-1 induction effect of the CO donors such as CORM-2/-3 and BW-CO-111 in cell culture to CO. This comparative study demonstrates the critical need to consider possible CO-independent effects of a chemical CO donor before attributing the observed biological effects to CO. It is also important to note that such in vitro results cannot be directly extrapolated to in vivo studies because of the increased level of complexity and the likelihood of secondary and/or synergistic effects in the latter.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Qiyue Mao
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
4
|
Bauer N, Yuan Z, Yang X, Wang B. Plight of CORMs: The unreliability of four commercially available CO-releasing molecules, CORM-2, CORM-3, CORM-A1, and CORM-401, in studying CO biology. Biochem Pharmacol 2023; 214:115642. [PMID: 37321416 PMCID: PMC10529722 DOI: 10.1016/j.bcp.2023.115642] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Carbon monoxide (CO) is an endogenously produced gaseous signaling molecule with demonstrated pharmacological effects. In studying CO biology, three delivery forms have been used: CO gas, CO in solution, and CO donors of various types. Among the CO donors, four carbonyl complexes with either a transition metal ion or borane (BH3) (termed CO-releasing molecules or CORMs) have played the most prominent roles appearing in over 650 publications. These are CORM-2, CORM-3, CORM-A1, and CORM-401. Intriguingly, there have been unique biology findings that were only observed with these CORMs, but not CO gas; yet these properties were often attributed to CO, raising puzzling questions as to why CO source would make such a fundamental difference in terms of CO biology. Recent years have seen a large number of reports of chemical reactivity (e.g., catalase-like activity, reaction with thiol, and reduction of NAD(P)+) and demonstrated CO-independent biological activity for these four CORMs. Further, CORM-A1 releases CO in an idiosyncratic fashion; CO release from CORM-401 is strongly influenced or even dependent on reaction with an oxidant and/or a nucleophile; CORM-2 mostly releases CO2, not CO, after a water-gas shift reaction except in the presence of a strong nucleophile; and CORM-3 does not release CO except in the presence of a strong nucleophile. All these beg the question as to what constitutes an appropriate CO donor for studying CO biology. This review critically summarizes literature findings related to these aspects, with the aim of helping result interpretation when using these CORMs and development of essential criteria for an appropriate donor for studying CO biology.
Collapse
Affiliation(s)
- Nicola Bauer
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
5
|
Liu D, Yang X, Wang B. Sensing a CO-Releasing Molecule (CORM) Does Not Equate to Sensing CO: The Case of DPHP and CORM-3. Anal Chem 2023; 95:9083-9089. [PMID: 37263968 PMCID: PMC10267888 DOI: 10.1021/acs.analchem.3c01495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Carbon monoxide (CO) is an endogenous signaling molecule with demonstrated pharmacological effects. For studying CO biology, there is a need for sensitive and selective fluorescent probes for CO as research tools. In developing such probes, CO gas and/or commercially available metal-carbonyl-based "CO-releasing molecules" (CORMs) have been used as CO sources. However, new findings are steadily emerging that some of these commonly used CORMs do not release CO reliably in buffers commonly used for studying such CO probes and have very pronounced chemical reactivities of their own, which could lead to the erroneous identification of "CO probes" that merely detect the CORM used, not CO. This is especially true when the CO-sensing mechanism relies on chemistry that is not firmly established otherwise. Cu2+ can quench the fluorescence of an imine-based fluorophore, DPHP, presumably through complexation. The Cu2+-quenched fluorescence was restored through the addition of CORM-3, a Ru-based CORM. This approach was reported as a new "strategy for detecting carbon monoxide" with the proposed mechanism being dependent on CO reduction of Cu2+ to Cu1+ under near-physiological conditions ( Anal. Chem. 2022, 94, 11298-11306). The study only used CORM-3 as the source of CO. CORM-3 has been reported to have very pronounced redox reactivity and is known not to release CO in an aqueous solution unless in the presence of a strong nucleophile. To assess whether the fluorescent response of the DPHP-Cu(II) cocktail to CORM-3 was truly through detecting CO, we report experiments using both pure CO and CORM-3. We confirm the reported DPHP-Cu(II) response to CORM-3 but not pure CO gas. Further, we did not observe the stated selectivity of DPHP for CO over sulfide species. Along this line, we also found that a reducing agent such as ascorbate was able to induce the same fluorescent turn-on as CORM-3 did. As such, the DPHP-Cu(II) system is not a CO probe and cannot be used to study CO biology. Corollary to this finding, it is critical that future work in developing CO probes uses more than a chemically reactive "CO donor" as the CO source. Especially important will be to confirm the ability of the "CO probe" to detect CO using pure CO gas or another source of CO.
Collapse
Affiliation(s)
- Dongning Liu
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xiaoxiao Yang
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
6
|
Wickham-Smith C, Malys N, Winzer K. Improving carbon monoxide tolerance of Cupriavidus necator H16 through adaptive laboratory evolution. Front Bioeng Biotechnol 2023; 11:1178536. [PMID: 37168609 PMCID: PMC10164946 DOI: 10.3389/fbioe.2023.1178536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Background: The toxic gas carbon monoxide (CO) is abundantly present in synthesis gas (syngas) and certain industrial waste gases that can serve as feedstocks for the biological production of industrially significant chemicals and fuels. For efficient bacterial growth to occur, and to increase productivity and titres, a high resistance to the gas is required. The aerobic bacterium Cupriavidus necator H16 can grow on CO2 + H2, although it cannot utilise CO as a source of carbon and energy. This study aimed to increase its CO resistance through adaptive laboratory evolution. Results: To increase the tolerance of C. necator to CO, the organism was continually subcultured in the presence of CO both heterotrophically and autotrophically. Ten individual cultures were evolved heterotrophically with fructose in this manner and eventually displayed a clear growth advantage over the wild type strain. Next-generation sequencing revealed several mutations, including a single point mutation upstream of a cytochrome bd ubiquinol oxidase operon (cydA2B2), which was present in all evolved isolates. When a subset of these mutations was engineered into the parental H16 strain, only the cydA2B2 upstream mutation enabled faster growth in the presence of CO. Expression analysis, mutation, overexpression and complementation suggested that cydA2B2 transcription is upregulated in the evolved isolates, resulting in increased CO tolerance under heterotrophic but not autotrophic conditions. However, through subculturing on a syngas-like mixture with increasing CO concentrations, C. necator could also be evolved to tolerate high CO concentrations under autotrophic conditions. A mutation in the gene for the soluble [NiFe]-hydrogenase subunit hoxH was identified in the evolved isolates. When the resulting amino acid change was engineered into the parental strain, autotrophic CO resistance was conferred. A strain constitutively expressing cydA2B2 and the mutated hoxH gene exhibited high CO tolerance under both heterotrophic and autotrophic conditions. Conclusion: C. necator was evolved to tolerate high concentrations of CO, a phenomenon which was dependent on the terminal respiratory cytochrome bd ubiquinol oxidase when grown heterotrophically and the soluble [NiFe]-hydrogenase when grown autotrophically. A strain exhibiting high tolerance under both conditions was created and presents a promising chassis for syngas-based bioproduction processes.
Collapse
|
7
|
Mechanistic and structural diversity between cytochrome bd isoforms of Escherichia coli. Proc Natl Acad Sci U S A 2021; 118:2114013118. [PMID: 34873041 DOI: 10.1073/pnas.2114013118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
The treatment of infectious diseases caused by multidrug-resistant pathogens is a major clinical challenge of the 21st century. The membrane-embedded respiratory cytochrome bd-type oxygen reductase is a critical survival factor utilized by pathogenic bacteria during infection, proliferation and the transition from acute to chronic states. Escherichia coli encodes for two cytochrome bd isoforms that are both involved in respiration under oxygen limited conditions. Mechanistic and structural differences between cydABX (Ecbd-I) and appCBX (Ecbd-II) operon encoded cytochrome bd variants have remained elusive in the past. Here, we demonstrate that cytochrome bd-II catalyzes oxidation of benzoquinols while possessing additional specificity for naphthoquinones. Our data show that although menaquinol-1 (MK1) is not able to directly transfer electrons onto cytochrome bd-II from E. coli, it has a stimulatory effect on its oxygen reduction rate in the presence of ubiquinol-1. We further determined cryo-EM structures of cytochrome bd-II to high resolution of 2.1 Å. Our structural insights confirm that the general architecture and substrate accessible pathways are conserved between the two bd oxidase isoforms, but two notable differences are apparent upon inspection: (i) Ecbd-II does not contain a CydH-like subunit, thereby exposing heme b 595 to the membrane environment and (ii) the AppB subunit harbors a structural demethylmenaquinone-8 molecule instead of ubiquinone-8 as found in CydB of Ecbd-I Our work completes the structural landscape of terminal respiratory oxygen reductases of E. coli and suggests that structural and functional properties of the respective oxidases are linked to quinol-pool dependent metabolic adaptations in E. coli.
Collapse
|
8
|
Misra S, Mukherjee S, Ghosh A, Singh P, Mondal S, Ray D, Bhattacharya G, Ganguly D, Ghosh A, Aswal VK, Mahapatra AK, Satpati B, Nanda J. Single Amino-Acid Based Self-Assembled Biomaterials with Potent Antimicrobial Activity. Chemistry 2021; 27:16744-16753. [PMID: 34468048 DOI: 10.1002/chem.202103071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 12/18/2022]
Abstract
The design and development of soft biomaterials based on amino acid and short-peptide have gained much attention due to their potent biomedical applications. A slight alteration in the side-chain of single amino acid in a peptide or protein sequence has a huge impact on the structure and function. Phenylalanine is one of the most studied amino acids, which contains an aromatic phenyl group connected through a flexible -CH2 - unit. In this work, we have examined whether flexibility and aromatic functionality of phenylalanine (Phe) are important in gel formation of model gelator Fmoc-Phe-OH or not. To examine this hypothesis, we synthesized Fmoc-derivatives of three analogues unnatural amino acids including cyclohexylalanine, phenylglycine, and homophenylalanine; which are slightly varied from Phe. Interestingly, all these three new analogues formed hydrogels in phosphate buffer at pH 7.0 having different gelation efficacy and kinetics. This study suggests that the presence of aromatic side-chain and flexibility are not mandatory for the gelation of this model gelator. Newly synthesized unnatural amino acid derivatives have also exhibited promising antimicrobial activity towards gram-positive bacteria by inhibiting cellular oxygen consumption. We further determined the biocompatibility of these amino acid derivatives by using a hemolysis assay on human blood cells. Overall studies described the development of single amino acid-based new injectable biomaterials with improved antimicrobial activity by the slight alteration in the side-chain of amino acid.
Collapse
Affiliation(s)
- Souvik Misra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O.- Botanic Garden, Howrah, 711103, India
| | | | - Anamika Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O.- Botanic Garden, Howrah, 711103, India
| | - Pijush Singh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, India
| | - Sanjoy Mondal
- Polymer Science Unit, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre Trombay, Mumbai, 400085, India
| | | | - Debabani Ganguly
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research, Kolkata, 700091, India
| | - Alok Ghosh
- Department of Biochemistry, University of Calcutta, Kolkata, 700019, India
| | - V K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre Trombay, Mumbai, 400085, India
| | - Ajit K Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O.- Botanic Garden, Howrah, 711103, India
| | - Biswarup Satpati
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Jayanta Nanda
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, PIN-734301, India
| |
Collapse
|
9
|
Munteanu AC, Uivarosi V. Ruthenium Complexes in the Fight against Pathogenic Microorganisms. An Extensive Review. Pharmaceutics 2021; 13:874. [PMID: 34199283 PMCID: PMC8232020 DOI: 10.3390/pharmaceutics13060874] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
The widespread use of antibiotics has resulted in the emergence of drug-resistant populations of microorganisms. Clearly, one can see the need to develop new, more effective, antimicrobial agents that go beyond the explored 'chemical space'. In this regard, their unique modes of action (e.g., reactive oxygen species (ROS) generation, redox activation, ligand exchange, depletion of substrates involved in vital cellular processes) render metal complexes as promising drug candidates. Several Ru (II/III) complexes have been included in, or are currently undergoing, clinical trials as anticancer agents. Based on the in-depth knowledge of their chemical properties and biological behavior, the interest in developing new ruthenium compounds as antibiotic, antifungal, antiparasitic, or antiviral drugs has risen. This review will discuss the advantages and disadvantages of Ru (II/III) frameworks as antimicrobial agents. Some aspects regarding the relationship between their chemical structure and mechanism of action, cellular localization, and/or metabolism of the ruthenium complexes in bacterial and eukaryotic cells are discussed as well. Regarding the antiviral activity, in light of current events related to the Covid-19 pandemic, the Ru (II/III) compounds used against SARS-CoV-2 (e.g., BOLD-100) are also reviewed herein.
Collapse
Affiliation(s)
- Alexandra-Cristina Munteanu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Valentina Uivarosi
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
10
|
Southam HM, Williamson MP, Chapman JA, Lyon RL, Trevitt CR, Henderson PJF, Poole RK. 'Carbon-Monoxide-Releasing Molecule-2 (CORM-2)' Is a Misnomer: Ruthenium Toxicity, Not CO Release, Accounts for Its Antimicrobial Effects. Antioxidants (Basel) 2021; 10:antiox10060915. [PMID: 34198746 PMCID: PMC8227206 DOI: 10.3390/antiox10060915] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Carbon monoxide (CO)-releasing molecules (CORMs) are used to deliver CO, a biological ‘gasotransmitter’, in biological chemistry and biomedicine. CORMs kill bacteria in culture and in animal models, but are reportedly benign towards mammalian cells. CORM-2 (tricarbonyldichlororuthenium(II) dimer, Ru2Cl4(CO)6), the first widely used and commercially available CORM, displays numerous pharmacological, biochemical and microbiological activities, generally attributed to CO release. Here, we investigate the basis of its potent antibacterial activity against Escherichia coli and demonstrate, using three globin CO sensors, that CORM-2 releases negligible CO (<0.1 mol CO per mol CORM-2). A strong negative correlation between viability and cellular ruthenium accumulation implies that ruthenium toxicity underlies biocidal activity. Exogenous amino acids and thiols (especially cysteine, glutathione and N-acetyl cysteine) protected bacteria against inhibition of growth by CORM-2. Bacteria treated with 30 μM CORM-2, with added cysteine and histidine, exhibited no significant loss of viability, but were killed in the absence of these amino acids. Their prevention of toxicity correlates with their CORM-2-binding affinities (Cys, Kd 3 μM; His, Kd 130 μM) as determined by 1H-NMR. Glutathione is proposed to be an important intracellular target of CORM-2, with CORM-2 having a much higher affinity for reduced glutathione (GSH) than oxidised glutathione (GSSG) (GSH, Kd 2 μM; GSSG, Kd 25,000 μM). The toxicity of low, but potent, levels (15 μM) of CORM-2 was accompanied by cell lysis, as judged by the release of cytoplasmic ATP pools. The biological effects of CORM-2 and related CORMs, and the design of biological experiments, must be re-examined in the light of these data.
Collapse
Affiliation(s)
- Hannah M. Southam
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
| | - Michael P. Williamson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
| | - Jonathan A. Chapman
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Rhiannon L. Lyon
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
| | - Clare R. Trevitt
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
| | - Peter J. F. Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK;
| | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
- Correspondence:
| |
Collapse
|
11
|
Borisov VB, Siletsky SA, Paiardini A, Hoogewijs D, Forte E, Giuffrè A, Poole RK. Bacterial Oxidases of the Cytochrome bd Family: Redox Enzymes of Unique Structure, Function, and Utility As Drug Targets. Antioxid Redox Signal 2021; 34:1280-1318. [PMID: 32924537 PMCID: PMC8112716 DOI: 10.1089/ars.2020.8039] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
Significance: Cytochrome bd is a ubiquinol:oxygen oxidoreductase of many prokaryotic respiratory chains with a unique structure and functional characteristics. Its primary role is to couple the reduction of molecular oxygen, even at submicromolar concentrations, to water with the generation of a proton motive force used for adenosine triphosphate production. Cytochrome bd is found in many bacterial pathogens and, surprisingly, in bacteria formally denoted as anaerobes. It endows bacteria with resistance to various stressors and is a potential drug target. Recent Advances: We summarize recent advances in the biochemistry, structure, and physiological functions of cytochrome bd in the light of exciting new three-dimensional structures of the oxidase. The newly discovered roles of cytochrome bd in contributing to bacterial protection against hydrogen peroxide, nitric oxide, peroxynitrite, and hydrogen sulfide are assessed. Critical Issues: Fundamental questions remain regarding the precise delineation of electron flow within this multihaem oxidase and how the extraordinarily high affinity for oxygen is accomplished, while endowing bacteria with resistance to other small ligands. Future Directions: It is clear that cytochrome bd is unique in its ability to confer resistance to toxic small molecules, a property that is significant for understanding the propensity of pathogens to possess this oxidase. Since cytochrome bd is a uniquely bacterial enzyme, future research should focus on harnessing fundamental knowledge of its structure and function to the development of novel and effective antibacterial agents.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
12
|
Abstract
Carbon monoxide has an infamous reputation as a toxic gas, and it has been suggested that it has potential as an antibacterial agent. Despite this, how bacteria resist its toxic effects is not well understood. Carbon monoxide (CO) gas is infamous for its acute toxicity. This toxicity predominantly stems from its tendency to form carbonyl complexes with transition metals, thus inhibiting the heme-prosthetic groups of proteins, including respiratory terminal oxidases. While CO has been proposed as an antibacterial agent, the evidence supporting its toxicity toward bacteria is equivocal, and its cellular targets remain poorly defined. In this work, we investigate the physiological response of mycobacteria to CO. We show that Mycobacterium smegmatis is highly resistant to the toxic effects of CO, exhibiting only minor inhibition of growth when cultured in its presence. We profiled the proteome of M. smegmatis during growth in CO, identifying strong induction of cytochrome bd oxidase and members of the dos regulon, but relatively few other changes. We show that the activity of cytochrome bd oxidase is resistant to CO, whereas cytochrome bcc-aa3 oxidase is strongly inhibited by this gas. Consistent with these findings, growth analysis shows that M. smegmatis lacking cytochrome bd oxidase displays a significant growth defect in the presence of CO, while induction of the dos regulon appears to be unimportant for adaptation to CO. Altogether, our findings indicate that M. smegmatis has considerable resistance to CO and benefits from respiratory flexibility to withstand its inhibitory effects. IMPORTANCE Carbon monoxide has an infamous reputation as a toxic gas, and it has been suggested that it has potential as an antibacterial agent. Despite this, how bacteria resist its toxic effects is not well understood. In this study, we investigated how CO influences growth, proteome, and aerobic respiration of wild-type and mutant strains of Mycobacterium smegmatis. We show that this bacterium produces the CO-resistant cytochrome bd oxidase to tolerate poisoning of its CO-sensitive complex IV homolog. Further, we show that aside from this remodeling of its respiratory chain, M. smegmatis makes few other functional changes to its proteome, suggesting it has a high level of inherent resistance to CO.
Collapse
|
13
|
Hopper CP, De La Cruz LK, Lyles KV, Wareham LK, Gilbert JA, Eichenbaum Z, Magierowski M, Poole RK, Wollborn J, Wang B. Role of Carbon Monoxide in Host-Gut Microbiome Communication. Chem Rev 2020; 120:13273-13311. [PMID: 33089988 DOI: 10.1021/acs.chemrev.0c00586] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nature is full of examples of symbiotic relationships. The critical symbiotic relation between host and mutualistic bacteria is attracting increasing attention to the degree that the gut microbiome is proposed by some as a new organ system. The microbiome exerts its systemic effect through a diverse range of metabolites, which include gaseous molecules such as H2, CO2, NH3, CH4, NO, H2S, and CO. In turn, the human host can influence the microbiome through these gaseous molecules as well in a reciprocal manner. Among these gaseous molecules, NO, H2S, and CO occupy a special place because of their widely known physiological functions in the host and their overlap and similarity in both targets and functions. The roles that NO and H2S play have been extensively examined by others. Herein, the roles of CO in host-gut microbiome communication are examined through a discussion of (1) host production and function of CO, (2) available CO donors as research tools, (3) CO production from diet and bacterial sources, (4) effect of CO on bacteria including CO sensing, and (5) gut microbiome production of CO. There is a large amount of literature suggesting the "messenger" role of CO in host-gut microbiome communication. However, much more work is needed to begin achieving a systematic understanding of this issue.
Collapse
Affiliation(s)
- Christopher P Hopper
- Institute for Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Bavaria DE 97080, Germany.,Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, Florida 32611, United States
| | - Ladie Kimberly De La Cruz
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kristin V Lyles
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lauren K Wareham
- The Vanderbilt Eye Institute and Department of Ophthalmology & Visual Sciences, The Vanderbilt University Medical Center and School of Medicine, Nashville, Tennessee 37232, United States
| | - Jack A Gilbert
- Department of Pediatrics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Marcin Magierowski
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Cracow PL 31-531, Poland
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Sheffield S10 2TN, U.K
| | - Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg DE 79085, Germany.,Department of Anesthesiology, Perioperative and Pain Management, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Binghe Wang
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
14
|
Mukherjee R, Verma T, Nandi D, Umapathy S. Identification of a resonance Raman marker for cytochrome to monitor stress responses in Escherichia coli. Anal Bioanal Chem 2020; 412:5379-5388. [PMID: 32548767 DOI: 10.1007/s00216-020-02753-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/16/2020] [Accepted: 06/02/2020] [Indexed: 11/29/2022]
Abstract
Raman spectroscopy and resonance Raman spectroscopy are widely used to study bacteria and their responses to different environmental conditions. In the present study, the identification of a novel resonance Raman peak for Escherichia coli, recorded with 633 nm laser excitation is discussed. A peak at 740 cm-1 is observed exclusively with 633 nm excitation but not with 514 nm or 785 nm excitation. This peak is absent in the lag phase but appears in the log phase of bacterial growth. The intensity of the peak increases at high temperature (45 °C) compared with growth at low temperature (25 °C) or the physiological temperature (37 °C). Although osmotic stress lowered bacterial growth, the intensity of this peak was unaffected. However, treatment with chemical uncouplers of oxidative phosphorylation resulted in significantly lower intensity of this Raman band, indicating its possible involvement in respiration. Cytochromes, a component of bacterial respiration' can show resonance enhancement at 633 nm due to the presence of a shoulder in that region depending on the type and conformation of cytochrome. Therefore, the peak intensity was monitored in different genetic mutants of E. coli lacking cytochromes. This peak is absent in the Escherichia coli mutant lacking cydB, but not ccmE, demonstrating the contribution of cytochrome bd subunit II in the peak's origin. In future, this newly found cytochrome marker can be used for biochemical assessment of bacteria exposed to various conditions. Overall, this finding opens the scope for use of red laser excitation in resonance Raman in monitoring stress and respiration in bacteria. Graphical abstract.
Collapse
Affiliation(s)
- Ria Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Taru Verma
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Dipankar Nandi
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, 560012, India. .,Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| | - Siva Umapathy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India. .,Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, 560012, India. .,Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
15
|
In the respiratory chain of Escherichia coli cytochromes bd-I and bd-II are more sensitive to carbon monoxide inhibition than cytochrome bo 3. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148088. [PMID: 31669488 DOI: 10.1016/j.bbabio.2019.148088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/27/2019] [Accepted: 10/18/2019] [Indexed: 11/23/2022]
Abstract
Bacteria can not only encounter carbon monoxide (CO) in their habitats but also produce the gas endogenously. Bacterial respiratory oxidases, thus, represent possible targets for CO. Accordingly, host macrophages were proposed to produce CO and release it into the surrounding microenvironment to sense viable bacteria through a mechanism that in Escherichia (E.) coli was suggested to involve the targeting of a bd-type respiratory oxidase by CO. The aerobic respiratory chain of E. coli possesses three terminal quinol:O2-oxidoreductases: the heme-copper oxidase bo3 and two copper-lacking bd-type oxidases, bd-I and bd-II. Heme-copper and bd-type oxidases differ in the mechanism and efficiency of proton motive force generation and in resistance to oxidative and nitrosative stress, cyanide and hydrogen sulfide. Here, we investigated at varied O2 concentrations the effect of CO gas on the O2 reductase activity of the purified cytochromes bo3, bd-I and bd-II of E. coli. We found that CO, in competition with O2, reversibly inhibits the three enzymes. The inhibition constants Ki for the bo3, bd-I and bd-II oxidases are 2.4 ± 0.3, 0.04 ± 0.01 and 0.2 ± 0.1 μM CO, respectively. Thus, in E. coli, bd-type oxidases are more sensitive to CO inhibition than the heme-copper cytochrome bo3. The possible physiological consequences of this finding are discussed.
Collapse
|
16
|
Li J, Zhang J, Zhang Q, Wang Y, Bai Z, Zhao Q, He D, Wang Z, Zhang J, Chen Y. Synthesis, toxicity and antitumor activity of cobalt carbonyl complexes targeting hepatocellular carcinoma. Bioorg Med Chem 2019; 27:115071. [PMID: 31472989 DOI: 10.1016/j.bmc.2019.115071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 10/26/2022]
Abstract
Based on our previous research, a series of targeting hepatocellular carcinoma complexes, [R-Glycyrrhetinic acid-CH2C2H-[Co2(CO)6] (R = H, 1; R = NSAIDs-COOH, 2-4; R = Aromatic acid, 5-7; R = Amino acid, 8-10), were synthesized. The test showed they are slow CO releasers. Using HeLa, A549, HT-29, SMMC7721 and HepG2 cells as models, their activities against tumor cell proliferation were firstly evaluated. The resulting data show all the complexes displayed a good anti-proliferation activity against the HepG2 and SMMC-7721 liver cancer cells, and their IC50 values were in the range of 10.07-66.06 µM; compared with cis-platin (DDP), their activities were comparable or even better under the same condition. Among them, complexes 3, 4, 6 and 9 exhibited higher anti-proliferation activities against HepG2 and SMMC-7721 cell lines than the other cell lines. To confirm further these complexes have selectivity to the liver cells, the uptakes of complexes 3, 4, 6 and 9 by HepG2, HT-29, A549 and SMMC7721 cell lines were studied. The results show the cell uptake rates of the complexes by HepG2 cells and SMMC7721 cells were much greater than by other cells under the same condition. In following tests, the tested complexes displayed higher activities in inhibiting NF-kB, COX-2 and iNOS; and they induced HepG2 cells apoptosis by mitochondrial pathway, which assessed by staining with different fluorescent reagent DAPI, PI, Mito-Tracker Green and DCFH-DA. Meanwhile, the tested complexes up-regulated the expression levels of caspase-3 and Bax, down-regulated the Bcl-2 expression. In addition, they had no effect on zebrafish embryo survival, embryo hatching, embryonic movement, zebrafish malformation and zebrafish movement at below 0.5 µM. This suggests the complexes are potential candidates to be used in clinic for liver cancers.
Collapse
Affiliation(s)
- Jili Li
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Jinlong Zhang
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Qiuping Zhang
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Yanni Wang
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Zhongjie Bai
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Quanyi Zhao
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China.
| | - Dian He
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Zhen Wang
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Jingke Zhang
- 2 GLP Lab Centre, School of Basic Medicine of Lanzhou University, Lanzhou 730000, China
| | - Yonglin Chen
- The First Affiliated Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
17
|
Li J, Zhang J, Zhang Q, Bai Z, Zhao Q, He D, Wang Z, Chen Y, Liu B. Syntheses and anti-cancer activity of CO-releasing molecules with targeting galactose receptors. Org Biomol Chem 2018; 16:8115-8129. [PMID: 30334056 DOI: 10.1039/c8ob01921e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CO-releasing molecules (CORMs) containing cobalt have many bioactivities, but most of them do not dissolve in water and have no selectivity to tissue and organs. On the basis of the specific recognition of galactose or sialic acid by a receptor, a series of CORMs based on carbohydrates were synthesized and evaluated. The test results show that all the complexes displayed anticancer activity. Among them, the effects of the complexes of galactose (1), GalNAc (8) and sialic acid (10) were very distinct. Complex 1 displayed higher activity against HeLa, HePG2, MCF-7 and HT-29 cell proliferation than cis-platin (DDP), and its selectivity was far much better than DDP compared with normal cell W138. Furthermore, the uptakes of complexes 1, 8 and 10 by HePG2, HT-29, A549 and RAW264.7 cell lines were studied. The uptake ratio of each cell line for complex 1 was different, and the order of uptake ratio in the four cell lines was HePG2 > HT-29 > RAW264.7 > A549. The HePG2 cells absorbed complex 1 beyond 60% after incubation for 8 h, while A549 absorbed only 27.8%. For complex 8, the uptake trend was similar to that of complex 1 with it being absorbed by all the four cancer cells, but the uptake rate was lower. However, differently, complex 10 was absorbed heavily by macrophage RAW264.7, followed by HePG2; after 8 h incubation, the uptake ratio of RAW264.7 was over 50%. In addition, the mechanism of action was explored, and the results showed that the complexes inhibited cell cycle arrest at the G2/M phase; complex 1 up-regulated the expression levels of caspase-3 and Bax, and down-regulated the Bcl-2 expression, giving rise to HePG2 cell apoptosis.
Collapse
Affiliation(s)
- Jili Li
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Do nitric oxide, carbon monoxide and hydrogen sulfide really qualify as 'gasotransmitters' in bacteria? Biochem Soc Trans 2018; 46:1107-1118. [PMID: 30190328 PMCID: PMC6195638 DOI: 10.1042/bst20170311] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 01/04/2023]
Abstract
A gasotransmitter is defined as a small, generally reactive, gaseous molecule that, in solution, is generated endogenously in an organism and exerts important signalling roles. It is noteworthy that these molecules are also toxic and antimicrobial. We ask: is this definition of a gasotransmitter appropriate in the cases of nitric oxide, carbon monoxide and hydrogen sulfide (H2S) in microbes? Recent advances show that, not only do bacteria synthesise each of these gases, but the molecules also have important signalling or messenger roles in addition to their toxic effects. However, strict application of the criteria proposed for a gasotransmitter leads us to conclude that the term ‘small molecule signalling agent’, as proposed by Fukuto and others, is preferable terminology.
Collapse
|
19
|
Southam HM, Smith TW, Lyon RL, Liao C, Trevitt CR, Middlemiss LA, Cox FL, Chapman JA, El-Khamisy SF, Hippler M, Williamson MP, Henderson PJF, Poole RK. A thiol-reactive Ru(II) ion, not CO release, underlies the potent antimicrobial and cytotoxic properties of CO-releasing molecule-3. Redox Biol 2018; 18:114-123. [PMID: 30007887 PMCID: PMC6067063 DOI: 10.1016/j.redox.2018.06.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/23/2018] [Indexed: 12/25/2022] Open
Abstract
Carbon monoxide (CO)-releasing molecules (CORMs), mostly metal carbonyl compounds, are extensively used as experimental tools to deliver CO, a biological ‘gasotransmitter’, in mammalian systems. CORMs are also explored as potential novel antimicrobial drugs, effectively and rapidly killing bacteria in vitro and in animal models, but are reportedly benign towards mammalian cells. Ru-carbonyl CORMs, exemplified by CORM-3 (Ru(CO)3Cl(glycinate)), exhibit the most potent antimicrobial effects against Escherichia coli. We demonstrate that CORM-3 releases little CO in buffers and cell culture media and that the active antimicrobial agent is Ru(II), which binds tightly to thiols. Thus, thiols and amino acids in complex growth media – such as histidine, methionine and oxidised glutathione, but most pertinently cysteine and reduced glutathione (GSH) – protect both bacterial and mammalian cells against CORM-3 by binding and sequestering Ru(II). No other amino acids exert significant protective effects. NMR reveals that CORM-3 binds cysteine and GSH in a 1:1 stoichiometry with dissociation constants, Kd, of about 5 μM, while histidine, GSSG and methionine are bound less tightly, with Kd values ranging between 800 and 9000 μM. There is a direct positive correlation between protection and amino acid affinity for CORM-3. Intracellular targets of CORM-3 in both bacterial and mammalian cells are therefore expected to include GSH, free Cys, His and Met residues and any molecules that contain these surface-exposed amino acids. These results necessitate a major reappraisal of the biological effects of CORM-3 and related CORMs. Carbon monoxide-releasing molecules (CORMs) are used for experimental CO delivery. CORM-3 is a potent antimicrobial, but is reportedly beneficial to mammalian cells. We demonstrate CORM-3 releases little CO in buffers and cell culture media. Redox-active Ru2+ is the biological agent, binding tightly to metabolites e.g. thiol. These results necessitate a major reappraisal of the biological effects of CORMs.
Collapse
Affiliation(s)
- Hannah M Southam
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Thomas W Smith
- Department of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, UK
| | - Rhiannon L Lyon
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Chunyan Liao
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Clare R Trevitt
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Laurence A Middlemiss
- Department of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, UK
| | - Francesca L Cox
- Department of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, UK
| | - Jonathan A Chapman
- Department of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, UK
| | - Sherif F El-Khamisy
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Michael Hippler
- Department of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, UK
| | - Michael P Williamson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | - Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
20
|
Wareham LK, McLean S, Begg R, Rana N, Ali S, Kendall JJ, Sanguinetti G, Mann BE, Poole RK. The Broad-Spectrum Antimicrobial Potential of [Mn(CO) 4(S 2CNMe(CH 2CO 2H))], a Water-Soluble CO-Releasing Molecule (CORM-401): Intracellular Accumulation, Transcriptomic and Statistical Analyses, and Membrane Polarization. Antioxid Redox Signal 2018; 28:1286-1308. [PMID: 28816060 PMCID: PMC5905950 DOI: 10.1089/ars.2017.7239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Carbon monoxide (CO)-releasing molecules (CORMs) are candidates for animal and antimicrobial therapeutics. We aimed to probe the antimicrobial potential of a novel manganese CORM. RESULTS [Mn(CO)4S2CNMe(CH2CO2H)], CORM-401, inhibits growth of Escherichia coli and several antibiotic-resistant clinical pathogens. CORM-401 releases CO that binds oxidases in vivo, but is an ineffective respiratory inhibitor. Extensive CORM accumulation (assayed as intracellular manganese) accompanies antimicrobial activity. CORM-401 stimulates respiration, polarizes the cytoplasmic membrane in an uncoupler-like manner, and elicits loss of intracellular potassium and zinc. Transcriptomics and mathematical modeling of transcription factor activities reveal a multifaceted response characterized by elevated expression of genes encoding potassium uptake, efflux pumps, and envelope stress responses. Regulators implicated in stress responses (CpxR), respiration (Arc, Fnr), methionine biosynthesis (MetJ), and iron homeostasis (Fur) are significantly disturbed. Although CORM-401 reduces bacterial growth in combination with cefotaxime and trimethoprim, fractional inhibition studies reveal no interaction. INNOVATION We present the most detailed microbiological analysis yet of a CORM that is not a ruthenium carbonyl. We demonstrate CO-independent striking effects on the bacterial membrane and global transcriptomic responses. CONCLUSIONS CORM-401, contrary to our expectations of a CO delivery vehicle, does not inhibit respiration. It accumulates in the cytoplasm, acts like an uncoupler in disrupting cytoplasmic ion balance, and triggers multiple effects, including osmotic stress and futile respiration. Rebound Track: This work was rejected during standard peer review and rescued by rebound peer review (Antioxid Redox Signal 16: 293-296, 2012) with the following serving as open reviewers: Miguel Aon, Giancarlo Biagini, James Imlay, and Nigel Robinson. Antioxid. Redox Signal. 28, 1286-1308.
Collapse
Affiliation(s)
- Lauren K Wareham
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Samantha McLean
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom .,2 School of Science and Technology , Nottingham Trent University, Nottingham, United Kingdom
| | - Ronald Begg
- 3 School of Informatics, The University of Edinburgh , Edinburgh, United Kingdom
| | - Namrata Rana
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Salar Ali
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - John J Kendall
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Guido Sanguinetti
- 3 School of Informatics, The University of Edinburgh , Edinburgh, United Kingdom
| | - Brian E Mann
- 4 Department of Chemistry, The University of Sheffield , Sheffield, United Kingdom
| | - Robert K Poole
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| |
Collapse
|
21
|
Galván AE, Chalón MC, Schurig-Briccio LA, Salomón RA, Minahk CJ, Gennis RB, Bellomio A. Cytochromes bd-I and bo 3 are essential for the bactericidal effect of microcin J25 on Escherichia coli cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1859:110-118. [PMID: 29107655 DOI: 10.1016/j.bbabio.2017.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/04/2017] [Accepted: 10/27/2017] [Indexed: 02/02/2023]
Abstract
Microcin J25 has two targets in sensitive bacteria, the RNA polymerase, and the respiratory chain through inhibition of cellular respiration. In this work, the effect of microcin J25 in E. coli mutants that lack the terminal oxidases cytochrome bd-I and cytochrome bo3 was analyzed. The mutant strains lacking cytochrome bo3 or cytochrome bd-I were less sensitive to the peptide. In membranes obtained from the strain that only expresses cytochrome bd-I a great ROS overproduction was observed in the presence of microcin J25. Nevertheless, the oxygen consumption was less inhibited in this strain, probably because the oxygen is partially reduced to superoxide. There was no overproduction of ROS in membranes isolated from the mutant strain that only express cytochrome bo3 and the inhibition of the cellular respiration was similar to the wild type. It is concluded that both cytochromes bd-I and bo3 are affected by the peptide. The results establish for the first time a relationship between the terminal oxygen reductases and the mechanism of action of microcin J25.
Collapse
Affiliation(s)
- A E Galván
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | - M C Chalón
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | | | - R A Salomón
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | - C J Minahk
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | - R B Gennis
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - A Bellomio
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina.
| |
Collapse
|
22
|
Rana N, Jesse HE, Tinajero-Trejo M, Butler JA, Tarlit JD, von Und Zur Muhlen ML, Nagel C, Schatzschneider U, Poole RK. A manganese photosensitive tricarbonyl molecule [Mn(CO)3(tpa-κ 3N)]Br enhances antibiotic efficacy in a multi-drug-resistant Escherichia coli. MICROBIOLOGY-SGM 2017; 163:1477-1489. [PMID: 28954688 PMCID: PMC5845575 DOI: 10.1099/mic.0.000526] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Carbon monoxide-releasing molecules (CORMs) are a promising class of new antimicrobials, with multiple modes of action that are distinct from those of standard antibiotics. The relentless increase in antimicrobial resistance, exacerbated by a lack of new antibiotics, necessitates a better understanding of how such novel agents act and might be used synergistically with established antibiotics. This work aimed to understand the mechanism(s) underlying synergy between a manganese-based photoactivated carbon monoxide-releasing molecule (PhotoCORM), [Mn(CO)3(tpa-κ3N)]Br [tpa=tris(2-pyridylmethyl)amine], and various classes of antibiotics in their activities towards Escherichia coli EC958, a multi-drug-resistant uropathogen. The title compound acts synergistically with polymyxins [polymyxin B and colistin (polymyxin E)] by damaging the bacterial cytoplasmic membrane. [Mn(CO)3(tpa-κ3N)]Br also potentiates the action of doxycycline, resulting in reduced expression of tetA, which encodes a tetracycline efflux pump. We show that, like tetracyclines, the breakdown products of [Mn(CO)3(tpa-κ3N)]Br activation chelate iron and trigger an iron starvation response, which we propose to be a further basis for the synergies observed. Conversely, media supplemented with excess iron abrogated the inhibition of growth by doxycycline and the title compound. In conclusion, multiple factors contribute to the ability of this PhotoCORM to increase the efficacy of antibiotics in the polymyxin and tetracycline families. We propose that light-activated carbon monoxide release is not the sole basis of the antimicrobial activities of [Mn(CO)3(tpa-κ3N)]Br.
Collapse
Affiliation(s)
- Namrata Rana
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | - Helen E Jesse
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | - Mariana Tinajero-Trejo
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK.,Present address: Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Jonathan A Butler
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK.,Present address: School of Healthcare Science, Manchester Metropolitan University, UK
| | - John D Tarlit
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | | | - Christoph Nagel
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| |
Collapse
|
23
|
Abstract
Cytochrome bd is a unique prokaryotic respiratory terminal oxidase that does not belong to the extensively investigated family of haem-copper oxidases (HCOs). The enzyme catalyses the four-electron reduction of O2 to 2H2O, using quinols as physiological reducing substrates. The reaction is electrogenic and cytochrome bd therefore sustains bacterial energy metabolism by contributing to maintain the transmembrane proton motive force required for ATP synthesis. As compared to HCOs, cytochrome bd displays several distinctive features in terms of (i) metal composition (it lacks Cu and harbours a d-type haem in addition to two haems b), (ii) overall three-dimensional structure, that only recently has been solved, and arrangement of the redox cofactors, (iii) lesser energetic efficiency (it is not a proton pump), (iv) higher O2 affinity, (v) higher resistance to inhibitors such as cyanide, nitric oxide (NO) and hydrogen sulphide (H2S) and (vi) ability to efficiently metabolize potentially toxic reactive oxygen and nitrogen species like hydrogen peroxide (H2O2) and peroxynitrite (ONOO-). Compelling evidence suggests that, beyond its bioenergetic role, cytochrome bd plays multiple functions in bacterial physiology and affords protection against oxidative and nitrosative stress. Relevant to human pathophysiology, thanks to its peculiar properties, the enzyme has been shown to promote virulence in several bacterial pathogens, being currently recognized as a target for the development of new antibiotics. This review aims to give an update on our current understanding of bd-type oxidases with a focus on their reactivity with gaseous ligands and its potential impact on bacterial physiology and human pathophysiology.
Collapse
|
24
|
Sahlberg Bang C, Demirel I, Kruse R, Persson K. Global gene expression profiling and antibiotic susceptibility after repeated exposure to the carbon monoxide-releasing molecule-2 (CORM-2) in multidrug-resistant ESBL-producing uropathogenic Escherichia coli. PLoS One 2017; 12:e0178541. [PMID: 28591134 PMCID: PMC5462378 DOI: 10.1371/journal.pone.0178541] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 05/15/2017] [Indexed: 12/02/2022] Open
Abstract
Treatment of urinary tract infections is today a challenge due to the increasing prevalence of multidrug-resistant ESBL-producing uropathogenic Escherichia coli (UPEC). There is an urgent need for new treatment strategies for multidrug-resistant UPEC and preferably with targets that have low potential for development of resistance. Carbon monoxide-releasing molecules (CORMs) are novel and potent antibacterial agents. The present study examines the transcriptomic targets of CORM-2 in a multidrug-resistant ESBL-producing UPEC isolate in response to a single exposure to CORM-2 and after repeated exposure to CORM-2. The bacterial viability and minimal inhibitory concentration (MIC) were also examined after repeated exposure to CORM-2. Microarray analysis revealed that a wide range of processes were affected by CORM-2, including a general trend of down-regulation in energy metabolism and biosynthesis pathways and up-regulation of the SOS response and DNA repair. Several genes involved in virulence (ibpB), antibiotic resistance (marAB, mdtABC) and biofilm formation (bhsA, yfgF) were up-regulated, while some genes involved in virulence (kpsC, fepCEG, entABE), antibiotic resistance (evgA) and biofilm formation (artIP) were down-regulated. Repeated exposure to CORM-2 did not alter the gene expression patterns, the growth inhibitory response to CORM-2 or the MIC values for CORM-2, cefotaxime, ciprofloxacin and trimethoprim. This study identifies several enriched gene ontologies, modified pathways and single genes that are targeted by CORM-2 in a multidrug-resistant UPEC isolate. Repeated exposure to CORM-2 did not change the gene expression patterns or fold changes and the susceptibility to CORM-2 remained after repeated exposure.
Collapse
Affiliation(s)
- Charlotte Sahlberg Bang
- School of Medical Sciences, Faculty of Medicine and Health, iRiSC—Inflammatory Response and Infection Susceptibility Centre, Örebro University, Örebro, Sweden
- * E-mail:
| | - Isak Demirel
- School of Medical Sciences, Faculty of Medicine and Health, iRiSC—Inflammatory Response and Infection Susceptibility Centre, Örebro University, Örebro, Sweden
| | - Robert Kruse
- School of Medical Sciences, Faculty of Medicine and Health, iRiSC—Inflammatory Response and Infection Susceptibility Centre, Örebro University, Örebro, Sweden
| | - Katarina Persson
- School of Medical Sciences, Faculty of Medicine and Health, iRiSC—Inflammatory Response and Infection Susceptibility Centre, Örebro University, Örebro, Sweden
| |
Collapse
|
25
|
Ward JS, Morgan R, Lynam JM, Fairlamb IJS, Moir JWB. Toxicity of tryptophan manganese(i) carbonyl (Trypto-CORM), against Neisseria gonorrhoeae. MEDCHEMCOMM 2017; 8:346-352. [PMID: 30108750 PMCID: PMC6072082 DOI: 10.1039/c6md00603e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/02/2016] [Indexed: 12/11/2022]
Abstract
The potential for carbon monoxide-releasing molecules (CO-RMs) as antimicrobials represents an exciting prospective in the fight against antibiotic resistance. Trypto-CORM, a tryptophan-containing manganese(i) carbonyl, is toxic against E. coli following photo-activation. Here, we demonstrate that Trypto-CORM is toxic against Neisseria gonorrhoeae in the absence of photoactivation. Trypto-CORM toxicity was reversed by the high CO affinity globin leg-haemoglobin (Leg-Hb), indicating that the toxicity is due to CO release. Release of CO from Trypto-CORM in the dark was also detected with Leg-Hb (but not myoglobin) in vitro. N. gonorrhoeae is more sensitive to CO-based toxicity than other model bacterial pathogens, and may serve as a viable candidate for antimicrobial therapy using CO-RMs.
Collapse
Affiliation(s)
- Jonathan S Ward
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK
- Department of Biology , University of York , Heslington , York , YO10 5DD , UK .
| | - Rebecca Morgan
- Department of Biology , University of York , Heslington , York , YO10 5DD , UK .
| | - Jason M Lynam
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK
| | - Ian J S Fairlamb
- Department of Chemistry , University of York , Heslington , York , YO10 5DD , UK
- Biological Physical Sciences Institute (BPSI) , University of York , York YO10 5DD , UK
| | - James W B Moir
- Department of Biology , University of York , Heslington , York , YO10 5DD , UK .
| |
Collapse
|
26
|
Abstract
Ruthenium is seldom mentioned in microbiology texts, due to the fact that this metal has no known, essential roles in biological systems, nor is it generally considered toxic. Since the fortuitous discovery of cisplatin, first as an antimicrobial agent and then later employed widely as an anticancer agent, complexes of other platinum group metals, such as ruthenium, have attracted interest for their medicinal properties. Here, we review at length how ruthenium complexes have been investigated as potential antimicrobial, antiparasitic and chemotherapeutic agents, in addition to their long and well-established roles as biological stains and inhibitors of calcium channels. Ruthenium complexes are also employed in a surprising number of biotechnological roles. It is in the employment of ruthenium complexes as antimicrobial agents and alternatives or adjuvants to more traditional antibiotics, that we expect to see the most striking developments in the future. Such novel contributions from organometallic chemistry are undoubtedly sorely needed to address the antimicrobial resistance crisis and the slow appearance on the market of new antibiotics.
Collapse
|
27
|
Wareham LK, Begg R, Jesse HE, Van Beilen JWA, Ali S, Svistunenko D, McLean S, Hellingwerf KJ, Sanguinetti G, Poole RK. Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance. Antioxid Redox Signal 2016; 24:1013-28. [PMID: 26907100 PMCID: PMC4921903 DOI: 10.1089/ars.2015.6501] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Carbon monoxide is a respiratory poison and gaseous signaling molecule. Although CO-releasing molecules (CORMs) deliver CO with temporal and spatial specificity in mammals, and are proven antimicrobial agents, we do not understand the modes of CO toxicity. Our aim was to explore the impact of CO gas per se, without intervention of CORMs, on bacterial physiology and gene expression. RESULTS We used tightly controlled chemostat conditions and integrated transcriptomic datasets with statistical modeling to reveal the global effects of CO. CO is known to inhibit bacterial respiration, and we found expression of genes encoding energy-transducing pathways to be significantly affected via the global regulators, Fnr, Arc, and PdhR. Aerobically, ArcA-the response regulator-is transiently phosphorylated and pyruvate accumulates, mimicking anaerobiosis. Genes implicated in iron acquisition, and the metabolism of sulfur amino acids and arginine, are all perturbed. The global iron-related changes, confirmed by modulation of activity of the transcription factor Fur, may underlie enhanced siderophore excretion, diminished intracellular iron pools, and the sensitivity of CO-challenged bacteria to metal chelators. Although CO gas (unlike H2S and NO) offers little protection from antibiotics, a ruthenium CORM is a potent adjuvant of antibiotic activity. INNOVATION This is the first detailed exploration of global bacterial responses to CO, revealing unexpected targets with implications for employing CORMs therapeutically. CONCLUSION This work reveals the complexity of bacterial responses to CO and provides a basis for understanding the impacts of CO from CORMs, heme oxygenase activity, or environmental sources. Antioxid. Redox Signal. 24, 1013-1028.
Collapse
Affiliation(s)
- Lauren K Wareham
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Ronald Begg
- 2 School of Informatics, The University of Edinburgh , Edinburgh, United Kingdom
| | - Helen E Jesse
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Johan W A Van Beilen
- 3 Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam, The Netherlands
| | - Salar Ali
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Dimitri Svistunenko
- 4 Biomedical EPR Facility, School of Biological Sciences, University of Essex , Colchester, United Kingdom
| | - Samantha McLean
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Klaas J Hellingwerf
- 3 Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam, The Netherlands
| | - Guido Sanguinetti
- 2 School of Informatics, The University of Edinburgh , Edinburgh, United Kingdom
| | - Robert K Poole
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| |
Collapse
|
28
|
Tinajero-Trejo M, Rana N, Nagel C, Jesse HE, Smith TW, Wareham LK, Hippler M, Schatzschneider U, Poole RK. Antimicrobial Activity of the Manganese Photoactivated Carbon Monoxide-Releasing Molecule [Mn(CO)3(tpa-κ(3)N)](+) Against a Pathogenic Escherichia coli that Causes Urinary Infections. Antioxid Redox Signal 2016; 24:765-80. [PMID: 26842766 PMCID: PMC4876522 DOI: 10.1089/ars.2015.6484] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS We set out to investigate the antibacterial activity of a new Mn-based photoactivated carbon monoxide-releasing molecule (PhotoCORM, [Mn(CO)3(tpa-κ(3)N)](+)) against an antibiotic-resistant uropathogenic strain (EC958) of Escherichia coli. RESULTS Activated PhotoCORM inhibits growth and decreases viability of E. coli EC958, but non-illuminated carbon monoxide-releasing molecule (CORM) is without effect. NADH-supported respiration rates are significantly decreased by activated PhotoCORM, mimicking the effect of dissolved CO gas. CO from the PhotoCORM binds to intracellular targets, namely respiratory oxidases in strain EC958 and a bacterial globin heterologously expressed in strain K-12. However, unlike previously characterized CORMs, the PhotoCORM is not significantly accumulated in cells, as deduced from the cellular manganese content. Activated PhotoCORM reacts avidly with hydrogen peroxide producing hydroxyl radicals; the observed peroxide-enhanced toxicity of the PhotoCORM is ameliorated by thiourea. The PhotoCORM also potentiates the effect of the antibiotic, doxycycline. INNOVATION The present work investigates for the first time the antimicrobial activity of a light-activated PhotoCORM against an antibiotic-resistant pathogen. A comprehensive study of the effects of the PhotoCORM and its derivative molecules upon illumination is performed and mechanisms of toxicity of the activated PhotoCORM are investigated. CONCLUSION The PhotoCORM allows a site-specific and time-controlled release of CO in bacterial cultures and has the potential to provide much needed information on the generality of CORM activities in biology. Understanding the mechanism(s) of activated PhotoCORM toxicity will be key in exploring the potential of this and similar compounds as antimicrobial agents, perhaps in combinatorial therapies with other agents. Antioxid. Redox Signal. 24, 765-780.
Collapse
Affiliation(s)
- Mariana Tinajero-Trejo
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Namrata Rana
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Christoph Nagel
- 2 Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg , Würzburg, Germany
| | - Helen E Jesse
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Thomas W Smith
- 3 Department of Chemistry, The University of Sheffield , Sheffield, United Kingdom
| | - Lauren K Wareham
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Michael Hippler
- 3 Department of Chemistry, The University of Sheffield , Sheffield, United Kingdom
| | - Ulrich Schatzschneider
- 2 Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg , Würzburg, Germany
| | - Robert K Poole
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| |
Collapse
|
29
|
Wareham LK, Poole RK, Tinajero-Trejo M. CO-releasing Metal Carbonyl Compounds as Antimicrobial Agents in the Post-antibiotic Era. J Biol Chem 2015; 290:18999-9007. [PMID: 26055702 PMCID: PMC4521022 DOI: 10.1074/jbc.r115.642926] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The possibility of a “post-antibiotic era” in the 21st century, in which common infections may kill, has prompted research into radically new antimicrobials. CO-releasing molecules (CORMs), mostly metal carbonyl compounds, originally developed for therapeutic CO delivery in animals, are potent antimicrobial agents. Certain CORMs inhibit growth and respiration, reduce viability, and release CO to intracellular hemes, as predicted, but their actions are more complex, as revealed by transcriptomic datasets and modeling. Progress is hindered by difficulties in detecting CO release intracellularly, limited understanding of the biological chemistry of CO reactions with non-heme targets, and the cytotoxicity of some CORMs to mammalian cells.
Collapse
Affiliation(s)
- Lauren K Wareham
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Robert K Poole
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Mariana Tinajero-Trejo
- From the Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
30
|
Abstract
Like most bacteria, Escherichia coli has a flexible and branched respiratory chain that enables the prokaryote to live under a variety of environmental conditions, from highly aerobic to completely anaerobic. In general, the bacterial respiratory chain is composed of dehydrogenases, a quinone pool, and reductases. Substrate-specific dehydrogenases transfer reducing equivalents from various donor substrates (NADH, succinate, glycerophosphate, formate, hydrogen, pyruvate, and lactate) to a quinone pool (menaquinone, ubiquinone, and dimethylmenoquinone). Then electrons from reduced quinones (quinols) are transferred by terminal reductases to different electron acceptors. Under aerobic growth conditions, the terminal electron acceptor is molecular oxygen. A transfer of electrons from quinol to O₂ is served by two major oxidoreductases (oxidases), cytochrome bo₃ encoded by cyoABCDE and cytochrome bd encoded by cydABX. Terminal oxidases of aerobic respiratory chains of bacteria, which use O₂ as the final electron acceptor, can oxidize one of two alternative electron donors, either cytochrome c or quinol. This review compares the effects of different inhibitors on the respiratory activities of cytochrome bo₃ and cytochrome bd in E. coli. It also presents a discussion on the genetics and the prosthetic groups of cytochrome bo₃ and cytochrome bd. The E. coli membrane contains three types of quinones that all have an octaprenyl side chain (C₄₀). It has been proposed that the bo₃ oxidase can have two ubiquinone-binding sites with different affinities. "WHAT'S NEW" IN THE REVISED ARTICLE: The revised article comprises additional information about subunit composition of cytochrome bd and its role in bacterial resistance to nitrosative and oxidative stresses. Also, we present the novel data on the electrogenic function of appBCX-encoded cytochrome bd-II, a second bd-type oxidase that had been thought not to contribute to generation of a proton motive force in E. coli, although its spectral properties closely resemble those of cydABX-encoded cytochrome bd.
Collapse
|
31
|
Holyoake LV, Poole RK, Shepherd M. The CydDC Family of Transporters and Their Roles in Oxidase Assembly and Homeostasis. Adv Microb Physiol 2015. [PMID: 26210105 DOI: 10.1016/bs.ampbs.2015.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The CydDC complex of Escherichia coli is a heterodimeric ATP-binding cassette type transporter (ABC transporter) that exports the thiol-containing redox-active molecules cysteine and glutathione. These reductants are thought to aid redox homeostasis of the periplasm, permitting correct disulphide folding of periplasmic and secreted proteins. Loss of CydDC results in the periplasm becoming more oxidising and abolishes the assembly of functional bd-type respiratory oxidases that couple the oxidation of ubiquinol to the reduction of oxygen to water. In addition, CydDC-mediated redox control is important for haem ligation during cytochrome c assembly. Given the diverse roles for CydDC in redox homeostasis, respiratory metabolism and the maturation of virulence factors, this ABC transporter is an intriguing system for researchers interested in both the physiology of redox perturbations and the role of low-molecular-weight thiols during infection.
Collapse
|
32
|
Bettenbrock K, Bai H, Ederer M, Green J, Hellingwerf KJ, Holcombe M, Kunz S, Rolfe MD, Sanguinetti G, Sawodny O, Sharma P, Steinsiek S, Poole RK. Towards a systems level understanding of the oxygen response of Escherichia coli. Adv Microb Physiol 2014; 64:65-114. [PMID: 24797925 DOI: 10.1016/b978-0-12-800143-1.00002-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Escherichia coli is a facultatively anaerobic bacterium. With glucose if no external electron acceptors are available, ATP is produced by substrate level phosphorylation. The intracellular redox balance is maintained by mixed-acid fermentation, that is, the production and excretion of several organic acids. When oxygen is available, E. coli switches to aerobic respiration to achieve redox balance and optimal energy conservation by proton translocation linked to electron transfer. The switch between fermentative and aerobic respiratory growth is driven by extensive changes in gene expression and protein synthesis, resulting in global changes in metabolic fluxes and metabolite concentrations. This oxygen response is determined by the interaction of global and local genetic regulatory mechanisms, as well as by enzymatic regulation. The response is affected by basic physical constraints such as diffusion, thermodynamics and the requirement for a balance of carbon, electrons and energy (predominantly the proton motive force and the ATP pool). A comprehensive systems level understanding of the oxygen response of E. coli requires the integrated interpretation of experimental data that are pertinent to the multiple levels of organization that mediate the response. In the pan-European venture, Systems Biology of Microorganisms (SysMO) and specifically within the project Systems Understanding of Microbial Oxygen Metabolism (SUMO), regulator activities, gene expression, metabolite levels and metabolic flux datasets were obtained using a standardized and reproducible chemostat-based experimental system. These different types and qualities of data were integrated using mathematical models. The approach described here has revealed a much more detailed picture of the aerobic-anaerobic response, especially for the environmentally critical microaerobic range that is located between unlimited oxygen availability and anaerobiosis.
Collapse
Affiliation(s)
- Katja Bettenbrock
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Hao Bai
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
| | - Michael Ederer
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael Holcombe
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
| | - Samantha Kunz
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Matthew D Rolfe
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Guido Sanguinetti
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Oliver Sawodny
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Poonam Sharma
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Sonja Steinsiek
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
33
|
Borisov VB, Forte E, Siletsky SA, Sarti P, Giuffrè A. Cytochrome bd from Escherichia coli catalyzes peroxynitrite decomposition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:182-188. [PMID: 25449967 DOI: 10.1016/j.bbabio.2014.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/11/2014] [Accepted: 10/15/2014] [Indexed: 12/31/2022]
Abstract
Cytochrome bd is a prokaryotic respiratory quinol oxidase phylogenetically unrelated to heme-copper oxidases, that was found to promote virulence in some bacterial pathogens. Cytochrome bd from Escherichia coli was previously reported to contribute not only to proton motive force generation, but also to bacterial resistance to nitric oxide (NO) and hydrogen peroxide (H2O2). Here, we investigated the interaction of the purified enzyme with peroxynitrite (ONOO(-)), another harmful reactive species produced by the host to kill invading microorganisms. We found that addition of ONOO(-) to cytochrome bd in turnover with ascorbate and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) causes the irreversible inhibition of a small (≤15%) protein fraction, due to the NO generated from ONOO(-) and not to ONOO(-) itself. Consistently, addition of ONOO(-) to cells of the E. coli strain GO105/pTK1, expressing cytochrome bd as the only terminal oxidase, caused only a minor (≤5%) irreversible inhibition of O2 consumption, without measurable release of NO. Furthermore, by directly monitoring the kinetics of ONOO(-) decomposition by stopped-flow absorption spectroscopy, it was found that the purified E. coli cytochrome bd in turnover with O2 is able to metabolize ONOO(-) with an apparent turnover rate as high as ~10 mol ONOO(-) (mol enzyme)(-1) s(-1) at 25°C. To the best of our knowledge, this is the first time that the kinetics of ONOO(-) decomposition by a terminal oxidase has been investigated. These results strongly suggest a protective role of cytochrome bd against ONOO(-) damage.
Collapse
Affiliation(s)
- Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russian Federation
| | - Elena Forte
- Department of Biochemical Sciences and Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Sergey A Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russian Federation
| | - Paolo Sarti
- Department of Biochemical Sciences and Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy; CNR Institute of Molecular Biology and Pathology, Rome, Italy
| | | |
Collapse
|
34
|
Tinajero-Trejo M, Denby KJ, Sedelnikova SE, Hassoubah SA, Mann BE, Poole RK. Carbon monoxide-releasing molecule-3 (CORM-3; Ru(CO)3Cl(glycinate)) as a tool to study the concerted effects of carbon monoxide and nitric oxide on bacterial flavohemoglobin Hmp: applications and pitfalls. J Biol Chem 2014; 289:29471-82. [PMID: 25193663 PMCID: PMC4207967 DOI: 10.1074/jbc.m114.573444] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 09/01/2014] [Indexed: 11/06/2022] Open
Abstract
CO and NO are small toxic gaseous molecules that play pivotal roles in biology as gasotransmitters. During bacterial infection, NO, produced by the host via the inducible NO synthase, exerts critical antibacterial effects while CO, generated by heme oxygenases, enhances phagocytosis of macrophages. In Escherichia coli, other bacteria and fungi, the flavohemoglobin Hmp is the most important detoxification mechanism converting NO and O2 to the ion nitrate (NO3(-)). The protoheme of Hmp binds not only O2 and NO, but also CO so that this ligand is expected to be an inhibitor of NO detoxification in vivo and in vitro. CORM-3 (Ru(CO)(3)Cl(glycinate)) is a metal carbonyl compound extensively used and recently shown to have potent antibacterial properties. In this study, attenuation of the NO resistance of E. coli by CORM-3 is demonstrated in vivo. However, polarographic measurements showed that CO gas, but not CORM-3, produced inhibition of the NO detoxification activity of Hmp in vitro. Nevertheless, CO release from CORM-3 in the presence of soluble cellular compounds is demonstrated by formation of carboxy-Hmp. We show that the inability of CORM-3 to inhibit the activity of purified Hmp is due to slow release of CO in protein solutions alone i.e. when sodium dithionite, widely used in previous studies of CO release from CORM-3, is excluded. Finally, we measure intracellular CO released from CORM-3 by following the formation of carboxy-Hmp in respiring cells. CORM-3 is a tool to explore the concerted effects of CO and NO in vivo.
Collapse
Affiliation(s)
| | - Katie J Denby
- From the Departments of Molecular Biology & Biotechnology and
| | | | | | - Brian E Mann
- Chemistry, The University of Sheffield, S10 2TN United Kingdom
| | - Robert K Poole
- From the Departments of Molecular Biology & Biotechnology and
| |
Collapse
|
35
|
Rana N, McLean S, Mann BE, Poole RK. Interaction of the carbon monoxide-releasing molecule Ru(CO)3Cl(glycinate) (CORM-3) with Salmonella enterica serovar Typhimurium: in situ measurements of carbon monoxide binding by integrating cavity dual-beam spectrophotometry. MICROBIOLOGY-SGM 2014; 160:2771-2779. [PMID: 25085864 DOI: 10.1099/mic.0.081042-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Carbon monoxide (CO) is a toxic gas that binds to haems, but also plays critical signalling and cytoprotective roles in mammalian systems; despite problems associated with systemic delivery by inhalation of the gas, it may be employed therapeutically. CO delivered to cells and tissues by CO-releasing molecules (CO-RMs) has beneficial and toxic effects not mimicked by CO gas; CO-RMs are also attractive candidates as novel antimicrobial agents. Salmonella enterica serovar Typhimurium is an enteropathogen causing gastroenteritis in humans. Recent studies have implicated haem oxygenase-1 (HO-1), the protein that catalyses the degradation of haem into biliverdin, free iron and CO, in the host immune response to Salmonella infection. In several studies, CO administration via CO-RMs elicited many of the protective roles of HO-1 induction and so we investigated the effects of a well-characterized water-soluble CO-RM, Ru(CO)3Cl(glycinate) (CORM-3), on Salmonella. CORM-3 exhibits toxic effects at concentrations significantly lower than those reported to cause toxicity to RAW 264.7 macrophages. We demonstrated here, through oxyhaemoglobin assays, that CORM-3 did not release CO spontaneously in phosphate buffer, buffered minimal medium or very rich medium. CORM-3 was, however, accumulated to high levels intracellularly (as shown by inductively coupled plasma MS) and released CO inside cells. Using growing Salmonella cultures without prior concentration, we showed for the first time that sensitive dual-beam integrating cavity absorption spectrophotometry can detect directly the CO released from CORM-3 binding in real-time to haems of the bacterial electron transport chain. The toxic effects of CO-RMs suggested potential applications as adjuvants to antibiotics in antimicrobial therapy.
Collapse
Affiliation(s)
- Namrata Rana
- Department of Molecular Biology & Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Samantha McLean
- Department of Molecular Biology & Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Brian E Mann
- Department of Chemistry, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Robert K Poole
- Department of Molecular Biology & Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
36
|
Kohlenstoffmonoxid freisetzende Moleküle für die therapeutische CO-Verabreichung in vivo. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201311225] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
García-Gallego S, Bernardes GJL. Carbon-monoxide-releasing molecules for the delivery of therapeutic CO in vivo. Angew Chem Int Ed Engl 2014; 53:9712-21. [PMID: 25070185 DOI: 10.1002/anie.201311225] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/17/2014] [Indexed: 11/07/2022]
Abstract
The development of carbon-monoxide-releasing molecules (CORMs) as pharmaceutical agents represents an attractive and safer alternative to administration of gaseous CO. Most CORMs developed to date are transition-metal carbonyl complexes. Although such CORMs have showed promising results in the treatment of a number of animal models of disease, they still lack the necessary attributes for clinical development. Described in this Minireview are the methods used for CORM selection, to date, and how new insights into the reactivity of metal-carbonyl complexes in vivo, together with advances in methods for live-cell CO detection, are driving the design and synthesis of new CORMs, CORMs that will enable controlled CO release in vivo in a spatial and temporal manner without affecting oxygen transport by hemoglobin.
Collapse
Affiliation(s)
- Sandra García-Gallego
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge (UK); Present Address: Polymer and Fibre Technology, KTH Royal Institute of Technology, 100 44 Stockholm (Sweden)
| | | |
Collapse
|
38
|
Siletsky SA, Zaspa AA, Poole RK, Borisov VB. Microsecond time-resolved absorption spectroscopy used to study CO compounds of cytochrome bd from Escherichia coli. PLoS One 2014; 9:e95617. [PMID: 24755641 PMCID: PMC3995794 DOI: 10.1371/journal.pone.0095617] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/28/2014] [Indexed: 11/18/2022] Open
Abstract
Cytochrome bd is a tri-heme (b558, b595, d) respiratory oxygen reductase that is found in many bacteria including pathogenic species. It couples the electron transfer from quinol to O2 with generation of an electrochemical proton gradient. We examined photolysis and subsequent recombination of CO with isolated cytochrome bd from Escherichia coli in one-electron reduced (MV) and fully reduced (R) states by microsecond time-resolved absorption spectroscopy at 532-nm excitation. Both Soret and visible band regions were examined. CO photodissociation from MV enzyme possibly causes fast (τ<1.5 µs) electron transfer from heme d to heme b595 in a small fraction of the protein, not reported earlier. Then the electron migrates to heme b558 (τ∼16 µs). It returns from the b-hemes to heme d with τ∼180 µs. Unlike cytochrome bd in the R state, in MV enzyme the apparent contribution of absorbance changes associated with CO dissociation from heme d is small, if any. Photodissociation of CO from heme d in MV enzyme is suggested to be accompanied by the binding of an internal ligand (L) at the opposite side of the heme. CO recombines with heme d (τ∼16 µs) yielding a transient hexacoordinate state (CO-Fe2+-L). Then the ligand slowly (τ∼30 ms) dissociates from heme d. Recombination of CO with a reduced heme b in a fraction of the MV sample may also contribute to the 30-ms phase. In R enzyme, CO recombines to heme d (τ∼20 µs), some heme b558 (τ∼0.2-3 ms), and finally migrates from heme d to heme b595 (τ∼24 ms) in ∼5% of the enzyme population. Data are consistent with the recent nanosecond study of Rappaport et al. conducted on the membranes at 640-nm excitation but limited to the Soret band. The additional phases were revealed due to differences in excitation and other experimental conditions.
Collapse
Affiliation(s)
- Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Andrey A. Zaspa
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
39
|
Bang CS, Kruse R, Demirel I, Onnberg A, Söderquist B, Persson K. Multiresistant uropathogenic extended-spectrum β-lactamase (ESBL)-producing Escherichia coli are susceptible to the carbon monoxide releasing molecule-2 (CORM-2). Microb Pathog 2013; 66:29-35. [PMID: 24361394 DOI: 10.1016/j.micpath.2013.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/27/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
Abstract
Carbon monoxide (CO) releasing molecules (CO-RMs) have been shown to inhibit growth of commensal Escherichia coli (E. coli). In the present study we examined the effect of CORM-2 on uropathogenic E. coli (UPEC) that produces extended-spectrum β-lactamase (ESBL). Viability experiments showed that CORM-2 inhibited the growth of several different ESBL-producing UPEC isolates and that 500 μM CORM-2 had a bactericidal effect within 4 h. The bactericidal effect of CORM-2 was significantly more pronounced than the effect of the antibiotic nitrofurantoin. CORM-2 demonstrated a low level of cytotoxicity in eukaryotic cells (human bladder epithelial cell line 5637) at the concentrations and time-points where the antibacterial effect was obtained. Real-time RT-PCR studies of different virulence genes showed that the expression of capsule group II kpsMT II and serum resistance traT was reduced and that some genes encoding iron acquisition systems were altered by CORM-2. Our results demonstrate that CORM-2 has a fast bactericidal effect against multiresistant ESBL-producing UPEC isolates, and also identify some putative UPEC virulence factors as targets for CORM-2. CO-RMs may be candidate drugs for further studies in the field of finding new therapeutic approaches for treatment of uropathogenic ESBLproducing E. coli.
Collapse
Affiliation(s)
- Charlotte Sahlberg Bang
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Robert Kruse
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Isak Demirel
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Anna Onnberg
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden; Department of Laboratory Medicine, Clinical Microbiology, Örebro University Hospital, Örebro, Sweden
| | - Bo Söderquist
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden; Department of Laboratory Medicine, Clinical Microbiology, Örebro University Hospital, Örebro, Sweden
| | - Katarina Persson
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden.
| |
Collapse
|
40
|
Tinajero-Trejo M, Jesse HE, Poole RK. Gasotransmitters, poisons, and antimicrobials: it's a gas, gas, gas! F1000PRIME REPORTS 2013; 5:28. [PMID: 23967379 PMCID: PMC3732073 DOI: 10.12703/p5-28] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We review recent examples of the burgeoning literature on three gases that have major impacts in biology and microbiology. NO, CO and H2S are now co-classified as endogenous gasotransmitters with profound effects on mammalian physiology and, potentially, major implications in therapeutic applications. All are well known to be toxic yet, at tiny concentrations in human and cell biology, play key signalling and regulatory functions. All may also be endogenously generated in microbes. NO and H2S share the property of being biochemically detoxified, yet are beneficial in resisting the bactericidal properties of antibiotics. The mechanism underlying this protection is currently under debate. CO, in contrast, is not readily removed; mounting evidence shows that CO, and especially organic donor compounds that release the gas in biological environments, are themselves effective, novel antimicrobial agents.
Collapse
|